메뉴 건너뛰기




Volumn 24, Issue 10, 2014, Pages 564-574

Integrated regulation of motor-driven organelle transport by scaffolding proteins

Author keywords

Axonal transport; Dynactin; Dynein; Intracellular trafficking; Kinesin; Organelle transport

Indexed keywords

ADAPTOR PROTEIN; BINDING PROTEIN; DYNEIN ADENOSINE TRIPHOSPHATASE; GUANOSINE TRIPHOSPHATASE; HOOK1 PROTEIN; HUNTINGTIN; JIP1 PROTEIN; JIP3 PROTEIN; KINESIN; MOLECULAR MOTOR; PHOSPHOTRANSFERASE; REGULATOR PROTEIN; RETROGRADE SCAFFOLDING PROTEIN; RNA; SCAFFOLD PROTEIN; STRESS ACTIVATED PROTEIN KINASE; TRAFFICKING KINESIN BINDING PROTEIN; UNCLASSIFIED DRUG; MICROTUBULE ASSOCIATED PROTEIN; PROTEIN BINDING;

EID: 84908488959     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.05.002     Document Type: Review
Times cited : (212)

References (120)
  • 1
    • 84886750648 scopus 로고    scopus 로고
    • Teamwork in microtubule motors
    • Mallik R., et al. Teamwork in microtubule motors. Trends Cell Biol. 2013, 23:575-582.
    • (2013) Trends Cell Biol. , vol.23 , pp. 575-582
    • Mallik, R.1
  • 2
    • 79951710366 scopus 로고    scopus 로고
    • Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles
    • Encalada S.E., et al. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 2011, 144:551-565.
    • (2011) Cell , vol.144 , pp. 551-565
    • Encalada, S.E.1
  • 3
    • 77951206786 scopus 로고    scopus 로고
    • Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport
    • Hendricks A.G., et al. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 2010, 20:697-702.
    • (2010) Curr. Biol. , vol.20 , pp. 697-702
    • Hendricks, A.G.1
  • 4
    • 84857858536 scopus 로고    scopus 로고
    • Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
    • Maday S., et al. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 2012, 196:407-417.
    • (2012) J. Cell Biol. , vol.196 , pp. 407-417
    • Maday, S.1
  • 5
    • 73349125122 scopus 로고    scopus 로고
    • Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes
    • Soppina V., et al. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19381-19386.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19381-19386
    • Soppina, V.1
  • 6
    • 84868559187 scopus 로고    scopus 로고
    • Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors
    • Hendricks A.G., et al. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18447-18452.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 18447-18452
    • Hendricks, A.G.1
  • 7
    • 84861903357 scopus 로고    scopus 로고
    • Subpixel colocalization reveals amyloid precursor protein-dependent kinesin-1 and dynein association with axonal vesicles
    • Szpankowski L., et al. Subpixel colocalization reveals amyloid precursor protein-dependent kinesin-1 and dynein association with axonal vesicles. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8582-8587.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 8582-8587
    • Szpankowski, L.1
  • 8
    • 42449124179 scopus 로고    scopus 로고
    • Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors
    • Muller M.J., et al. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:4609-4614.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 4609-4614
    • Muller, M.J.1
  • 9
    • 84902009946 scopus 로고    scopus 로고
    • LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes
    • Fu M.-M., et al. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev. Cell 2014, 29:577-590.
    • (2014) Dev. Cell , vol.29 , pp. 577-590
    • Fu, M.-M.1
  • 10
    • 39749165656 scopus 로고    scopus 로고
    • Differential regulation of dynein and kinesin motor proteins by tau
    • Dixit R., et al. Differential regulation of dynein and kinesin motor proteins by tau. Science 2008, 319:1086-1089.
    • (2008) Science , vol.319 , pp. 1086-1089
    • Dixit, R.1
  • 11
    • 84874485595 scopus 로고    scopus 로고
    • In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport
    • Blehm B.H., et al. In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:3381-3386.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 3381-3386
    • Blehm, B.H.1
  • 12
    • 39149121834 scopus 로고    scopus 로고
    • Tubulin modifications and their cellular functions
    • Hammond J.W., et al. Tubulin modifications and their cellular functions. Curr. Opin. Cell Biol. 2008, 20:71-76.
