메뉴 건너뛰기




Volumn 26, Issue 2, 2016, Pages 121-134

Right Time, Right Place: Probing the Functions of Organelle Positioning

Author keywords

Intracellular transport; Motor proteins; Optogenetics; Organelle positioning; Protein heterodimerization

Indexed keywords

ADAPTOR PROTEIN; MOLECULAR MOTOR;

EID: 84957429013     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.10.001     Document Type: Review
Times cited : (78)

References (139)
  • 1
    • 0037459061 scopus 로고    scopus 로고
    • The molecular motor toolbox for intracellular transport
    • Vale R.D. The molecular motor toolbox for intracellular transport. Cell 2003, 112:467-480.
    • (2003) Cell , vol.112 , pp. 467-480
    • Vale, R.D.1
  • 2
    • 69449091821 scopus 로고    scopus 로고
    • Basic mechanisms for recognition and transport of synaptic cargos
    • Schlager M.A., Hoogenraad C.C. Basic mechanisms for recognition and transport of synaptic cargos. Mol. Brain 2009, 2:25.
    • (2009) Mol. Brain , vol.2 , pp. 25
    • Schlager, M.A.1    Hoogenraad, C.C.2
  • 3
    • 84908488959 scopus 로고    scopus 로고
    • Integrated regulation of motor-driven organelle transport by scaffolding proteins
    • Fu M-M., Holzbaur E.L.F. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 2014, 24:564-574.
    • (2014) Trends Cell Biol. , vol.24 , pp. 564-574
    • Fu, M.-M.1    Holzbaur, E.L.F.2
  • 4
    • 84897567836 scopus 로고    scopus 로고
    • Mitochondrial trafficking and anchoring in neurons: new insight and implications
    • Sheng Z-H. Mitochondrial trafficking and anchoring in neurons: new insight and implications. J. Cell Biol. 2014, 204:1087-1098.
    • (2014) J. Cell Biol. , vol.204 , pp. 1087-1098
    • Sheng, Z.-H.1
  • 6
    • 66349129521 scopus 로고    scopus 로고
    • Unconventional myosins acting unconventionally
    • Woolner S., Bement W.M. Unconventional myosins acting unconventionally. Trends Cell Biol. 2009, 19:245-252.
    • (2009) Trends Cell Biol. , vol.19 , pp. 245-252
    • Woolner, S.1    Bement, W.M.2
  • 7
    • 84877582279 scopus 로고    scopus 로고
    • Myosin-V opposes microtubule-based cargo transport and drives directional motility on cortical actin
    • Kapitein L.C., et al. Myosin-V opposes microtubule-based cargo transport and drives directional motility on cortical actin. Curr. Biol. 2013, 23:828-834.
    • (2013) Curr. Biol. , vol.23 , pp. 828-834
    • Kapitein, L.C.1
  • 8
    • 84922928992 scopus 로고    scopus 로고
    • Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin
    • McIntosh B.B., et al. Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin. Curr. Biol. 2015, 25:523-529.
    • (2015) Curr. Biol. , vol.25 , pp. 523-529
    • McIntosh, B.B.1
  • 9
    • 0017276478 scopus 로고
    • The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro
    • De Brabander M.J., et al. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res. 1976, 36:905-916.
    • (1976) Cancer Res. , vol.36 , pp. 905-916
    • De Brabander, M.J.1
  • 10
    • 77957374075 scopus 로고    scopus 로고
    • Microtubule-binding agents: a dynamic field of cancer therapeutics
    • Dumontet C., Jordan M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9:790-803.
    • (2010) Nat. Rev. Drug Discov. , vol.9 , pp. 790-803
    • Dumontet, C.1    Jordan, M.A.2
  • 11
    • 79953316595 scopus 로고    scopus 로고
    • Lysosomal positioning coordinates cellular nutrient responses
    • Korolchuk V.I., et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 2011, 13:453-460.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 453-460
    • Korolchuk, V.I.1
  • 12
    • 0029972823 scopus 로고    scopus 로고
    • Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites
    • Cole N.B., et al. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 1996, 7:631-650.
    • (1996) Mol. Biol. Cell , vol.7 , pp. 631-650
    • Cole, N.B.1
  • 13
    • 84923222368 scopus 로고    scopus 로고
    • Post-translational modifications of tubulin: pathways to functional diversity of microtubules
    • Song Y., Brady S.T. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol. 2015, 25:125-136.
    • (2015) Trends Cell Biol. , vol.25 , pp. 125-136
    • Song, Y.1    Brady, S.T.2
  • 14
    • 33750618516 scopus 로고    scopus 로고
    • Microtubule acetylation promotes kinesin-1 binding and transport
    • Reed N.A., et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 2006, 16:2166-2172.
    • (2006) Curr. Biol. , vol.16 , pp. 2166-2172
    • Reed, N.A.1
  • 15
    • 76749162221 scopus 로고    scopus 로고
    • Mixed microtubules steer dynein-driven cargo transport into dendrites
    • Kapitein L.C., et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol. 2010, 20:290-299.
