메뉴 건너뛰기




Volumn 19, Issue 6, 2009, Pages 245-252

Unconventional myosins acting unconventionally

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; F ACTIN; MICROTUBULE PROTEIN; MYOSIN; MYOSIN VA; MYOSIN VI; MYOSIN VIIA;

EID: 66349129521     PISSN: 09628924     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcb.2009.03.003     Document Type: Article
Times cited : (120)

References (89)
  • 1
    • 0033856155 scopus 로고    scopus 로고
    • Regulation and expression of metazoan unconventional myosins
    • Sokac A.M., and Bement W.M. Regulation and expression of metazoan unconventional myosins. Int. Rev. Cytol. 200 (2000) 197-304
    • (2000) Int. Rev. Cytol. , vol.200 , pp. 197-304
    • Sokac, A.M.1    Bement, W.M.2
  • 2
    • 33644856260 scopus 로고    scopus 로고
    • New insights into myosin evolution and classification
    • Foth B.J., et al. New insights into myosin evolution and classification. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 3681-3686
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 3681-3686
    • Foth, B.J.1
  • 3
    • 37549069575 scopus 로고    scopus 로고
    • Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species
    • Odronitz F., and Kollmar M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol. 8 (2007) R196
    • (2007) Genome Biol. , vol.8
    • Odronitz, F.1    Kollmar, M.2
  • 4
    • 24144503755 scopus 로고    scopus 로고
    • Myosin domain evolution and the primary divergence of eukaryotes
    • Richards T.A., and Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436 (2005) 1113-1118
    • (2005) Nature , vol.436 , pp. 1113-1118
    • Richards, T.A.1    Cavalier-Smith, T.2
  • 6
    • 0024346185 scopus 로고
    • Binding of myosin I to membrane lipids
    • Adams R.J., and Pollard T.D. Binding of myosin I to membrane lipids. Nature 340 (1989) 565-568
    • (1989) Nature , vol.340 , pp. 565-568
    • Adams, R.J.1    Pollard, T.D.2
  • 7
    • 0028942256 scopus 로고
    • Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems
    • Langford G.M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol. 7 (1995) 82-88
    • (1995) Curr. Opin. Cell Biol. , vol.7 , pp. 82-88
    • Langford, G.M.1
  • 8
    • 0026534466 scopus 로고
    • Actin-dependent organelle movement in squid axoplasm
    • Kuznetsov S.A., et al. Actin-dependent organelle movement in squid axoplasm. Nature 356 (1992) 722-725
    • (1992) Nature , vol.356 , pp. 722-725
    • Kuznetsov, S.A.1
  • 9
    • 0035842904 scopus 로고    scopus 로고
    • A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae
    • Hoepfner D., et al. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J. Cell Biol. 155 (2001) 979-990
    • (2001) J. Cell Biol. , vol.155 , pp. 979-990
    • Hoepfner, D.1
  • 10
    • 3142715819 scopus 로고    scopus 로고
    • Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport
    • Holweg C., and Nick P. Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 10488-10493
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 10488-10493
    • Holweg, C.1    Nick, P.2
  • 11
    • 0032576766 scopus 로고    scopus 로고
    • Functional coordination of microtubule-based and actin-based motility in melanophores
    • Rodionov V.I., et al. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8 (1998) 165-168
    • (1998) Curr. Biol. , vol.8 , pp. 165-168
    • Rodionov, V.I.1
  • 12
    • 0032576778 scopus 로고    scopus 로고
    • Myosin cooperates with microtubule motors during organelle transport in melanophores
    • Rogers S.L., and Gelfand V.I. Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr. Biol. 8 (1998) 161-164
    • (1998) Curr. Biol. , vol.8 , pp. 161-164
    • Rogers, S.L.1    Gelfand, V.I.2
  • 13
    • 2342512884 scopus 로고    scopus 로고
    • Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers
    • Aschenbrenner L., et al. Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol. Biol. Cell 15 (2004) 2253-2263
    • (2004) Mol. Biol. Cell , vol.15 , pp. 2253-2263