    • (2008) Curr. Opin. Cell Biol. , vol.20 , pp. 71-76
    • Hammond, J.W.1
  • 13
    • 76649143069 scopus 로고    scopus 로고
    • Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons
    • Hammond J.W., et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 2010, 21:572-583.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 572-583
    • Hammond, J.W.1
  • 14
    • 81855196008 scopus 로고    scopus 로고
    • Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions
    • Janke C., Bulinski J.C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2011, 12:773-786.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 773-786
    • Janke, C.1    Bulinski, J.C.2
  • 15
    • 79961105234 scopus 로고    scopus 로고
    • Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport
    • Nakata T., et al. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J. Cell Biol. 2011, 194:245-255.
    • (2011) J. Cell Biol. , vol.194 , pp. 245-255
    • Nakata, T.1
  • 16
    • 33846118789 scopus 로고    scopus 로고
    • Multiple-motor based transport and its regulation by Tau
    • Vershinin M., et al. Multiple-motor based transport and its regulation by Tau. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:87-92.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 87-92
    • Vershinin, M.1
  • 17
    • 83355163345 scopus 로고    scopus 로고
    • The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport
    • McVicker D.P., et al. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport. J. Biol. Chem. 2011, 286:42873-42880.
    • (2011) J. Biol. Chem. , vol.286 , pp. 42873-42880
    • McVicker, D.P.1
  • 18
    • 84874649539 scopus 로고    scopus 로고
    • The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1
    • Barlan K., et al. The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1. Curr. Biol. 2013, 23:317-322.
    • (2013) Curr. Biol. , vol.23 , pp. 317-322
    • Barlan, K.1
  • 19
    • 84874484606 scopus 로고    scopus 로고
    • Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections
    • Balint S., et al. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:3375-3380.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 3375-3380
    • Balint, S.1
  • 20
    • 39149138988 scopus 로고    scopus 로고
    • Cargo transport: molecular motors navigate a complex cytoskeleton
    • Ross J.L., et al. Cargo transport: molecular motors navigate a complex cytoskeleton. Curr. Opin. Cell Biol. 2008, 20:41-47.
    • (2008) Curr. Opin. Cell Biol. , vol.20 , pp. 41-47
    • Ross, J.L.1
  • 21
    • 84879899805 scopus 로고    scopus 로고
    • Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking
    • Zajac A.L., et al. Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking. Curr. Biol. 2013, 23:1173-1180.
    • (2013) Curr. Biol. , vol.23 , pp. 1173-1180
    • Zajac, A.L.1
  • 22
    • 84875462369 scopus 로고    scopus 로고
    • Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature
    • Friedman J.R., et al. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 2013, 24:1030-1040.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 1030-1040
    • Friedman, J.R.1
  • 23
    • 0035975946 scopus 로고    scopus 로고
    • The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors
    • Jordens I., et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 2001, 11:1680-1685.
    • (2001) Curr. Biol. , vol.11 , pp. 1680-1685
    • Jordens, I.1
  • 24
    • 33847003020 scopus 로고    scopus 로고
    • Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin
    • Johansson M., et al. Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. J. Cell Biol. 2007, 176:459-471.
    • (2007) J. Cell Biol. , vol.176 , pp. 459-471
    • Johansson, M.1
  • 25
    • 0035965256 scopus 로고    scopus 로고
    • Beta III spectrin binds to the Arp1 subunit of dynactin
    • Holleran E.A., et al. beta III spectrin binds to the Arp1 subunit of dynactin. J. Biol. Chem. 2001, 276:36598-36605.
    • (2001) J. Biol. Chem. , vol.276 , pp. 36598-36605
    • Holleran, E.A.1
  • 26
    • 84872506411 scopus 로고    scopus 로고
    • Molecular adaptations allow dynein to generate large collective forces inside cells
    • Rai A.K., et al. Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 2013, 152:172-182.
    • (2013) Cell , vol.152 , pp. 172-182
    • Rai, A.K.1
  • 27
    • 67649600680 scopus 로고    scopus 로고
    • Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning
    • Rocha N., et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 2009, 185:1209-1225.
    • (2009) J. Cell Biol. , vol.185 , pp. 1209-1225
    • Rocha, N.1
  • 28
    • 71749090787 scopus 로고    scopus 로고
    • The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport
    • Hong Z., et al. The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport. Cell Res. 2009, 19:1334-1349.
    • (2009) Cell Res. , vol.19 , pp. 1334-1349
    • Hong, Z.1
  • 29
    • 67650218762 scopus 로고    scopus 로고
    • The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network
    • Wassmer T., et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev. Cell 2009, 17:110-122.
