-
1
-
-
0027175025
-
Ischemia reperfusion injury: A review
-
Kerrigan CL, Stotland MA. Ischemia reperfusion injury: A review. Microsurgery 1993; 14: 165-75.
-
(1993)
Microsurgery
, vol.14
, pp. 165-175
-
-
Kerrigan, C.L.1
Stotland, M.A.2
-
2
-
-
0034053099
-
Pathophysiology of ischaemia-reperfusion injury
-
Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190: 255-66.
-
(2000)
J Pathol
, vol.190
, pp. 255-266
-
-
Carden, D.L.1
Granger, D.N.2
-
3
-
-
0037373455
-
Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein
-
Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 2003; 111: 583-93.
-
(2003)
J Clin Invest
, vol.111
, pp. 583-593
-
-
Marnett, L.J.1
Riggins, J.N.2
West, J.D.3
-
4
-
-
18844412788
-
Reactive oxygen species and the modulation of stroke
-
Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 2005; 38: 1433-44.
-
(2005)
Free Radic Biol Med
, vol.38
, pp. 1433-1444
-
-
Crack, P.J.1
Taylor, J.M.2
-
5
-
-
84872059301
-
Targeting reactive nitrogen species: A promising therapeutic strategy for cerebral ischemiareperfusion injury
-
Chen XM, Chen HS, Xu MJ, Shen JG. Targeting reactive nitrogen species: A promising therapeutic strategy for cerebral ischemiareperfusion injury. Acta Pharmacol Sin 2013; 34: 67-77.
-
(2013)
Acta Pharmacol Sin
, vol.34
, pp. 67-77
-
-
Chen, X.M.1
Chen, H.S.2
Xu, M.J.3
Shen, J.G.4
-
6
-
-
84941647788
-
Renal ischemia/reperfusion injury: From pathophysiology to treatment
-
Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury: From pathophysiology to treatment. J Renal Inj Prev 2015; 4: 20-7.
-
(2015)
J Renal Inj Prev
, vol.4
, pp. 20-27
-
-
Malek, M.1
Nematbakhsh, M.2
-
7
-
-
84857579110
-
Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation
-
Davidson SM, Yellon DM, Murphy MP, Duchen MR. Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc Res 2012; 93: 445-53.
-
(2012)
Cardiovasc Res
, vol.93
, pp. 445-453
-
-
Davidson, S.M.1
Yellon, D.M.2
Murphy, M.P.3
Duchen, M.R.4
-
8
-
-
0035978751
-
ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology
-
Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 2001; 411: 595-9.
-
(2001)
Nature
, vol.411
, pp. 595-599
-
-
Perraud, A.L.1
Fleig, A.2
Dunn, C.A.3
Bagley, L.A.4
Launay, P.5
Schmitz, C.6
-
9
-
-
15944417442
-
Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels
-
Kolisek M, Beck A, Fleig A, Penner R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 2005; 18: 61-9.
-
(2005)
Mol Cell
, vol.18
, pp. 61-69
-
-
Kolisek, M.1
Beck, A.2
Fleig, A.3
Penner, R.4
-
10
-
-
84886701425
-
Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death
-
Alim I, Teves L, Li R, Mori Y, Tymianski M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 2013; 33: 17264-77.
-
(2013)
J Neurosci
, vol.33
, pp. 17264-17277
-
-
Alim, I.1
Teves, L.2
Li, R.3
Mori, Y.4
Tymianski, M.5
-
11
-
-
84927920574
-
TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia
-
Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A, et al. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 2014; 5: E1541.
-
(2014)
Cell Death Dis
, vol.5
, pp. e1541
-
-
Ye, M.1
Yang, W.2
Ainscough, J.F.3
Hu, X.P.4
Li, X.5
Sedo, A.6
-
12
-
-
84872556144
-
Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury
-
Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y, et al. Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 2013; 97: 271-81.
-
(2013)
Cardiovasc Res
, vol.97
, pp. 271-281
-
-
Hiroi, T.1
Wajima, T.2
Negoro, T.3
Ishii, M.4
Nakano, Y.5
Kiuchi, Y.6
-
13
-
-
84908635178
-
TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1
-
Gao G, Wang W, Tadagavadi RK, Briley NE, Love MI, Miller BA, et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J Clin Invest 2014; 124: 4989-5001.