    • Aschenbrenner, L.1
  • 14
    • 0035929658 scopus 로고    scopus 로고
    • Real-time visualization of processive myosin 5a-mediated vesicle movement in living astrocytes
    • Stachelek S.J., et al. Real-time visualization of processive myosin 5a-mediated vesicle movement in living astrocytes. J. Biol. Chem. 276 (2001) 35652-35659
    • (2001) J. Biol. Chem. , vol.276 , pp. 35652-35659
    • Stachelek, S.J.1
  • 15
    • 0023705297 scopus 로고
    • Colocalisation of acetylated microtubules, glial filaments, and mitochondria in astrocytes in vitro
    • Cambray-Deakin M.A., et al. Colocalisation of acetylated microtubules, glial filaments, and mitochondria in astrocytes in vitro. Cell Motil. Cytoskeleton 10 (1988) 438-449
    • (1988) Cell Motil. Cytoskeleton , vol.10 , pp. 438-449
    • Cambray-Deakin, M.A.1
  • 16
    • 0037018150 scopus 로고    scopus 로고
    • Interactions and regulation of molecular motors in Xenopus melanophores
    • Gross S.P., et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156 (2002) 855-865
    • (2002) J. Cell Biol. , vol.156 , pp. 855-865
    • Gross, S.P.1
  • 17
    • 34247606028 scopus 로고    scopus 로고
    • Myosin at work: motor adaptations for a variety of cellular functions
    • O'Connell C.B., et al. Myosin at work: motor adaptations for a variety of cellular functions. Biochim. Biophys. Acta 1773 (2007) 615-630
    • (2007) Biochim. Biophys. Acta , vol.1773 , pp. 615-630
    • O'Connell, C.B.1
  • 18
    • 25444437003 scopus 로고    scopus 로고
    • A force-dependent state controls the coordination of processive myosin V
    • Purcell T.J., et al. A force-dependent state controls the coordination of processive myosin V. Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 13873-13878
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 13873-13878
    • Purcell, T.J.1
  • 19
    • 26944449015 scopus 로고    scopus 로고
    • Load-dependent kinetics of myosin-V can explain its high processivity
    • Veigel C., et al. Load-dependent kinetics of myosin-V can explain its high processivity. Nat. Cell Biol. 7 (2005) 861-869
    • (2005) Nat. Cell Biol. , vol.7 , pp. 861-869
    • Veigel, C.1
  • 20
    • 1542299042 scopus 로고    scopus 로고
    • The mechanism of myosin VI translocation and its load-induced anchoring
    • Altman D., et al. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116 (2004) 737-749
    • (2004) Cell , vol.116 , pp. 737-749
    • Altman, D.1
  • 21
    • 46849089895 scopus 로고    scopus 로고
    • Myosin I can act as a molecular force sensor
    • Laakso J.M., et al. Myosin I can act as a molecular force sensor. Science 321 (2008) 133-136
    • (2008) Science , vol.321 , pp. 133-136
    • Laakso, J.M.1
  • 22
    • 34047210202 scopus 로고    scopus 로고
    • Attachment conditions control actin filament buckling and the production of forces
    • Berro J., et al. Attachment conditions control actin filament buckling and the production of forces. Biophys. J. 92 (2007) 2546-2558
    • (2007) Biophys. J. , vol.92 , pp. 2546-2558
    • Berro, J.1
  • 23
    • 34848905380 scopus 로고    scopus 로고
    • Myosin Va mediates docking of secretory granules at the plasma membrane
    • Desnos C., et al. Myosin Va mediates docking of secretory granules at the plasma membrane. J. Neurosci. 27 (2007) 10636-10645
    • (2007) J. Neurosci. , vol.27 , pp. 10636-10645
    • Desnos, C.1
  • 24
    • 0029955902 scopus 로고    scopus 로고
    • Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution
    • Provance Jr. D.W., et al. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 14554-14558
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 14554-14558
    • Provance Jr., D.W.1
  • 25
    • 0032576622 scopus 로고    scopus 로고
    • Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo
    • Wu X., et al. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J. Cell Biol. 143 (1998) 1899-1918
    • (1998) J. Cell Biol. , vol.143 , pp. 1899-1918