    • (2009) Dev. Cell , vol.17 , pp. 110-122
    • Wassmer, T.1
  • 30
    • 84876479440 scopus 로고    scopus 로고
    • PtdIns(4)P regulates retromer-motor interaction to facilitate dynein-cargo dissociation at the trans-Golgi network
    • Niu Y., et al. PtdIns(4)P regulates retromer-motor interaction to facilitate dynein-cargo dissociation at the trans-Golgi network. Nat. Cell Biol. 2013, 15:417-429.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 417-429
    • Niu, Y.1
  • 31
    • 79151485570 scopus 로고    scopus 로고
    • Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses
    • MacAskill A.F., et al. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur. J. Neurosci. 2010, 32:231-240.
    • (2010) Eur. J. Neurosci. , vol.32 , pp. 231-240
    • MacAskill, A.F.1
  • 32
    • 34547670277 scopus 로고    scopus 로고
    • Imaging axonal transport of mitochondria in vivo
    • Misgeld T., et al. Imaging axonal transport of mitochondria in vivo. Nat. Methods 2007, 4:559-561.
    • (2007) Nat. Methods , vol.4 , pp. 559-561
    • Misgeld, T.1
  • 33
    • 78650545423 scopus 로고    scopus 로고
    • Deficits in axonal transport precede ALS symptoms in vivo
    • Bilsland L.G., et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20523-20528.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 20523-20528
    • Bilsland, L.G.1
  • 34
    • 33646768127 scopus 로고    scopus 로고
    • Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent
    • Glater E.E., et al. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 2006, 173:545-557.
    • (2006) J. Cell Biol. , vol.173 , pp. 545-557
    • Glater, E.E.1
  • 35
    • 58149091896 scopus 로고    scopus 로고
    • 2+-dependent regulation of kinesin-mediated mitochondrial motility
    • 2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 2009, 136:163-174.
    • (2009) Cell , vol.136 , pp. 163-174
    • Wang, X.1    Schwarz, T.L.2
  • 36
    • 60449108890 scopus 로고    scopus 로고
    • Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses
    • Macaskill A.F., et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009, 61:541-555.
    • (2009) Neuron , vol.61 , pp. 541-555
    • Macaskill, A.F.1
  • 37
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang X., et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893-906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1
  • 38
    • 84873279659 scopus 로고    scopus 로고
    • TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites
    • van Spronsen M., et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 2013, 77:485-502.
    • (2013) Neuron , vol.77 , pp. 485-502
    • van Spronsen, M.1
  • 39
    • 37749053855 scopus 로고    scopus 로고
    • Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation
    • Kang J.S., et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 2008, 132:137-148.
    • (2008) Cell , vol.132 , pp. 137-148
    • Kang, J.S.1
  • 40
    • 84879401464 scopus 로고    scopus 로고
    • Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture
    • Courchet J., et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 2013, 153:1510-1525.
    • (2013) Cell , vol.153 , pp. 1510-1525
    • Courchet, J.1
  • 41
    • 84880806405 scopus 로고    scopus 로고
    • Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport
    • Chen Y., Sheng Z.H. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 2013, 202:351-364.
    • (2013) J. Cell Biol. , vol.202 , pp. 351-364
    • Chen, Y.1    Sheng, Z.H.2
  • 42
    • 34547193908 scopus 로고    scopus 로고
    • Huntingtin facilitates dynein/dynactin-mediated vesicle transport
    • Caviston J.P., et al. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:10045-10050.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 10045-10050
    • Caviston, J.P.1
  • 43
    • 73549083820 scopus 로고    scopus 로고
    • Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin
    • Twelvetrees A.E., et al. Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 2010, 65:53-65.
    • (2010) Neuron , vol.65 , pp. 53-65
    • Twelvetrees, A.E.1
  • 44
    • 33645642673 scopus 로고    scopus 로고
    • Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons
    • McGuire J.R., et al. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J. Biol. Chem. 2006, 281:3552-3559.
    • (2006) J. Biol. Chem. , vol.281 , pp. 3552-3559
    • McGuire, J.R.1
  • 45
    • 0030726894 scopus 로고    scopus 로고
    • Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin
    • Engelender S., et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 1997, 6:2205-2212.
    • (1997) Hum. Mol. Genet. , vol.6 , pp. 2205-2212
    • Engelender, S.1
  • 46
    • 0032519646 scopus 로고    scopus 로고
    • Interaction of huntingtin-associated protein with dynactin P150Glued
    • Li S.H., et al. Interaction of huntingtin-associated protein with dynactin P150Glued. J. Neurosci. 1998, 18:1261-1269.