-
(2014)
J Clin Invest
, vol.124
, pp. 4989-5001
-
-
Gao, G.1
Wang, W.2
Tadagavadi, R.K.3
Briley, N.E.4
Love, M.I.5
Miller, B.A.6
-
14
-
-
84878600920
-
The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury
-
Miller BA, Wang J, Hirschler-Laszkiewicz I, Gao E, Song J, Zhang XQ, et al. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2013; 304: H1010-22.
-
(2013)
Am J Physiol Heart Circ Physiol
, vol.304
, pp. 1010-1022
-
-
Miller, B.A.1
Wang, J.2
Hirschler-Laszkiewicz, I.3
Gao, E.4
Song, J.5
Zhang, X.Q.6
-
15
-
-
84937510947
-
Ca2+ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance
-
Hoffman NE, Miller BA, Wang J, Elrod JW, Rajan S, Gao E, et al. Ca2+ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol 2015; 308: H637-50.
-
(2015)
Am J Physiol Heart Circ Physiol
, vol.308
, pp. 637-650
-
-
Hoffman, N.E.1
Miller, B.A.2
Wang, J.3
Elrod, J.W.4
Rajan, S.5
Gao, E.6
-
16
-
-
0035902767
-
Immunocyte Ca2+ influx system mediated by LTRPC2
-
Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 2001; 293: 1327-30.
-
(2001)
Science
, vol.293
, pp. 1327-1330
-
-
Sano, Y.1
Inamura, K.2
Miyake, A.3
Mochizuki, S.4
Yokoi, H.5
Matsushime, H.6
-
17
-
-
0038237529
-
Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation
-
McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 2003; 278: 11002-6.
-
(2003)
J Biol Chem
, vol.278
, pp. 11002-11006
-
-
McHugh, D.1
Flemming, R.2
Xu, S.Z.3
Perraud, A.L.4
Beech, D.J.5
-
18
-
-
70350517076
-
TRPM2 functions as a lysosomal Ca2+-release channel in beta cells
-
Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2009; 2: Ra23.
-
(2009)
Sci Signal
, vol.2
, pp. 23
-
-
Lange, I.1
Yamamoto, S.2
Partida-Sanchez, S.3
Mori, Y.4
Fleig, A.5
Penner, R.6
-
19
-
-
79953153188
-
TRPM2: A multifunctional ion channel for calcium signalling
-
Sumoza-Toledo A, Penner R. TRPM2: A multifunctional ion channel for calcium signalling. J Physiol 2011; 589: 1515-25.
-
(2011)
J Physiol
, vol.589
, pp. 1515-1525
-
-
Sumoza-Toledo, A.1
Penner, R.2
-
20
-
-
0037636203
-
TRPM2 Ca2+ permeable cation channels: From gene to biological function
-
Perraud AL, Schmitz C, Scharenberg AM. TRPM2 Ca2+ permeable cation channels: From gene to biological function. Cell Calcium 2003; 33: 519-31.
-
(2003)
Cell Calcium
, vol.33
, pp. 519-531
-
-
Perraud, A.L.1
Schmitz, C.2
Scharenberg, A.M.3
-
21
-
-
7644238945
-
The TRPM ion channel subfamily: Molecular, biophysical and functional features
-
Fleig A, Penner R. The TRPM ion channel subfamily: Molecular, biophysical and functional features. Trends Pharmacol Sci 2004; 25: 633-9.
-
(2004)
Trends Pharmacol Sci
, vol.25
, pp. 633-639
-
-
Fleig, A.1
Penner, R.2
-
22
-
-
2342484509
-
Emerging roles of TRPM channels
-
Fleig A, Penner R. Emerging roles of TRPM channels. Novartis Found Symp 2004; 258: 248-58.
-
(2004)
Novartis Found Symp
, vol.258
, pp. 248-258
-
-
Fleig, A.1
Penner, R.2
-
23
-
-
8744315003
-
Sites of the NUDT9-H domain critical for ADPribose activation of the cation channel TRPM2
-
Kuhn FJ, Luckhoff A. Sites of the NUDT9-H domain critical for ADPribose activation of the cation channel TRPM2. J Biol Chem 2004; 279: 46431-7.
-
(2004)
J Biol Chem
, vol.279
, pp. 46431-46437
-
-
Kuhn, F.J.1
Luckhoff, A.2
-
24
-
-
0037189484
-
Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose
-
Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 2002; 277: 23150-6.
-
(2002)
J Biol Chem
, vol.277
, pp. 23150-23156
-
-
Wehage, E.1
Eisfeld, J.2
Heiner, I.3
Jungling, E.4
Zitt, C.5
Luckhoff, A.6
-
25
-
-
0038521288
-
A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death
-
Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, et al. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 2003; 278: 16222-9.