    • Wu, X.1
  • 26
    • 1242319338 scopus 로고    scopus 로고
    • Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic
    • Provance Jr. D.W., et al. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 1868-1873
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 1868-1873
    • Provance Jr., D.W.1
  • 27
    • 51649105426 scopus 로고    scopus 로고
    • Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking
    • Provance Jr. D.W., et al. Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking. BMC Cell Biol. 9 (2008) 44
    • (2008) BMC Cell Biol. , vol.9 , pp. 44
    • Provance Jr., D.W.1
  • 28
    • 54549123514 scopus 로고    scopus 로고
    • Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity
    • Wang Z., et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135 (2008) 535-548
    • (2008) Cell , vol.135 , pp. 535-548
    • Wang, Z.1
  • 29
    • 58149225472 scopus 로고    scopus 로고
    • Microtubules in dendritic spine development
    • Gu J., et al. Microtubules in dendritic spine development. J. Neurosci. 28 (2008) 12120-12124
    • (2008) J. Neurosci. , vol.28 , pp. 12120-12124
    • Gu, J.1
  • 30
    • 58149272090 scopus 로고    scopus 로고
    • Activity-dependent dynamic microtubule invasion of dendritic spines
    • Hu X., et al. Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28 (2008) 13094-13105
    • (2008) J. Neurosci. , vol.28 , pp. 13094-13105
    • Hu, X.1
  • 31
    • 0036180246 scopus 로고    scopus 로고
    • A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells
    • Holt J.R., et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108 (2002) 371-381
    • (2002) Cell , vol.108 , pp. 371-381
    • Holt, J.R.1
  • 32
    • 2442560225 scopus 로고    scopus 로고
    • A role for myosin-1A in the localization of a brush border disaccharidase
    • Tyska M.J., and Mooseker M.S. A role for myosin-1A in the localization of a brush border disaccharidase. J. Cell Biol. 165 (2004) 395-405
    • (2004) J. Cell Biol. , vol.165 , pp. 395-405
    • Tyska, M.J.1    Mooseker, M.S.2
  • 33
    • 33745767358 scopus 로고    scopus 로고
    • Harnessing actin dynamics for clathrin-mediated endocytosis
    • Kaksonen M., et al. Harnessing actin dynamics for clathrin-mediated endocytosis. Natl. Rev. 7 (2006) 404-414
    • (2006) Natl. Rev. , vol.7 , pp. 404-414
    • Kaksonen, M.1
  • 34
    • 35748932034 scopus 로고    scopus 로고
    • A role for myosin 1e in cortical granule exocytosis in Xenopus oocytes
    • Schietroma C., et al. A role for myosin 1e in cortical granule exocytosis in Xenopus oocytes. J. Biol. Chem. 282 (2007) 29504-29513
    • (2007) J. Biol. Chem. , vol.282 , pp. 29504-29513
    • Schietroma, C.1
  • 35
    • 33750487863 scopus 로고    scopus 로고
    • Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis
    • Sokac A.M., et al. Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Dev. Cell 11 (2006) 629-640
    • (2006) Dev. Cell , vol.11 , pp. 629-640
    • Sokac, A.M.1
  • 36
    • 34948864330 scopus 로고    scopus 로고
    • Multiple myosins are required to coordinate actin assembly with coat compression during compensatory endocytosis
    • Yu H.Y., and Bement W.M. Multiple myosins are required to coordinate actin assembly with coat compression during compensatory endocytosis. Mol. Biol. Cell 18 (2007) 4096-4105
    • (2007) Mol. Biol. Cell , vol.18 , pp. 4096-4105
    • Yu, H.Y.1    Bement, W.M.2
  • 37
    • 2942534876 scopus 로고    scopus 로고
    • Unconventional myosin Myo1c promotes membrane fusion in a regulated exocytic pathway
    • Bose A., et al. Unconventional myosin Myo1c promotes membrane fusion in a regulated exocytic pathway. Mol. Cell. Biol. 24 (2004) 5447-5458
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 5447-5458
    • Bose, A.1
  • 38
    • 33744767752 scopus 로고    scopus 로고
    • Myosin VI stabilizes an actin network during Drosophila spermatid individualization
    • Noguchi T., et al. Myosin VI stabilizes an actin network during Drosophila spermatid individualization. Mol. Biol. Cell 17 (2006) 2559-2571