    • (1998) J. Neurosci. , vol.18 , pp. 1261-1269
    • Li, S.H.1
  • 47
    • 79951835447 scopus 로고    scopus 로고
    • Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes
    • Caviston J.P., et al. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol. Biol. Cell 2011, 22:478-492.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 478-492
    • Caviston, J.P.1
  • 48
    • 0141750470 scopus 로고    scopus 로고
    • Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila
    • Gunawardena S., et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 2003, 40:25-40.
    • (2003) Neuron , vol.40 , pp. 25-40
    • Gunawardena, S.1
  • 49
    • 58149385090 scopus 로고    scopus 로고
    • Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin
    • Her L.S., Goldstein L.S. Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J. Neurosci. 2008, 28:13662-13672.
    • (2008) J. Neurosci. , vol.28 , pp. 13662-13672
    • Her, L.S.1    Goldstein, L.S.2
  • 50
    • 49149112606 scopus 로고    scopus 로고
    • Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons
    • Colin E., et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 2008, 27:2124-2134.
    • (2008) EMBO J. , vol.27 , pp. 2124-2134
    • Colin, E.1
  • 51
    • 84892755229 scopus 로고    scopus 로고
    • The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation
    • Wong Y.C., Holzbaur E.L. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci. 2014, 34:1293-1305.
    • (2014) J. Neurosci. , vol.34 , pp. 1293-1305
    • Wong, Y.C.1    Holzbaur, E.L.2
  • 52
    • 84859770244 scopus 로고    scopus 로고
    • Huntingtin mediates dendritic transport of beta-actin mRNA in rat neurons
    • Ma B., et al. Huntingtin mediates dendritic transport of beta-actin mRNA in rat neurons. Sci. Rep. 2011, 1:140.
    • (2011) Sci. Rep. , vol.1 , pp. 140
    • Ma, B.1
  • 53
    • 84875509193 scopus 로고    scopus 로고
    • Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites
    • Liot G., et al. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J. Neurosci. 2013, 33:6298-6309.
    • (2013) J. Neurosci. , vol.33 , pp. 6298-6309
    • Liot, G.1
  • 54
    • 18544367185 scopus 로고    scopus 로고
    • Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis
    • Sahlender D.A., et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol. 2005, 169:285-295.
    • (2005) J. Cell Biol. , vol.169 , pp. 285-295
    • Sahlender, D.A.1
  • 55
    • 63449090757 scopus 로고    scopus 로고
    • Huntingtin as an essential integrator of intracellular vesicular trafficking
    • Caviston J.P., Holzbaur E.L. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol. 2009, 19:147-155.
    • (2009) Trends Cell Biol. , vol.19 , pp. 147-155
    • Caviston, J.P.1    Holzbaur, E.L.2
  • 56
    • 57049184027 scopus 로고    scopus 로고
    • Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons
    • Zala D., et al. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum. Mol. Genet. 2008, 17:3837-3846.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 3837-3846
    • Zala, D.1
  • 57
    • 33745520772 scopus 로고    scopus 로고
    • JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport
    • Morfini G., et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat. Neurosci. 2006, 9:907-916.
    • (2006) Nat. Neurosci. , vol.9 , pp. 907-916
    • Morfini, G.1
  • 58
    • 67649826155 scopus 로고    scopus 로고
    • Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin
    • Morfini G.A., et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat. Neurosci. 2009, 12:864-871.
    • (2009) Nat. Neurosci. , vol.12 , pp. 864-871
    • Morfini, G.A.1
  • 59
    • 84887475219 scopus 로고    scopus 로고
    • Motor domain phosphorylation modulates Kinesin-1 transport
    • Deberg H.A., et al. Motor domain phosphorylation modulates Kinesin-1 transport. J. Biol. Chem. 2013, 288:32612-32621.
    • (2013) J. Biol. Chem. , vol.288 , pp. 32612-32621
    • Deberg, H.A.1
  • 60
    • 34547857774 scopus 로고    scopus 로고
    • Sumoylation in axons triggers retrograde transport of the RNA-binding protein La
    • van Niekerk E.A., et al. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12913-12918.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 12913-12918
    • van Niekerk, E.A.1
  • 61
    • 33751274234 scopus 로고    scopus 로고
    • The JIP family of MAPK scaffold proteins
    • Whitmarsh A.J. The JIP family of MAPK scaffold proteins. Biochem. Soc. Trans. 2006, 34:828-832.
    • (2006) Biochem. Soc. Trans. , vol.34 , pp. 828-832
    • Whitmarsh, A.J.1
  • 62
    • 14744273901 scopus 로고    scopus 로고
    • Sunday Driver links axonal transport to damage signaling
    • Cavalli V., et al. Sunday Driver links axonal transport to damage signaling. J. Cell Biol. 2005, 168:775-787.