-
(2003)
J Biol Chem
, vol.278
, pp. 16222-16229
-
-
Zhang, W.1
Chu, X.2
Tong, Q.3
Cheung, J.Y.4
Conrad, K.5
Masker, K.6
-
26
-
-
55549140796
-
Identification of novel sense and antisense transcription at the TRPM2 locus in cancer
-
Orfanelli U, Wenke AK, Doglioni C, Russo V, Bosserhoff AK, Lavorgna G. Identification of novel sense and antisense transcription at the TRPM2 locus in cancer. Cell Res 2008; 18: 1128-40.
-
(2008)
Cell Res
, vol.18
, pp. 1128-1140
-
-
Orfanelli, U.1
Wenke, A.K.2
Doglioni, C.3
Russo, V.4
Bosserhoff, A.K.5
Lavorgna, G.6
-
28
-
-
55549136063
-
Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2
-
Xia R, Mei ZZ, Mao HJ, Yang W, Dong L, Bradley H, et al. Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J Biol Chem 2008; 283: 27426-32.
-
(2008)
J Biol Chem
, vol.283
, pp. 27426-27432
-
-
Xia, R.1
Mei, Z.Z.2
Mao, H.J.3
Yang, W.4
Dong, L.5
Bradley, H.6
-
29
-
-
77955463362
-
TRPM2 channel properties, functions and therapeutic potentials
-
Jiang LH, Yang W, Zou J, Beech DJ. TRPM2 channel properties, functions and therapeutic potentials. Expert Opin Ther Targets 2010; 14: 973-88.
-
(2010)
Expert Opin Ther Targets
, vol.14
, pp. 973-988
-
-
Jiang, L.H.1
Yang, W.2
Zou, J.3
Beech, D.J.4
-
30
-
-
33845602018
-
Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes
-
Beck A, Kolisek M, Bagley LA, Fleig A, Penner R. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J 2006; 20: 962-4.
-
(2006)
FASEB J
, vol.20
, pp. 962-964
-
-
Beck, A.1
Kolisek, M.2
Bagley, L.A.3
Fleig, A.4
Penner, R.5
-
31
-
-
33744468970
-
Metabolite of SIR2 reaction modulates TRPM2 ion channel
-
Grubisha O, Rafty LA, Takanishi CL, Xu X, Tong L, Perraud AL, et al. Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem 2006; 281: 14057-65.
-
(2006)
J Biol Chem
, vol.281
, pp. 14057-14065
-
-
Grubisha, O.1
Rafty, L.A.2
Takanishi, C.L.3
Xu, X.4
Tong, L.5
Perraud, A.L.6
-
32
-
-
34748897412
-
Regulation of TRPM2 by extraand intracellular calcium
-
Starkus J, Beck A, Fleig A, Penner R. Regulation of TRPM2 by extraand intracellular calcium. J Gen Physiol 2007; 130: 427-40.
-
(2007)
J Gen Physiol
, vol.130
, pp. 427-440
-
-
Starkus, J.1
Beck, A.2
Fleig, A.3
Penner, R.4
-
33
-
-
66349113192
-
Intracellular calcium activates TRPM2 and its alternative spliced isoforms
-
Du J, Xie J, Yue L. Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci U S A 2009; 106: 7239-44.
-
(2009)
Proc Natl Acad Sci U. S. A.
, vol.106
, pp. 7239-7244
-
-
Du, J.1
Xie, J.2
Yue, L.3
-
34
-
-
4344611521
-
The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells
-
Ayub K, Hallett MB. The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells. FASEB J 2004; 18: 1335-8.
-
(2004)
FASEB J
, vol.18
, pp. 1335-1338
-
-
Ayub, K.1
Hallett, M.B.2
-
35
-
-
20044388114
-
Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels
-
Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 2005; 280: 6138-48.
-
(2005)
J Biol Chem
, vol.280
, pp. 6138-6148
-
-
Perraud, A.L.1
Takanishi, C.L.2
Shen, B.3
Kang, S.4
Smith, M.K.5
Schmitz, C.6
-
36
-
-
77956922681
-
Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel
-
Toth B, Csanady L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem 2010; 285: 30091-102.
-
(2010)
J Biol Chem
, vol.285
, pp. 30091-30102
-
-
Toth, B.1
Csanady, L.2
-
37
-
-
38849207589
-
Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction
-
Partida-Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G, et al. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J Immunol 2007; 179: 7827-39.