    • (2010) Curr. Biol. , vol.20 , pp. 290-299
    • Kapitein, L.C.1
  • 16
    • 76649143069 scopus 로고    scopus 로고
    • Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons
    • Hammond J.W., et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 2010, 21:572-583.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 572-583
    • Hammond, J.W.1
  • 17
    • 78449269612 scopus 로고    scopus 로고
    • Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease
    • Hirokawa N., et al. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 2010, 68:610-638.
    • (2010) Neuron , vol.68 , pp. 610-638
    • Hirokawa, N.1
  • 18
    • 37749053855 scopus 로고    scopus 로고
    • Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation
    • Kang J-S., et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 2008, 132:137-148.
    • (2008) Cell , vol.132 , pp. 137-148
    • Kang, J.-S.1
  • 19
    • 84938287341 scopus 로고    scopus 로고
    • Altered lysosomal positioning affects lysosomal functions in a cellular model of Huntington's disease
    • Erie C., et al. Altered lysosomal positioning affects lysosomal functions in a cellular model of Huntington's disease. Eur. J. Neurosci. 2015, 42:1941-1951.
    • (2015) Eur. J. Neurosci. , vol.42 , pp. 1941-1951
    • Erie, C.1
  • 20
    • 84896691702 scopus 로고    scopus 로고
    • Rab11 endosomes contribute to mitotic spindle organization and orientation
    • Hehnly H., Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell 2014, 28:497-507.
    • (2014) Dev. Cell , vol.28 , pp. 497-507
    • Hehnly, H.1    Doxsey, S.2
  • 21
    • 84875190548 scopus 로고    scopus 로고
    • Nuclear positioning
    • Gundersen G.G., Worman H.J. Nuclear positioning. Cell 2013, 152:1376-1389.
    • (2013) Cell , vol.152 , pp. 1376-1389
    • Gundersen, G.G.1    Worman, H.J.2
  • 22
    • 17844379382 scopus 로고    scopus 로고
    • Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells
    • Gomes E.R., et al. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 2005, 121:451-463.
    • (2005) Cell , vol.121 , pp. 451-463
    • Gomes, E.R.1
  • 23
    • 80053339433 scopus 로고    scopus 로고
    • Orientation and function of the nuclear-centrosomal axis during cell migration
    • Luxton G.W.G., Gundersen G.G. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 2011, 23:579-588.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 579-588
    • Luxton, G.W.G.1    Gundersen, G.G.2
  • 25
    • 77952093646 scopus 로고    scopus 로고
    • Toxicity and cellular responses of intestinal cells exposed to titanium dioxide
    • Koeneman B.A., et al. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol. Toxicol. 2010, 26:225-238.
    • (2010) Cell Biol. Toxicol. , vol.26 , pp. 225-238
    • Koeneman, B.A.1
  • 26
    • 84921614530 scopus 로고    scopus 로고
    • Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity
    • Strzyz P.J., et al. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell 2015, 32:203-219.
    • (2015) Dev. Cell , vol.32 , pp. 203-219
    • Strzyz, P.J.1
  • 27
    • 0141746289 scopus 로고    scopus 로고
    • Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo
    • Bruusgaard J.C., et al. Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. J. Physiol. 2003, 551:467-478.
    • (2003) J. Physiol. , vol.551 , pp. 467-478
    • Bruusgaard, J.C.1
  • 28
    • 0023110257 scopus 로고
    • Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture
    • Englander L.L., Rubin L.L. Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J. Cell Biol. 1987, 104:87-95.
    • (1987) J. Cell Biol. , vol.104 , pp. 87-95
    • Englander, L.L.1    Rubin, L.L.2
  • 29
    • 71549123700 scopus 로고    scopus 로고
    • Nuclei take a position: managing nuclear location
    • Burke B., Roux K.J. Nuclei take a position: managing nuclear location. Dev. Cell 2009, 17:587-597.
    • (2009) Dev. Cell , vol.17 , pp. 587-597
    • Burke, B.1    Roux, K.J.2
  • 30
    • 84866396387 scopus 로고    scopus 로고
    • Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules
    • Elhanany-Tamir H., et al. Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J. Cell Biol. 2012, 198:833-846.
    • (2012) J. Cell Biol. , vol.198 , pp. 833-846
    • Elhanany-Tamir, H.1
  • 31
    • 0037232946 scopus 로고    scopus 로고
    • Localizing synaptic mRNAs at the neuromuscular junction: It takes more than transcription
    • Chakkalakal J.V., Jasmin B.J. Localizing synaptic mRNAs at the neuromuscular junction: It takes more than transcription. Bioessays 2002, 25:25-31.
    • (2002) Bioessays , vol.25 , pp. 25-31
    • Chakkalakal, J.V.1    Jasmin, B.J.2
  • 32
    • 84856099972 scopus 로고    scopus 로고
    • Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites
    • Cui-Wang T., et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 2012, 148:309-321.
    • (2012) Cell , vol.148 , pp. 309-321
    • Cui-Wang, T.1
  • 33
    • 59049099831 scopus 로고    scopus 로고
    • A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins
    • Merianda T.T., et al. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol. Cell. Neurosci. 2009, 40:128-142.
    • (2009) Mol. Cell. Neurosci. , vol.40 , pp. 128-142
    • Merianda, T.T.1
  • 34
    • 0024245148 scopus 로고
    • Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle
    • Block B.A., et al. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 1988, 107:2587-2600.