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2559-2571
    • Noguchi, T.1
  • 39
    • 63049125270 scopus 로고    scopus 로고
    • Coiled-coil-mediated dimerization is not required for myosin VI to stabilize actin during spermatid individualization in Drosophila melanogaster
    • Noguchi T., et al. Coiled-coil-mediated dimerization is not required for myosin VI to stabilize actin during spermatid individualization in Drosophila melanogaster. Mol. Biol. Cell 20 (2009) 358-367
    • (2009) Mol. Biol. Cell , vol.20 , pp. 358-367
    • Noguchi, T.1
  • 40
    • 34547591456 scopus 로고    scopus 로고
    • Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells
    • Maddugoda M.P., et al. Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J. Cell Biol. 178 (2007) 529-540
    • (2007) J. Cell Biol. , vol.178 , pp. 529-540
    • Maddugoda, M.P.1
  • 41
    • 47749098361 scopus 로고    scopus 로고
    • A myosin motor that selects bundled actin for motility
    • Nagy S., et al. A myosin motor that selects bundled actin for motility. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 9616-9620
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 9616-9620
    • Nagy, S.1
  • 42
    • 0036122307 scopus 로고    scopus 로고
    • Myosin-X is an unconventional myosin that undergoes intrafilopodial motility
    • Berg J.S., and Cheney R.E. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat. Cell Biol. 4 (2002) 246-250
    • (2002) Nat. Cell Biol. , vol.4 , pp. 246-250
    • Berg, J.S.1    Cheney, R.E.2
  • 43
    • 33747622327 scopus 로고    scopus 로고
    • Myosin-X is a molecular motor that functions in filopodia formation
    • Bohil A.B., et al. Myosin-X is a molecular motor that functions in filopodia formation. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 12411-12416
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 12411-12416
    • Bohil, A.B.1
  • 44
    • 35548932103 scopus 로고    scopus 로고
    • The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation
    • Tokuo H., et al. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J. Cell Biol. 179 (2007) 229-238
    • (2007) J. Cell Biol. , vol.179 , pp. 229-238
    • Tokuo, H.1
  • 45
    • 0346729934 scopus 로고    scopus 로고
    • Myosin-Va binds to and mechanochemically couples microtubules to actin filaments
    • Cao T.T., et al. Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol. Biol. Cell 15 (2004) 151-161
    • (2004) Mol. Biol. Cell , vol.15 , pp. 151-161
    • Cao, T.T.1
  • 46
    • 4644326930 scopus 로고    scopus 로고
    • A microtubule-binding myosin required for nuclear anchoring and spindle assembly
    • Weber K.L., et al. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431 (2004) 325-329
    • (2004) Nature , vol.431 , pp. 325-329
    • Weber, K.L.1
  • 47
    • 34047262039 scopus 로고    scopus 로고
    • Myosin Va maneuvers through actin intersections and diffuses along microtubules
    • Ali M.Y., et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 4332-4336
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 4332-4336
    • Ali, M.Y.1
  • 48
    • 0033590558 scopus 로고    scopus 로고
    • Direct interaction of microtubule- and actin-based transport motors
    • Huang J.D., et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397 (1999) 267-270
    • (1999) Nature , vol.397 , pp. 267-270
    • Huang, J.D.1
  • 49
    • 0032559641 scopus 로고    scopus 로고
    • A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos
    • Lantz V.A., and Miller K.G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140 (1998) 897-910
    • (1998) J. Cell Biol. , vol.140 , pp. 897-910
    • Lantz, V.A.1    Miller, K.G.2
  • 50
    • 0035282080 scopus 로고    scopus 로고
    • Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B)
    • Todorov P.T., et al. Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B). Biochem. J. 354 (2001) 267-274