-
(2007)
J Immunol
, vol.179
, pp. 7827-7839
-
-
Partida-Sanchez, S.1
Gasser, A.2
Fliegert, R.3
Siebrands, C.C.4
Dammermann, W.5
Shi, G.6
-
38
-
-
73149103711
-
Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity
-
Du J, Xie J, Yue L. Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol 2009; 134: 471-88.
-
(2009)
J Gen Physiol
, vol.134
, pp. 471-488
-
-
Du, J.1
Xie, J.2
Yue, L.3
-
39
-
-
77953193736
-
The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification
-
Starkus JG, Fleig A, Penner R. The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol 2010; 588: 1227-40.
-
(2010)
J Physiol
, vol.588
, pp. 1227-1240
-
-
Starkus, J.G.1
Fleig, A.2
Penner, R.3
-
40
-
-
77957270790
-
Statedependent inhibition of TRPM2 channel by acidic pH
-
Yang W, Zou J, Xia R, Vaal ML, Seymour VA, Luo J, et al. Statedependent inhibition of TRPM2 channel by acidic pH. J Biol Chem 2010; 285: 30411-8.
-
(2010)
J Biol Chem
, vol.285
, pp. 30411-30418
-
-
Yang, W.1
Zou, J.2
Xia, R.3
Vaal, M.L.4
Seymour, V.A.5
Luo, J.6
-
41
-
-
79959873314
-
Zinc inactivates melastatin transient receptor potential 2 channels via the outer pore
-
Yang W, Manna PT, Zou J, Luo J, Beech DJ, Sivaprasadarao A, et al. Zinc inactivates melastatin transient receptor potential 2 channels via the outer pore. J Biol Chem 2011; 286: 23789-98.
-
(2011)
J Biol Chem
, vol.286
, pp. 23789-23798
-
-
Yang, W.1
Manna, P.T.2
Zou, J.3
Luo, J.4
Beech, D.J.5
Sivaprasadarao, A.6
-
42
-
-
84911499479
-
Inactivation of TRPM2 channels by extracellular divalent copper
-
Yu W, Jiang LH, Zheng Y, Hu X, Luo J, Yang W. Inactivation of TRPM2 channels by extracellular divalent copper. PLoS One 2014; 9: E112071.
-
(2014)
PLoS One
, vol.9
, pp. e112071
-
-
Yu, W.1
Jiang, L.H.2
Zheng, Y.3
Hu, X.4
Luo, J.5
Yang, W.6
-
43
-
-
84864292111
-
Divalent copper is a potent extracellular blocker for TRPM2 channel
-
Zeng B, Chen GL, Xu SZ. Divalent copper is a potent extracellular blocker for TRPM2 channel. Biochem Biophys Res Commun 2012; 424: 279-84.
-
(2012)
Biochem Biophys Res Commun
, vol.424
, pp. 279-284
-
-
Zeng, B.1
Chen, G.L.2
Xu, S.Z.3
-
44
-
-
71349087750
-
Inhibitors of TRP channels reveal stimulusdependent differential activation of Ca2+ influx pathways in human neutrophil granulocytes
-
Pantaler E, Luckhoff A. Inhibitors of TRP channels reveal stimulusdependent differential activation of Ca2+ influx pathways in human neutrophil granulocytes. Naunyn Schmiedebergs Arch Pharmacol 2009; 380: 497-507.
-
(2009)
Naunyn Schmiedebergs Arch Pharmacol
, vol.380
, pp. 497-507
-
-
Pantaler, E.1
Luckhoff, A.2
-
45
-
-
1342285210
-
Neuropathological and biochemical features of traumatic injury in the developing brain
-
Bittigau P, Sifringer M, Felderhoff-Mueser U, Hansen HH, Ikonomidou C. Neuropathological and biochemical features of traumatic injury in the developing brain. Neurotox Res 2003; 5: 475-90.
-
(2003)
Neurotox Res
, vol.5
, pp. 475-490
-
-
Bittigau, P.1
Sifringer, M.2
Felderhoff-Mueser, U.3
Hansen, H.H.4
Ikonomidou, C.5
-
46
-
-
27844502151
-
Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death
-
Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 2005; 48: 635-46.
-
(2005)
Neuron
, vol.48
, pp. 635-646
-
-
Gao, J.1
Duan, B.2
Wang, D.G.3
Deng, X.H.4
Zhang, G.Y.5
Xu, L.6
-
47
-
-
33646552708
-
Ca2+-permeable acid-sensing ion channels and ischemic brain injury
-
Xiong ZG, Chu XP, Simon RP. Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol 2006; 209: 59-68.