    • (1988) J. Cell Biol. , vol.107 , pp. 2587-2600
    • Block, B.A.1
  • 35
    • 84880617115 scopus 로고    scopus 로고
    • Organization and function of membrane contact sites
    • Helle S.C.J., et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta 2013, 1833:2526-2541.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2526-2541
    • Helle, S.C.J.1
  • 36
    • 28744433842 scopus 로고    scopus 로고
    • Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis
    • Horton A.C., et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 2005, 48:757-771.
    • (2005) Neuron , vol.48 , pp. 757-771
    • Horton, A.C.1
  • 37
    • 84872696532 scopus 로고    scopus 로고
    • Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons
    • Ori-McKenney K.M., et al. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 2012, 76:921-930.
    • (2012) Neuron , vol.76 , pp. 921-930
    • Ori-McKenney, K.M.1
  • 38
    • 0027465925 scopus 로고
    • Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis
    • Ralston E. Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis. J. Cell Biol. 1993, 120:399-409.
    • (1993) J. Cell Biol. , vol.120 , pp. 399-409
    • Ralston, E.1
  • 39
    • 0035158716 scopus 로고    scopus 로고
    • Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism
    • Lu Z., et al. Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol. Biol. Cell 2001, 12:795-808.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 795-808
    • Lu, Z.1
  • 40
    • 77949375577 scopus 로고    scopus 로고
    • The Golgi and the centrosome: building a functional partnership
    • Sütterlin C., Colanzi A. The Golgi and the centrosome: building a functional partnership. J. Cell Biol. 2010, 188:621-628.
    • (2010) J. Cell Biol. , vol.188 , pp. 621-628
    • Sütterlin, C.1    Colanzi, A.2
  • 41
    • 0031662791 scopus 로고    scopus 로고
    • The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro
    • Zmuda J.F., Rivas R.J. The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil. Cytoskeleton 1998, 41:18-38.
    • (1998) Cell Motil. Cytoskeleton , vol.41 , pp. 18-38
    • Zmuda, J.F.1    Rivas, R.J.2
  • 42
    • 23644449576 scopus 로고    scopus 로고
    • Centrosome localization determines neuronal polarity
    • de Anda F.C., et al. Centrosome localization determines neuronal polarity. Nature 2005, 436:704-708.
    • (2005) Nature , vol.436 , pp. 704-708
    • de Anda, F.C.1
  • 43
    • 77955408770 scopus 로고    scopus 로고
    • Centrosome motility is essential for initial axon formation in the neocortex
    • de Anda F.C., et al. Centrosome motility is essential for initial axon formation in the neocortex. J. Neurosci. 2010, 30:10391-10406.
    • (2010) J. Neurosci. , vol.30 , pp. 10391-10406
    • de Anda, F.C.1
  • 44
    • 33745255998 scopus 로고    scopus 로고
    • Flies without centrioles
    • Basto R., et al. Flies without centrioles. Cell 2006, 125:1375-1386.
    • (2006) Cell , vol.125 , pp. 1375-1386
    • Basto, R.1
  • 45
    • 76249129860 scopus 로고    scopus 로고
    • Axon extension occurs independently of centrosomal microtubule nucleation
    • Stiess M., et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 2010, 327:704-707.
    • (2010) Science , vol.327 , pp. 704-707
    • Stiess, M.1
  • 46
    • 33847327308 scopus 로고    scopus 로고
    • Polarization and orientation of retinal ganglion cells in vivo
    • Zolessi F.R., et al. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev. 2006, 1:2.
    • (2006) Neural Dev. , vol.1 , pp. 2
    • Zolessi, F.R.1
  • 47
    • 33749031843 scopus 로고    scopus 로고
    • Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1
    • Leung K-M., et al. Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 2006, 9:1247-1256.
    • (2006) Nat. Neurosci. , vol.9 , pp. 1247-1256
    • Leung, K.-M.1
  • 48
    • 33748993427 scopus 로고    scopus 로고
    • 2+-dependent growth cone guidance
    • 2+-dependent growth cone guidance. Nat. Neurosci. 2006, 9:1265-1273.
    • (2006) Nat. Neurosci. , vol.9 , pp. 1265-1273
    • Yao, J.1
  • 49
    • 23944433636 scopus 로고    scopus 로고
    • Local translation of RhoA regulates growth cone collapse
    • Wu K.Y., et al. Local translation of RhoA regulates growth cone collapse. Nature 2005, 436:1020-1024.
    • (2005) Nature , vol.436 , pp. 1020-1024
    • Wu, K.Y.1
  • 50
    • 30644471045 scopus 로고    scopus 로고
    • Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones
    • Piper M., et al. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 2006, 49:215-228.
    • (2006) Neuron , vol.49 , pp. 215-228
    • Piper, M.1
  • 51
    • 0020063563 scopus 로고
    • Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus
    • Steward O., Levy W.B. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 1982, 2:284-291.
    • (1982) J. Neurosci. , vol.2 , pp. 284-291
    • Steward, O.1    Levy, W.B.2
  • 52
    • 0032191909 scopus 로고    scopus 로고
    • Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites
    • Steward O., et al. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 1998, 21:741-751.