    • (2005) J. Cell Biol. , vol.168 , pp. 775-787
    • Cavalli, V.1
  • 63
    • 71749087122 scopus 로고    scopus 로고
    • Sunday driver interacts with two distinct classes of axonal organelles
    • Abe N., et al. Sunday driver interacts with two distinct classes of axonal organelles. J. Biol. Chem. 2009, 284:34628-34639.
    • (2009) J. Biol. Chem. , vol.284 , pp. 34628-34639
    • Abe, N.1
  • 64
    • 80155174991 scopus 로고    scopus 로고
    • Sunday Driver/JIP3 binds kinesin heavy chain directly and enhances its motility
    • Sun F., et al. Sunday Driver/JIP3 binds kinesin heavy chain directly and enhances its motility. EMBO J. 2011, 30:3416-3429.
    • (2011) EMBO J. , vol.30 , pp. 3416-3429
    • Sun, F.1
  • 65
    • 79951528510 scopus 로고    scopus 로고
    • The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein
    • Arimoto M., et al. The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J. Neurosci. 2011, 31:2216-2224.
    • (2011) J. Neurosci. , vol.31 , pp. 2216-2224
    • Arimoto, M.1
  • 66
    • 33749620373 scopus 로고    scopus 로고
    • Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway
    • Deinhardt K., et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 2006, 52:293-305.
    • (2006) Neuron , vol.52 , pp. 293-305
    • Deinhardt, K.1
  • 67
    • 84868130014 scopus 로고    scopus 로고
    • Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport
    • Mitchell D.J., et al. Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J. Neurosci. 2012, 32:15495-15510.
    • (2012) J. Neurosci. , vol.32 , pp. 15495-15510
    • Mitchell, D.J.1
  • 68
    • 79960687631 scopus 로고    scopus 로고
    • JIP3 mediates TrkB axonal anterograde transport and enhances BDNF signaling by directly bridging TrkB with kinesin-1
    • Huang S.H., et al. JIP3 mediates TrkB axonal anterograde transport and enhances BDNF signaling by directly bridging TrkB with kinesin-1. J. Neurosci. 2011, 31:10602-10614.
    • (2011) J. Neurosci. , vol.31 , pp. 10602-10614
    • Huang, S.H.1
  • 69
    • 59349092516 scopus 로고    scopus 로고
    • ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis
    • Montagnac G., et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr. Biol. 2009, 19:184-195.
    • (2009) Curr. Biol. , vol.19 , pp. 184-195
    • Montagnac, G.1
  • 70
    • 28444496758 scopus 로고    scopus 로고
    • APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila
    • Horiuchi D., et al. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr. Biol. 2005, 15:2137-2141.
    • (2005) Curr. Biol. , vol.15 , pp. 2137-2141
    • Horiuchi, D.1
  • 71
    • 17644427740 scopus 로고    scopus 로고
    • 2-terminal kinase-interacting protein-3 facilitates phosphorylation and controls localization of amyloid-beta precursor protein
    • 2-terminal kinase-interacting protein-3 facilitates phosphorylation and controls localization of amyloid-beta precursor protein. J. Neurosci. 2005, 25:3741-3751.
    • (2005) J. Neurosci. , vol.25 , pp. 3741-3751
    • Muresan, Z.1    Muresan, V.2
  • 72
    • 84881189138 scopus 로고    scopus 로고
    • JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors
    • Fu M.M., Holzbaur E.L. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 2013, 202:495-508.
    • (2013) J. Cell Biol. , vol.202 , pp. 495-508
    • Fu, M.M.1    Holzbaur, E.L.2
  • 73
    • 0035809914 scopus 로고    scopus 로고
    • Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules
    • Verhey K.J., et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 2001, 152:959-970.
    • (2001) J. Cell Biol. , vol.152 , pp. 959-970
    • Verhey, K.J.1
  • 74
    • 0035449943 scopus 로고    scopus 로고
    • C-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK
    • Matsuda S., et al. c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK. J. Neurosci. 2001, 21:6597-6607.
    • (2001) J. Neurosci. , vol.21 , pp. 6597-6607
    • Matsuda, S.1
  • 75
    • 0036462590 scopus 로고    scopus 로고
    • 2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's beta-amyloid precursor protein (APP)
    • 2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's beta-amyloid precursor protein (APP). J. Biol. Chem. 2002, 277:3767-3775.