    • (2001) Biochem. J. , vol.354 , pp. 267-274
    • Todorov, P.T.1
  • 51
    • 38849121972 scopus 로고    scopus 로고
    • Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos
    • Liu R., et al. Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos. Development 135 (2008) 53-63
    • (2008) Development , vol.135 , pp. 53-63
    • Liu, R.1
  • 52
    • 0032555152 scopus 로고    scopus 로고
    • Localization of myosin-V in the centrosome
    • Espreafico E.M., et al. Localization of myosin-V in the centrosome. Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 8636-8641
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 8636-8641
    • Espreafico, E.M.1
  • 53
    • 0031748734 scopus 로고    scopus 로고
    • Myosin Va associates with microtubule-rich domains in both interphase and dividing cells
    • Wu X., et al. Myosin Va associates with microtubule-rich domains in both interphase and dividing cells. Cell Motil. Cytoskeleton 40 (1998) 286-303
    • (1998) Cell Motil. Cytoskeleton , vol.40 , pp. 286-303
    • Wu, X.1
  • 54
    • 37049013738 scopus 로고    scopus 로고
    • Myosin VI is required for targeted membrane transport during cytokinesis
    • Arden S.D., et al. Myosin VI is required for targeted membrane transport during cytokinesis. Mol. Biol. Cell 18 (2007) 4750-4761
    • (2007) Mol. Biol. Cell , vol.18 , pp. 4750-4761
    • Arden, S.D.1
  • 55
    • 50049085789 scopus 로고    scopus 로고
    • Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes
    • Kwon M., et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22 (2008) 2189-2203
    • (2008) Genes Dev. , vol.22 , pp. 2189-2203
    • Kwon, M.1
  • 56
    • 33947596005 scopus 로고    scopus 로고
    • Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner
    • Toyoshima F., and Nishida E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J. 26 (2007) 1487-1498
    • (2007) EMBO J. , vol.26 , pp. 1487-1498
    • Toyoshima, F.1    Nishida, E.2
  • 57
    • 47549089279 scopus 로고    scopus 로고
    • Myosin-10 and actin filaments are essential for mitotic spindle function
    • Woolner S., et al. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182 (2008) 77-88
    • (2008) J. Cell Biol. , vol.182 , pp. 77-88
    • Woolner, S.1
  • 58
    • 2042544799 scopus 로고    scopus 로고
    • Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly
    • Rosenblatt J., et al. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117 (2004) 361-372
    • (2004) Cell , vol.117 , pp. 361-372
    • Rosenblatt, J.1
  • 59
    • 54649083796 scopus 로고    scopus 로고
    • Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments
    • Azoury J., et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18 (2008) 1514-1519
    • (2008) Curr. Biol. , vol.18 , pp. 1514-1519
    • Azoury, J.1
  • 60
    • 57649245603 scopus 로고    scopus 로고
    • A new model for asymmetric spindle positioning in mouse oocytes
    • Schuh M., and Ellenberg J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18 (2008) 1986-1992
    • (2008) Curr. Biol. , vol.18 , pp. 1986-1992
    • Schuh, M.1    Ellenberg, J.2
  • 61
    • 55549144707 scopus 로고    scopus 로고
    • Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes
    • Li H., et al. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat. Cell Biol. 10 (2008) 1301-1308
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1301-1308
    • Li, H.1
  • 62
    • 0034644632 scopus 로고    scopus 로고
    • A myosin I isoform in the nucleus
    • Pestic-Dragovich L., et al. A myosin I isoform in the nucleus. Science 290 (2000) 337-341
    • (2000) Science , vol.290 , pp. 337-341
    • Pestic-Dragovich, L.1
  • 63
    • 10344264971 scopus 로고    scopus 로고
    • Nuclear actin and myosin I are required for RNA polymerase I transcription
    • Philimonenko V.V., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6 (2004) 1165-1172
    • (2004) Nat. Cell Biol. , vol.6 , pp. 1165-1172
    • Philimonenko, V.V.1
  • 64
    • 43249126085 scopus 로고    scopus 로고
    • Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription
    • Pranchevicius M.C., et al. Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil. Cytoskeleton 65 (2008) 441-456
    • (2008) Cell Motil. Cytoskeleton , vol.65 , pp. 441-456
    • Pranchevicius, M.C.1
  • 65
    • 33646021963 scopus 로고    scopus 로고
    • Long-range directional movement of an interphase chromosome site
    • Chuang C.H., et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16 (2006) 825-831
    • (2006) Curr. Biol. , vol.16 , pp. 825-831
    • Chuang, C.H.1
  • 66
    • 58049208232 scopus 로고    scopus 로고
    • Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules
    • Hu Q., et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 19199-19204
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 19199-19204
    • Hu, Q.1
  • 67
    • 33747871719 scopus 로고    scopus 로고
    • Nuclear myosin VI enhances RNA polymerase II-dependent transcription
    • Vreugde S., et al. Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol. Cell 23 (2006) 749-755
    • (2006) Mol. Cell , vol.23 , pp. 749-755
    • Vreugde, S.1
  • 68
    • 0014859757 scopus 로고
    • The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella
    • Abercrombie M., et al. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell Res. 62 (1970) 389-398
    • (1970) Exp. Cell Res. , vol.62 , pp. 389-398
    • Abercrombie, M.1
  • 69
    • 0024095187 scopus 로고
    • Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone
    • Forscher P., and Smith S.J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107 (1988) 1505-1516
    • (1988) J. Cell Biol. , vol.107 , pp. 1505-1516
    • Forscher, P.1    Smith, S.J.2
  • 70
    • 0036218579 scopus 로고    scopus 로고
    • MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells
    • Tyska M.J., and Mooseker M.S. MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys. J. 82 (2002) 1869-1883
    • (2002) Biophys. J. , vol.82 , pp. 1869-1883
    • Tyska, M.J.1    Mooseker, M.S.2
  • 71
    • 1642322799 scopus 로고    scopus 로고
    • An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal
    • Rzadzinska A.K., et al. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164 (2004) 887-897
    • (2004) J. Cell Biol. , vol.164 , pp. 887-897
    • Rzadzinska, A.K.1
  • 72
    • 0037144811 scopus 로고    scopus 로고
    • Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone
    • Diefenbach T.J., et al. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J. Cell Biol. 158 (2002) 1207-1217
    • (2002) J. Cell Biol. , vol.158 , pp. 1207-1217
    • Diefenbach, T.J.1
  • 73
    • 34249098669 scopus 로고    scopus 로고
    • Myosin-1a powers the sliding of apical membrane along microvillar actin bundles
    • McConnell R.E., and Tyska M.J. Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J. Cell Biol. 177 (2007) 671-681
    • (2007) J. Cell Biol. , vol.177 , pp. 671-681
    • McConnell, R.E.1    Tyska, M.J.2
  • 74
    • 0027399722 scopus 로고
    • The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility
    • Titus M.A., et al. The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility. Mol. Biol. Cell 4 (1993) 233-246
    • (1993) Mol. Biol. Cell , vol.4 , pp. 233-246
    • Titus, M.A.1
  • 75
    • 0028534963 scopus 로고
    • F-actin distribution of Dictyostelium myosin I double mutants
    • Peterson M.D., and Titus M.A. F-actin distribution of Dictyostelium myosin I double mutants. J. Eukaryot. Microbiol. 41 (1994) 652-657
    • (1994) J. Eukaryot. Microbiol. , vol.41 , pp. 652-657
    • Peterson, M.D.1    Titus, M.A.2
  • 76
    • 0032800685 scopus 로고    scopus 로고
    • Myosin I contributes to the generation of resting cortical tension
    • Dai J., et al. Myosin I contributes to the generation of resting cortical tension. Biophys. J. 77 (1999) 1168-1176
    • (1999) Biophys. J. , vol.77 , pp. 1168-1176
    • Dai, J.1
  • 77
    • 0034092820 scopus 로고    scopus 로고
    • Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis
    • Schwarz E.C., et al. Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J. Cell Sci. 113 (2000) 621-633
    • (2000) J. Cell Sci. , vol.113 , pp. 621-633
    • Schwarz, E.C.1
  • 78
    • 58149510603 scopus 로고    scopus 로고
    • Disruption of Myosin 1e promotes podocyte injury
    • Krendel M., et al. Disruption of Myosin 1e promotes podocyte injury. J. Am. Soc. Nephrol. 20 (2009) 86-94
    • (2009) J. Am. Soc. Nephrol. , vol.20 , pp. 86-94
    • Krendel, M.1
  • 79
    • 0034710153 scopus 로고    scopus 로고
    • Microtubules remodel actomyosin networks in Xenopus egg extracts via two mechanisms of F-actin transport
    • Waterman-Storer C., et al. Microtubules remodel actomyosin networks in Xenopus egg extracts via two mechanisms of F-actin transport. J. Cell Biol. 150 (2000) 361-376
    • (2000) J. Cell Biol. , vol.150 , pp. 361-376
    • Waterman-Storer, C.1
  • 80
    • 0031750338 scopus 로고    scopus 로고
    • Myosin VIIa as a common component of cilia and microvilli
    • Wolfrum U., et al. Myosin VIIa as a common component of cilia and microvilli. Cell Motil. Cytoskeleton 40 (1998) 261-271
    • (1998) Cell Motil. Cytoskeleton , vol.40 , pp. 261-271
    • Wolfrum, U.1
  • 81
    • 38949127670 scopus 로고    scopus 로고
    • Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription
    • Ye J., et al. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 22 (2008) 322-330
    • (2008) Genes Dev. , vol.22 , pp. 322-330
    • Ye, J.1
  • 82
    • 33745197326 scopus 로고    scopus 로고
    • The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription
    • Cavellan E., et al. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J. Biol. Chem. 281 (2006) 16264-16271
    • (2006) J. Biol. Chem. , vol.281 , pp. 16264-16271
    • Cavellan, E.1
  • 83
    • 33644752095 scopus 로고    scopus 로고
    • Myosin VI is a mediator of the p53-dependent cell survival pathway
    • Jung E.J., et al. Myosin VI is a mediator of the p53-dependent cell survival pathway. Mol. Cell. Biol. 26 (2006) 2175-2186
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2175-2186
    • Jung, E.J.1
  • 84
    • 33845529654 scopus 로고    scopus 로고
    • Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression
    • Cameron R.S., et al. Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil. Cytoskeleton 64 (2007) 19-48
    • (2007) Cell Motil. Cytoskeleton , vol.64 , pp. 19-48
    • Cameron, R.S.1
  • 85
    • 0037423707 scopus 로고    scopus 로고
    • Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation
    • Salamon M., et al. Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J. Mol. Biol. 326 (2003) 137-149
    • (2003) J. Mol. Biol. , vol.326 , pp. 137-149
    • Salamon, M.1
  • 86
    • 23644441329 scopus 로고    scopus 로고
    • Fifty years of contractility research post sliding filament hypothesis
    • Sellers J.R. Fifty years of contractility research post sliding filament hypothesis. J. Muscle Res. Cell Motil. 25 (2004) 475-482
    • (2004) J. Muscle Res. Cell Motil. , vol.25 , pp. 475-482
    • Sellers, J.R.1
  • 87
    • 0015834603 scopus 로고
    • Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin
    • Pollard T.D., and Korn E.D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248 (1973) 4682-4690
    • (1973) J. Biol. Chem. , vol.248 , pp. 4682-4690
    • Pollard, T.D.1    Korn, E.D.2
  • 88
    • 0030111475 scopus 로고    scopus 로고
    • Myosin II function in non-muscle cells
    • Maciver S.K. Myosin II function in non-muscle cells. Bioessays 18 (1996) 179-182
    • (1996) Bioessays , vol.18 , pp. 179-182
    • Maciver, S.K.1
  • 89
    • 0036830196 scopus 로고    scopus 로고
    • Myosin superfamily evolutionary history
    • Thompson R.F., and Langford G.M. Myosin superfamily evolutionary history. Anat. Rec. 268 (2002) 276-289
    • (2002) Anat. Rec. , vol.268 , pp. 276-289
    • Thompson, R.F.1    Langford, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.