    • (1998) Neuron , vol.21 , pp. 741-751
    • Steward, O.1
  • 53
    • 0029794770 scopus 로고    scopus 로고
    • A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity
    • Kang H., Schuman E.M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 1996, 273:1402-1406.
    • (1996) Science , vol.273 , pp. 1402-1406
    • Kang, H.1    Schuman, E.M.2
  • 54
    • 0034685813 scopus 로고    scopus 로고
    • Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression
    • Huber K.M., et al. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 2000, 288:1254-1257.
    • (2000) Science , vol.288 , pp. 1254-1257
    • Huber, K.M.1
  • 55
    • 84887013185 scopus 로고    scopus 로고
    • The central dogma decentralized: new perspectives on RNA function and local translation in neurons
    • Holt C.E., Schuman E.M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 2013, 80:648-657.
    • (2013) Neuron , vol.80 , pp. 648-657
    • Holt, C.E.1    Schuman, E.M.2
  • 56
    • 84906937036 scopus 로고    scopus 로고
    • Making connections: interorganelle contacts orchestrate mitochondrial behavior
    • Klecker T., et al. Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 2014, 24:537-545.
    • (2014) Trends Cell Biol. , vol.24 , pp. 537-545
    • Klecker, T.1
  • 57
    • 58149091896 scopus 로고    scopus 로고
    • 2+-dependent regulation of kinesin-mediated mitochondrial motility
    • 2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 2009, 136:163-174.
    • (2009) Cell , vol.136 , pp. 163-174
    • Wang, X.1    Schwarz, T.L.2
  • 58
    • 60449108890 scopus 로고    scopus 로고
    • Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses
    • MacAskill A.F., et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009, 61:541-555.
    • (2009) Neuron , vol.61 , pp. 541-555
    • MacAskill, A.F.1
  • 59
    • 84881611195 scopus 로고    scopus 로고
    • Motile axonal mitochondria contribute to the variability of presynaptic strength
    • Sun T., et al. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 2013, 4:413-419.
    • (2013) Cell Rep. , vol.4 , pp. 413-419
    • Sun, T.1
  • 60
    • 84890982921 scopus 로고    scopus 로고
    • Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis
    • Spillane M., et al. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 2013, 5:1564-1575.
    • (2013) Cell Rep. , vol.5 , pp. 1564-1575
    • Spillane, M.1
  • 61
    • 84899907498 scopus 로고    scopus 로고
    • AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon
    • Tao K., et al. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon. Dev. Neurobiol. 2014, 74:557-573.
    • (2014) Dev. Neurobiol. , vol.74 , pp. 557-573
    • Tao, K.1
  • 62
    • 84979942200 scopus 로고    scopus 로고
    • Changes in organelle position and epithelial architecture associated with loss of CrebA
    • Fox R.M., Andrew D.J. Changes in organelle position and epithelial architecture associated with loss of CrebA. Biol. Open 2015, 4:317-330.
    • (2015) Biol. Open , vol.4 , pp. 317-330
    • Fox, R.M.1    Andrew, D.J.2
  • 63
    • 84877290780 scopus 로고    scopus 로고
    • Mitochondrial localization and the persistent migration of epithelial cancer cells
    • Desai S.P., et al. Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys. J. 2013, 104:2077-2088.
    • (2013) Biophys. J. , vol.104 , pp. 2077-2088
    • Desai, S.P.1
  • 64
    • 84882690377 scopus 로고    scopus 로고
    • Mitochondria localize to the cleavage furrow in mammalian cytokinesis
    • Lawrence E.J., Mandato C.A. Mitochondria localize to the cleavage furrow in mammalian cytokinesis. PLoS ONE 2013, 8:e72886.
    • (2013) PLoS ONE , vol.8 , pp. e72886
    • Lawrence, E.J.1    Mandato, C.A.2
  • 65
    • 84896899028 scopus 로고    scopus 로고
    • RAB26 coordinates lysosome traffic and mitochondrial localization
    • Jin R.U., Mills J.C. RAB26 coordinates lysosome traffic and mitochondrial localization. J. Cell Sci. 2014, 127:1018-1032.
    • (2014) J. Cell Sci. , vol.127 , pp. 1018-1032
    • Jin, R.U.1    Mills, J.C.2
  • 66
    • 0035854367 scopus 로고    scopus 로고
    • Endocytosis and signaling: an inseparable partnership
    • Di Fiore P.P., De Camilli P. Endocytosis and signaling: an inseparable partnership. Cell 2001, 106:1-4.
    • (2001) Cell , vol.106 , pp. 1-4
    • Di Fiore, P.P.1    De Camilli, P.2
  • 67
    • 0036606805 scopus 로고    scopus 로고
    • When cell biology meets development: endocytic regulation of signaling pathways
    • Seto E.S., et al. When cell biology meets development: endocytic regulation of signaling pathways. Genes Dev. 2002, 16:1314-1336.
    • (2002) Genes Dev. , vol.16 , pp. 1314-1336
    • Seto, E.S.1
  • 68
    • 67349103762 scopus 로고    scopus 로고
    • Signaling from endosomes: location makes a difference
    • Sadowski L., et al. Signaling from endosomes: location makes a difference. Exp. Cell Res. 2009, 315:1601-1609.