    • (2002) J. Biol. Chem. , vol.277 , pp. 3767-3775
    • Scheinfeld, M.H.1
  • 76
    • 0043209098 scopus 로고    scopus 로고
    • Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation
    • Nihalani D., et al. Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation. J. Biol. Chem. 2003, 278:28694-28702.
    • (2003) J. Biol. Chem. , vol.278 , pp. 28694-28702
    • Nihalani, D.1
  • 77
    • 0038701654 scopus 로고    scopus 로고
    • The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK
    • Willoughby E.A., et al. The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK. J. Biol. Chem. 2003, 278:10731-10736.
    • (2003) J. Biol. Chem. , vol.278 , pp. 10731-10736
    • Willoughby, E.A.1
  • 78
    • 33845967100 scopus 로고    scopus 로고
    • Two binding partners cooperate to activate the molecular motor Kinesin-1
    • Blasius T.L., et al. Two binding partners cooperate to activate the molecular motor Kinesin-1. J. Cell Biol. 2007, 176:11-17.
    • (2007) J. Cell Biol. , vol.176 , pp. 11-17
    • Blasius, T.L.1
  • 79
    • 33644504510 scopus 로고    scopus 로고
    • A unique set of SH3-SH3 interactions controls IB1 homodimerization
    • Kristensen O., et al. A unique set of SH3-SH3 interactions controls IB1 homodimerization. EMBO J. 2006, 25:785-797.
    • (2006) EMBO J. , vol.25 , pp. 785-797
    • Kristensen, O.1
  • 80
    • 41849140047 scopus 로고    scopus 로고
    • Co-operative versus independent transport of different cargoes by Kinesin-1
    • Hammond J.W., et al. Co-operative versus independent transport of different cargoes by Kinesin-1. Traffic 2008, 9:725-741.
    • (2008) Traffic , vol.9 , pp. 725-741
    • Hammond, J.W.1
  • 81
    • 27944444156 scopus 로고    scopus 로고
    • Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1
    • Muresan Z., Muresan V. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 2005, 171:615-625.
    • (2005) J. Cell Biol. , vol.171 , pp. 615-625
    • Muresan, Z.1    Muresan, V.2
  • 82
    • 77953604433 scopus 로고    scopus 로고
    • Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms
    • Hammond J.W., et al. Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J. Cell Biol. 2010, 189:1013-1025.
    • (2010) J. Cell Biol. , vol.189 , pp. 1013-1025
    • Hammond, J.W.1
  • 83
    • 65949119126 scopus 로고    scopus 로고
    • Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition
    • Hammond J.W., et al. Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol. 2009, 7:e72.
    • (2009) PLoS Biol. , vol.7 , pp. e72
    • Hammond, J.W.1
  • 84
    • 0034625631 scopus 로고    scopus 로고
    • Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport
    • Setou M., et al. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 2000, 288:1796-1802.
    • (2000) Science , vol.288 , pp. 1796-1802
    • Setou, M.1
  • 85
    • 37749000849 scopus 로고    scopus 로고
    • Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release
    • Guillaud L., et al. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat. Cell Biol. 2008, 10:19-29.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 19-29
    • Guillaud, L.1
  • 86
    • 84859758095 scopus 로고    scopus 로고
    • Regulation of NMDA receptor transport: a KIF17-cargo binding/releasing underlies synaptic plasticity and memory in vivo
    • Yin X., et al. Regulation of NMDA receptor transport: a KIF17-cargo binding/releasing underlies synaptic plasticity and memory in vivo. J. Neurosci. 2012, 32:5486-5499.
    • (2012) J. Neurosci. , vol.32 , pp. 5486-5499
    • Yin, X.1
  • 87
    • 0037415607 scopus 로고    scopus 로고
    • Dynactin is required for bidirectional organelle transport
    • Deacon S.W., et al. Dynactin is required for bidirectional organelle transport. J. Cell Biol. 2003, 160:297-301.
    • (2003) J. Cell Biol. , vol.160 , pp. 297-301
    • Deacon, S.W.1
  • 88
    • 33846199544 scopus 로고    scopus 로고
    • Dynactin enhances the processivity of kinesin-2
    • Berezuk M.A., Schroer T.A. Dynactin enhances the processivity of kinesin-2. Traffic 2007, 8:124-129.