    • (2009) Exp. Cell Res. , vol.315 , pp. 1601-1609
    • Sadowski, L.1
  • 69
    • 33751253774 scopus 로고    scopus 로고
    • Sara endosomes and the maintenance of Dpp signaling levels across mitosis
    • Bökel C., et al. Sara endosomes and the maintenance of Dpp signaling levels across mitosis. Science 2006, 314:1135-1139.
    • (2006) Science , vol.314 , pp. 1135-1139
    • Bökel, C.1
  • 70
    • 84923850274 scopus 로고    scopus 로고
    • Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord
    • Kressmann S., et al. Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord. Nat. Cell Biol. 2015, 17:333-339.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 333-339
    • Kressmann, S.1
  • 71
    • 33744532148 scopus 로고    scopus 로고
    • Recycling endosomes
    • van Ijzendoorn S.C.D. Recycling endosomes. J. Cell Sci. 2006, 119:1679-1681.
    • (2006) J. Cell Sci. , vol.119 , pp. 1679-1681
    • van Ijzendoorn, S.C.D.1
  • 72
    • 33750728621 scopus 로고    scopus 로고
    • Protrudin induces neurite formation by directional membrane trafficking
    • Shirane M., Nakayama K.I. Protrudin induces neurite formation by directional membrane trafficking. Science 2006, 314:818-821.
    • (2006) Science , vol.314 , pp. 818-821
    • Shirane, M.1    Nakayama, K.I.2
  • 73
    • 70349114240 scopus 로고    scopus 로고
    • Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses
    • Ascaño M., et al. Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J. Neurosci. 2009, 29:11674-11685.
    • (2009) J. Neurosci. , vol.29 , pp. 11674-11685
    • Ascaño, M.1
  • 74
    • 77956257696 scopus 로고    scopus 로고
    • Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells
    • Eva R., et al. Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. J. Neurosci. 2010, 30:11654-11669.
    • (2010) J. Neurosci. , vol.30 , pp. 11654-11669
    • Eva, R.1
  • 75
    • 84860667590 scopus 로고    scopus 로고
    • LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner
    • Takano T., et al. LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J. Neurosci. 2012, 32:6587-6599.
    • (2012) J. Neurosci. , vol.32 , pp. 6587-6599
    • Takano, T.1
  • 76
    • 0037456539 scopus 로고    scopus 로고
    • Two distinct mechanisms target membrane proteins to the axonal surface
    • Sampo B., et al. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 2003, 37:611-624.
    • (2003) Neuron , vol.37 , pp. 611-624
    • Sampo, B.1
  • 77
    • 33845396840 scopus 로고    scopus 로고
    • Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes
    • Park M., et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 2006, 52:817-830.
    • (2006) Neuron , vol.52 , pp. 817-830
    • Park, M.1
  • 78
    • 54549123514 scopus 로고    scopus 로고
    • Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity
    • Wang Z., et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 2008, 135:535-548.
    • (2008) Cell , vol.135 , pp. 535-548
    • Wang, Z.1
  • 79
    • 84890665265 scopus 로고    scopus 로고
    • Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping
    • Kusters R., et al. Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping. Biophys. J. 2013, 105:2743-2750.
    • (2013) Biophys. J. , vol.105 , pp. 2743-2750
    • Kusters, R.1
  • 80
    • 79952313074 scopus 로고    scopus 로고
    • Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease
    • Szperl A.M., et al. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease. J. Pediatr. Gastroenterol. Nutr. 2011, 52:307-313.
    • (2011) J. Pediatr. Gastroenterol. Nutr. , vol.52 , pp. 307-313
    • Szperl, A.M.1
  • 81
    • 84896892290 scopus 로고    scopus 로고
    • Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes
    • Dhekne H.S., et al. Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes. J. Cell Sci. 2014, 127:1007-1017.
    • (2014) J. Cell Sci. , vol.127 , pp. 1007-1017
    • Dhekne, H.S.1
  • 82
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 83
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell R.C., et al. Autophagy regulation by nutrient signaling. Cell Res. 2014, 24:42-57.
    • (2014) Cell Res. , vol.24 , pp. 42-57
    • Russell, R.C.1
  • 84
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon S., et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156:771-785.
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1
  • 85
    • 84904672562 scopus 로고    scopus 로고
    • Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis
    • Polishchuk E.V., et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell 2014, 29:686-700.
    • (2014) Dev. Cell , vol.29 , pp. 686-700
    • Polishchuk, E.V.1
  • 86
    • 84928012389 scopus 로고    scopus 로고
    • BORC, a multisubunit complex that regulates lysosome positioning
    • Pu J., et al. BORC, a multisubunit complex that regulates lysosome positioning. Dev. Cell 2015, 33:176-188.
    • (2015) Dev. Cell , vol.33 , pp. 176-188
    • Pu, J.1
  • 87
    • 57349100367 scopus 로고    scopus 로고
    • Mitofusin 2 tethers endoplasmic reticulum to mitochondria
    • de Brito O.M., Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008, 456:605-610.
    • (2008) Nature , vol.456 , pp. 605-610
    • de Brito, O.M.1    Scorrano, L.2
  • 88
    • 77955459468 scopus 로고    scopus 로고
    • ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules
    • Friedman J.R., et al. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 2010, 190:363-375.
    • (2010) J. Cell Biol. , vol.190 , pp. 363-375
    • Friedman, J.R.1
  • 89
    • 84890212450 scopus 로고    scopus 로고
    • STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER
    • Alpy F., et al. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J. Cell Sci. 2013, 126:5500-5512.
    • (2013) J. Cell Sci. , vol.126 , pp. 5500-5512
    • Alpy, F.1
  • 90
    • 84875462369 scopus 로고    scopus 로고
    • Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature
    • Friedman J.R., et al. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 2013, 24:1030-1040.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 1030-1040
    • Friedman, J.R.1
  • 91
    • 0033594080 scopus 로고    scopus 로고
    • Golgi structure in three dimensions: functional insights from the normal rat kidney cell
    • Ladinsky M.S., et al. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 1999, 144:1135-1149.
    • (1999) J. Cell Biol. , vol.144 , pp. 1135-1149
    • Ladinsky, M.S.1
  • 92
    • 2442640305 scopus 로고    scopus 로고
    • Predicting function from structure: 3D structure studies of the mammalian Golgi complex
    • Mogelsvang S., et al. Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 2004, 5:338-345.
    • (2004) Traffic , vol.5 , pp. 338-345
    • Mogelsvang, S.1
  • 93
    • 84876011203 scopus 로고    scopus 로고
    • Endoplasmic reticulum structure and interconnections with other organelles
    • English A.R., Voeltz G.K. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb. Perspect. Biol. 2013, 5:a013227.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a013227
    • English, A.R.1    Voeltz, G.K.2
  • 94
    • 84927126103 scopus 로고    scopus 로고
    • Cholesterol transport through lysosome-peroxisome membrane contacts
    • Chu B-B., et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 2015, 161:291-306.
    • (2015) Cell , vol.161 , pp. 291-306
    • Chu, B.-B.1
  • 95
    • 0037175399 scopus 로고    scopus 로고
    • Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts
    • Sytnyk V., et al. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J. Cell Biol. 2002, 159:649-661.
    • (2002) J. Cell Biol. , vol.159 , pp. 649-661
    • Sytnyk, V.1
  • 96
    • 0036915823 scopus 로고    scopus 로고
    • Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein
    • Wang T., Hong W. Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein. Mol. Biol. Cell 2002, 13:4317-4332.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 4317-4332
    • Wang, T.1    Hong, W.2
  • 97
    • 84938075551 scopus 로고    scopus 로고
    • Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate
    • Moser von Filseck J., et al. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 2015, 349:432-436.
    • (2015) Science , vol.349 , pp. 432-436
    • Moser von Filseck, J.1
  • 98
    • 84938118007 scopus 로고    scopus 로고
    • PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts
    • Chung J., et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 2015, 349:428-432.
    • (2015) Science , vol.349 , pp. 428-432
    • Chung, J.1
  • 99
    • 84880577375 scopus 로고    scopus 로고
    • The endoplasmic reticulum and junctional membrane communication during calcium signaling
    • Lam A.K.M., Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim. Biophys. Acta 2013, 1833:2542-2559.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2542-2559
    • Lam, A.K.M.1    Galione, A.2
  • 100
    • 84924953196 scopus 로고    scopus 로고
    • STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs
    • Garcia-Alvarez G., et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol. Biol. Cell 2015, 26:1141-1159.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 1141-1159
    • Garcia-Alvarez, G.1
  • 101
    • 84911472010 scopus 로고    scopus 로고
    • ER contact sites define the position and timing of endosome fission
    • Rowland A.A., et al. ER contact sites define the position and timing of endosome fission. Cell 2014, 159:1027-1041.
    • (2014) Cell , vol.159 , pp. 1027-1041
    • Rowland, A.A.1
  • 102
    • 80054844842 scopus 로고    scopus 로고
    • ER tubules mark sites of mitochondrial division
    • Friedman J.R., et al. ER tubules mark sites of mitochondrial division. Science 2011, 334:358-362.
    • (2011) Science , vol.334 , pp. 358-362
    • Friedman, J.R.1
  • 103
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER-mitochondria contact sites
    • Hamasaki M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495:389-393.
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 104
    • 84868524156 scopus 로고    scopus 로고
    • Upregulated function of mitochondria-associated ER membranes in Alzheimer disease
    • Area-Gomez E., et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 2012, 31:4106-4123.
    • (2012) EMBO J. , vol.31 , pp. 4106-4123
    • Area-Gomez, E.1
  • 105
    • 84891410019 scopus 로고    scopus 로고
    • α-Synuclein is localized to mitochondria-associated ER membranes
    • Guardia-Laguarta C., et al. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 2014, 34:249-259.
    • (2014) J. Neurosci. , vol.34 , pp. 249-259
    • Guardia-Laguarta, C.1
  • 106
    • 84901925681 scopus 로고    scopus 로고
    • ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43
    • Stoica R., et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 2014, 5:3996.