    • (2007) Traffic , vol.8 , pp. 124-129
    • Berezuk, M.A.1    Schroer, T.A.2
  • 89
    • 55549134618 scopus 로고    scopus 로고
    • KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD
    • Niwa S., et al. KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat. Cell Biol. 2008, 10:1269-1279.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1269-1279
    • Niwa, S.1
  • 90
    • 84896295630 scopus 로고    scopus 로고
    • HookA is a novel dynein-early endosome linker critical for cargo movement in vivo
    • Zhang J., et al. HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J. Cell Biol. 2014, 204:1009-1026.
    • (2014) J. Cell Biol. , vol.204 , pp. 1009-1026
    • Zhang, J.1
  • 91
    • 84896271300 scopus 로고    scopus 로고
    • Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes
    • Bielska E., et al. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J. Cell Biol. 2014, 204:989-1007.
    • (2014) J. Cell Biol. , vol.204 , pp. 989-1007
    • Bielska, E.1
  • 92
    • 0035809910 scopus 로고    scopus 로고
    • The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins
    • Walenta J.H., et al. The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins. J. Cell Biol. 2001, 152:923-934.
    • (2001) J. Cell Biol. , vol.152 , pp. 923-934
    • Walenta, J.H.1
  • 93
    • 84876727998 scopus 로고    scopus 로고
    • Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1
    • Maldonado-Baez L., et al. Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1. J. Cell Biol. 2013, 201:233-247.
    • (2013) J. Cell Biol. , vol.201 , pp. 233-247
    • Maldonado-Baez, L.1
  • 94
    • 59449101294 scopus 로고    scopus 로고
    • An FTS/Hook/p107(FHIP) complex interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting complex
    • Xu L., et al. An FTS/Hook/p107(FHIP) complex interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting complex. Mol. Biol. Cell 2008, 19:5059-5071.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5059-5071
    • Xu, L.1
  • 95
    • 70349437416 scopus 로고    scopus 로고
    • Kinesin superfamily motor proteins and intracellular transport
    • Hirokawa N., et al. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 2009, 10:682-696.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 682-696
    • Hirokawa, N.1
  • 96
    • 0034279183 scopus 로고    scopus 로고
    • KIF5C, a novel neuronal kinesin enriched in motor neurons
    • Kanai Y., et al. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 2000, 20:6374-6384.
    • (2000) J. Neurosci. , vol.20 , pp. 6374-6384
    • Kanai, Y.1
  • 97
    • 84872739997 scopus 로고    scopus 로고
    • Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy
    • Nakajima K., et al. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 2012, 76:945-961.
    • (2012) Neuron , vol.76 , pp. 945-961
    • Nakajima, K.1
  • 98
    • 70350446761 scopus 로고    scopus 로고
    • Traffic control: regulation of kinesin motors
    • Verhey K.J., Hammond J.W. Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 2009, 10:765-777.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 765-777
    • Verhey, K.J.1    Hammond, J.W.2
  • 99
    • 0033591331 scopus 로고    scopus 로고
    • Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity
    • Stock M.F., et al. Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 1999, 274:14617-14623.
    • (1999) J. Biol. Chem. , vol.274 , pp. 14617-14623
    • Stock, M.F.1
  • 100
    • 0033195492 scopus 로고    scopus 로고
    • Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain
    • Friedman D.S., Vale R.D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nat. Cell Biol. 1999, 1:293-297.
    • (1999) Nat. Cell Biol. , vol.1 , pp. 293-297
    • Friedman, D.S.1    Vale, R.D.2
  • 101
    • 0024591237 scopus 로고
    • Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration
    • Hirokawa N., et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 1989, 56:867-878.
    • (1989) Cell , vol.56 , pp. 867-878
    • Hirokawa, N.1
  • 102
    • 65249183862 scopus 로고    scopus 로고
    • Half-site inhibition of dimeric kinesin head domains by monomeric tail domains
    • Hackney D.D., et al. Half-site inhibition of dimeric kinesin head domains by monomeric tail domains. Biochemistry 2009, 48:3448-3456.
    • (2009) Biochemistry , vol.48 , pp. 3448-3456
    • Hackney, D.D.1
  • 103
    • 80051633233 scopus 로고    scopus 로고
    • The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
    • Kaan H.Y., et al. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 2011, 333:883-885.