    • (2014) Nat. Commun. , vol.5 , pp. 3996
    • Stoica, R.1
  • 107
    • 33845934738 scopus 로고    scopus 로고
    • Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity
    • Thery M., et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:19771-19776.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 19771-19776
    • Thery, M.1
  • 108
    • 77954742807 scopus 로고    scopus 로고
    • Probabilistic density maps to study global endomembrane organization
    • Schauer K., et al. Probabilistic density maps to study global endomembrane organization. Nat. Methods 2010, 7:560-566.
    • (2010) Nat. Methods , vol.7 , pp. 560-566
    • Schauer, K.1
  • 109
    • 84892736701 scopus 로고    scopus 로고
    • A novel organelle map framework for high-content cell morphology analysis in high throughput
    • Schauer K., et al. A novel organelle map framework for high-content cell morphology analysis in high throughput. J. Biomol. Screen 2014, 19:317-324.
    • (2014) J. Biomol. Screen , vol.19 , pp. 317-324
    • Schauer, K.1
  • 110
    • 84858629634 scopus 로고    scopus 로고
    • How morphological constraints affect axonal polarity in mouse neurons
    • Roth S., et al. How morphological constraints affect axonal polarity in mouse neurons. PLoS ONE 2012, 7:e33623.
    • (2012) PLoS ONE , vol.7 , pp. e33623
    • Roth, S.1
  • 111
    • 84896744841 scopus 로고    scopus 로고
    • Photocontrol of mitotic kinesin Eg5 facilitated by thiol-reactive photochromic molecules incorporated into the loop L5 functional loop
    • Ishikawa K., et al. Photocontrol of mitotic kinesin Eg5 facilitated by thiol-reactive photochromic molecules incorporated into the loop L5 functional loop. J. Biochem. 2014, 155:195-206.
    • (2014) J. Biochem. , vol.155 , pp. 195-206
    • Ishikawa, K.1
  • 112
    • 84863694021 scopus 로고    scopus 로고
    • A photochromic ATP analogue driving a motor protein with reversible light-controlled motility: controlling velocity and binding manner of a kinesin-microtubule system in an in vitro motility assay
    • Kamei T., et al. A photochromic ATP analogue driving a motor protein with reversible light-controlled motility: controlling velocity and binding manner of a kinesin-microtubule system in an in vitro motility assay. Chem. Commun. 2012, 48:7625-7627.
    • (2012) Chem. Commun. , vol.48 , pp. 7625-7627
    • Kamei, T.1
  • 113
    • 79958282966 scopus 로고    scopus 로고
    • Light-triggered myosin activation for probing dynamic cellular processes
    • Goguen B.N., et al. Light-triggered myosin activation for probing dynamic cellular processes. Angew. Chem. Int. Ed. Engl. 2011, 50:5667-5670.
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , pp. 5667-5670
    • Goguen, B.N.1
  • 114
    • 84926231240 scopus 로고    scopus 로고
    • Remote control of myosin and kinesin motors using light-activated gearshifting
    • Nakamura M., et al. Remote control of myosin and kinesin motors using light-activated gearshifting. Nat. Nanotechnol. 2014, 9:693-697.
    • (2014) Nat. Nanotechnol. , vol.9 , pp. 693-697
    • Nakamura, M.1
  • 115
    • 82755168821 scopus 로고    scopus 로고
    • Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth
    • Steketee M.B., et al. Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19042-19047.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 19042-19047
    • Steketee, M.B.1
  • 116
    • 84874605799 scopus 로고    scopus 로고
    • Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells
    • Etoc F., et al. Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nat. Nanotechnol. 2013, 8:193-198.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 193-198
    • Etoc, F.1
  • 117
    • 84929192136 scopus 로고    scopus 로고
    • Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution
    • Etoc F., et al. Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 2015, 15:3487-3494.
    • (2015) Nano Lett. , vol.15 , pp. 3487-3494
    • Etoc, F.1
  • 118
    • 84874640903 scopus 로고    scopus 로고
    • Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles
    • Hoffmann C., et al. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nat. Nanotechnol. 2013, 8:199-205.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 199-205
    • Hoffmann, C.1
  • 119
    • 84898057928 scopus 로고    scopus 로고
    • Axons degenerate in the absence of mitochondria in C. elegans
    • Rawson R.L., et al. Axons degenerate in the absence of mitochondria in C. elegans. Curr. Biol. 2014, 24:760-765.
    • (2014) Curr. Biol. , vol.24 , pp. 760-765
    • Rawson, R.L.1
  • 120
    • 13144276290 scopus 로고    scopus 로고
    • Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity
    • Clackson T., et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:10437-10442.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 10437-10442
    • Clackson, T.1
  • 121
    • 77958194312 scopus 로고    scopus 로고
    • Probing intracellular motor protein activity using an inducible cargo trafficking assay
    • Kapitein L.C., et al. Probing intracellular motor protein activity using an inducible cargo trafficking assay. Biophys. J. 2010, 99:2143-2152.
    • (2010) Biophys. J. , vol.99 , pp. 2143-2152
    • Kapitein, L.C.1
  • 122
    • 0344011612 scopus 로고    scopus 로고
    • Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport
    • Hoogenraad C.C., et al. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J. 2003, 22:6004-6015.