    • (2011) Science , vol.333 , pp. 883-885
    • Kaan, H.Y.1
  • 104
    • 84886304872 scopus 로고    scopus 로고
    • Functions and mechanics of dynein motor proteins
    • Roberts A.J., et al. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 2013, 14:713-726.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 713-726
    • Roberts, A.J.1
  • 105
    • 33744826279 scopus 로고    scopus 로고
    • Processive bidirectional motion of dynein-dynactin complexes in vitro
    • Ross J.L., et al. Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat. Cell Biol. 2006, 8:562-570.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 562-570
    • Ross, J.L.1
  • 106
    • 70450228589 scopus 로고    scopus 로고
    • Regulators of the cytoplasmic dynein motor
    • Kardon J.R., Vale R.D. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 2009, 10:854-865.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 854-865
    • Kardon, J.R.1    Vale, R.D.2
  • 107
    • 0025891138 scopus 로고
    • Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued
    • Holzbaur E.L., et al. Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Nature 1991, 351:579-583.
    • (1991) Nature , vol.351 , pp. 579-583
    • Holzbaur, E.L.1
  • 108
    • 0028986631 scopus 로고
    • The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1)
    • Waterman-Storer C.M., et al. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl. Acad. Sci. U.S.A. 1995, 92:1634-1638.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 1634-1638
    • Waterman-Storer, C.M.1
  • 109
    • 33644747344 scopus 로고    scopus 로고
    • A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules
    • Culver-Hanlon T.L., et al. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat. Cell Biol. 2006, 8:264-270.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 264-270
    • Culver-Hanlon, T.L.1
  • 110
    • 0028806377 scopus 로고
    • Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex
    • Karki S., Holzbaur E.L. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem. 1995, 270:28806-28811.
    • (1995) J. Biol. Chem. , vol.270 , pp. 28806-28811
    • Karki, S.1    Holzbaur, E.L.2
  • 111
    • 0029563632 scopus 로고
    • Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued
    • Vaughan K.T., Vallee R.B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 1995, 131:1507-1516.
    • (1995) J. Cell Biol. , vol.131 , pp. 1507-1516
    • Vaughan, K.T.1    Vallee, R.B.2
  • 112
    • 84875923534 scopus 로고    scopus 로고
    • Dynein and dynactin leverage their bivalent character to form a high-affinity interaction
    • Siglin A.E., et al. Dynein and dynactin leverage their bivalent character to form a high-affinity interaction. PLoS ONE 2013, 8:e59453.
    • (2013) PLoS ONE , vol.8 , pp. e59453
    • Siglin, A.E.1
  • 114
    • 0032538837 scopus 로고    scopus 로고
    • Light chain-dependent regulation of Kinesin's interaction with microtubules
    • Verhey K.J., et al. Light chain-dependent regulation of Kinesin's interaction with microtubules. J. Cell Biol. 1998, 143:1053-1066.
    • (1998) J. Cell Biol. , vol.143 , pp. 1053-1066
    • Verhey, K.J.1
  • 115
    • 0032564307 scopus 로고    scopus 로고
    • The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain
    • Diefenbach R.J., et al. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 1998, 37:16663-16670.
    • (1998) Biochemistry , vol.37 , pp. 16663-16670
    • Diefenbach, R.J.1
  • 116
    • 0026705754 scopus 로고
    • Kinesin undergoes a 9S to 6S conformational transition
    • Hackney D.D., et al. Kinesin undergoes a 9S to 6S conformational transition. J. Biol. Chem. 1992, 267:8696-8701.
    • (1992) J. Biol. Chem. , vol.267 , pp. 8696-8701
    • Hackney, D.D.1
  • 117
    • 0036928666 scopus 로고    scopus 로고
    • Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte
    • Palacios I.M., St Johnston D. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 2002, 129:5473-5485.
    • (2002) Development , vol.129 , pp. 5473-5485
    • Palacios, I.M.1    St Johnston, D.2
  • 118
    • 84876300929 scopus 로고    scopus 로고
    • Structural basis for kinesin-1:cargo recognition
    • Pernigo S., et al. Structural basis for kinesin-1:cargo recognition. Science 2013, 340:356-359.
    • (2013) Science , vol.340 , pp. 356-359
    • Pernigo, S.1
  • 119
    • 84890470944 scopus 로고    scopus 로고
    • The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline
    • Williams L.S., et al. The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline. Development 2014, 141:176-186.
    • (2014) Development , vol.141 , pp. 176-186
    • Williams, L.S.1
  • 120
    • 79953141458 scopus 로고    scopus 로고
    • Phosphorylation of kinesin light chain 1 at serine 460 modulates binding and trafficking of calsyntenin-1
    • Vagnoni A., et al. Phosphorylation of kinesin light chain 1 at serine 460 modulates binding and trafficking of calsyntenin-1. J. Cell Sci. 2011, 124:1032-1042.
    • (2011) J. Cell Sci. , vol.124 , pp. 1032-1042
    • Vagnoni, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.