    • (2003) EMBO J. , vol.22 , pp. 6004-6015
    • Hoogenraad, C.C.1
  • 123
    • 84929584650 scopus 로고    scopus 로고
    • Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization
    • Ballister E.R., et al. Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization. Curr. Biol. 2015, 25:R407-R408.
    • (2015) Curr. Biol. , vol.25 , pp. R407-R408
    • Ballister, E.R.1
  • 124
    • 84923270836 scopus 로고    scopus 로고
    • Localized light-induced protein dimerization in living cells using a photocaged dimerizer
    • Ballister E.R., et al. Localized light-induced protein dimerization in living cells using a photocaged dimerizer. Nat. Commun. 2014, 5:5475.
    • (2014) Nat. Commun. , vol.5 , pp. 5475
    • Ballister, E.R.1
  • 125
    • 84862777445 scopus 로고    scopus 로고
    • TULIPs: tunable, light-controlled interacting protein tags for cell biology
    • Strickland D., et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 2012, 9:379-384.
    • (2012) Nat. Methods , vol.9 , pp. 379-384
    • Strickland, D.1
  • 126
    • 78649714869 scopus 로고    scopus 로고
    • Rapid blue-light-mediated induction of protein interactions in living cells
    • Kennedy M.J., et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 2010, 7:973-975.
    • (2010) Nat. Methods , vol.7 , pp. 973-975
    • Kennedy, M.J.1
  • 127
    • 84923071638 scopus 로고    scopus 로고
    • Optogenetic control of organelle transport and positioning
    • van Bergeijk P., et al. Optogenetic control of organelle transport and positioning. Nature 2015, 518:111-114.
    • (2015) Nature , vol.518 , pp. 111-114
    • van Bergeijk, P.1
  • 128
    • 84930081696 scopus 로고    scopus 로고
    • Optogenetic control of molecular motors and organelle distributions in cells
    • Duan L., et al. Optogenetic control of molecular motors and organelle distributions in cells. Chem. Biol. 2015, 22:671-682.
    • (2015) Chem. Biol. , vol.22 , pp. 671-682
    • Duan, L.1
  • 129
    • 84862815933 scopus 로고    scopus 로고
    • Rapid and orthogonal logic gating with a gibberellin-induced dimerization system
    • Miyamoto T., et al. Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 2012, 8:465-470.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 465-470
    • Miyamoto, T.1
  • 130
    • 84876500631 scopus 로고    scopus 로고
    • Chemical development of intracellular protein heterodimerizers
    • Erhart D., et al. Chemical development of intracellular protein heterodimerizers. Chem. Biol. 2013, 20:549-557.
    • (2013) Chem. Biol. , vol.20 , pp. 549-557
    • Erhart, D.1
  • 131
    • 84873194912 scopus 로고    scopus 로고
    • Activation of NF-κB signalling by fusicoccin-induced dimerization
    • Skwarczynska M., et al. Activation of NF-κB signalling by fusicoccin-induced dimerization. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E377-E386.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E377-E386
    • Skwarczynska, M.1
  • 132
    • 78650992316 scopus 로고    scopus 로고
    • A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity
    • Umeda N., et al. A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. J. Am. Chem. Soc. 2011, 133:12-14.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 12-14
    • Umeda, N.1
  • 133
    • 79851502862 scopus 로고    scopus 로고
    • Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP
    • Karginov A.V., et al. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J. Am. Chem. Soc. 2011, 133:420-423.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 420-423
    • Karginov, A.V.1
  • 134
    • 84899551653 scopus 로고    scopus 로고
    • Cell-permeant and photocleavable chemical inducer of dimerization
    • Zimmermann M., et al. Cell-permeant and photocleavable chemical inducer of dimerization. Angew. Chem. Int. Ed. Engl. 2014, 53:4717-4720.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 4717-4720
    • Zimmermann, M.1
  • 135
    • 84904995490 scopus 로고    scopus 로고
    • Illuminating cell signalling with optogenetic tools
    • Tischer D., Weiner O.D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 2014, 15:551-558.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 551-558
    • Tischer, D.1    Weiner, O.D.2
  • 136
    • 70350070364 scopus 로고    scopus 로고
    • Spatiotemporal control of cell signalling using a light-switchable protein interaction
    • Levskaya A., et al. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009, 461:997-1001.
    • (2009) Nature , vol.461 , pp. 997-1001
    • Levskaya, A.1
  • 137
    • 70349967637 scopus 로고    scopus 로고
    • Induction of protein-protein interactions in live cells using light
    • Yazawa M., et al. Induction of protein-protein interactions in live cells using light. Nat. Biotechnol. 2009, 27:941-945.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 941-945
    • Yazawa, M.1
  • 138
    • 84877783598 scopus 로고    scopus 로고
    • Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells
    • Crefcoeur R.P., et al. Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nat. Commun. 2013, 4:1779.
    • (2013) Nat. Commun. , vol.4 , pp. 1779
    • Crefcoeur, R.P.1
  • 139
    • 84923899962 scopus 로고    scopus 로고
    • Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins
    • Kawano F., et al. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 2015, 6:6256.
    • (2015) Nat. Commun. , vol.6 , pp. 6256
    • Kawano, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.