-
(2006)
J Membr Biol
, vol.209
, pp. 59-68
-
-
Xiong, Z.G.1
Chu, X.P.2
Simon, R.P.3
-
48
-
-
0346186100
-
A key role for TRPM7 channels in anoxic neuronal death
-
Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 2003; 115: 863-77.
-
(2003)
Cell
, vol.115
, pp. 863-877
-
-
Aarts, M.1
Iihara, K.2
Wei, W.L.3
Xiong, Z.G.4
Arundine, M.5
Cerwinski, W.6
-
49
-
-
79959794425
-
TRP channels as mediators of oxidative stress
-
Miller BA, Zhang W. TRP channels as mediators of oxidative stress. Adv Exp Med Biol 2011; 704: 531-44.
-
(2011)
Adv Exp Med Biol
, vol.704
, pp. 531-544
-
-
Miller, B.A.1
Zhang, W.2
-
50
-
-
34547401505
-
Non-selective cation channels, transient receptor potential channels and ischemic stroke
-
Simard JM, Tarasov KV, Gerzanich V. Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta 2007; 1772: 947-57.
-
(2007)
Biochim Biophys Acta
, vol.1772
, pp. 947-957
-
-
Simard, J.M.1
Tarasov, K.V.2
Gerzanich, V.3
-
51
-
-
44649128517
-
TRP channel and cardiovascular disease
-
Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H. TRP channel and cardiovascular disease. Pharmacol Ther 2008; 118: 337-51.
-
(2008)
Pharmacol Ther
, vol.118
, pp. 337-351
-
-
Watanabe, H.1
Murakami, M.2
Ohba, T.3
Takahashi, Y.4
Ito, H.5
-
52
-
-
84872066398
-
Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction
-
Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin 2013; 34: 39-48.
-
(2013)
Acta Pharmacol Sin
, vol.34
, pp. 39-48
-
-
Weilinger, N.L.1
Maslieieva, V.2
Bialecki, J.3
Sridharan, S.S.4
Tang, P.L.5
Thompson, R.J.6
-
53
-
-
33646594396
-
TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia
-
Fonfria E, Mattei C, Hill K, Brown JT, Randall A, Benham CD, et al. TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct Res 2006; 26: 179-98.
-
(2006)
J Recept Signal Transduct Res
, vol.26
, pp. 179-198
-
-
Fonfria, E.1
Mattei, C.2
Hill, K.3
Brown, J.T.4
Randall, A.5
Benham, C.D.6
-
54
-
-
80455164731
-
Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke
-
Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 2011; 31: 2160-8.
-
(2011)
J Cereb Blood Flow Metab
, vol.31
, pp. 2160-2168
-
-
Jia, J.1
Verma, S.2
Nakayama, S.3
Quillinan, N.4
Grafe, M.R.5
Hurn, P.D.6
-
55
-
-
84868301057
-
TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death
-
Verma S, Quillinan N, Yang YF, Nakayama S, Cheng J, Kelley MH, et al. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett 2012; 530: 41-6.
-
(2012)
Neurosci Lett
, vol.530
, pp. 41-46
-
-
Verma, S.1
Quillinan, N.2
Yang, Y.F.3
Nakayama, S.4
Cheng, J.5
Kelley, M.H.6
-
56
-
-
84882260817
-
Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice
-
Nakayama S, Vest R, Traystman RJ, Herson PS. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci 2013; 51: 92-8.
-
(2013)
J Mol Neurosci
, vol.51
, pp. 92-98
-
-
Nakayama, S.1
Vest, R.2
Traystman, R.J.3
Herson, P.S.4
-
57
-
-
84885019019
-
Androgen and PARP-1 regulation of TRPM2 channels after ischemic injury
-
Shimizu T, Macey TA, Quillinan N, Klawitter J, Perraud AL, Traystman RJ, et al. Androgen and PARP-1 regulation of TRPM2 channels after ischemic injury. J Cereb Blood Flow Metab 2013; 33: 1549-55.
-
(2013)
J Cereb Blood Flow Metab
, vol.33
, pp. 1549-1555
-
-
Shimizu, T.1
Macey, T.A.2
Quillinan, N.3
Klawitter, J.4
Perraud, A.L.5
Traystman, R.J.6
-
58
-
-
0029777299
-
The role of zinc in selective neuronal death after transient global cerebral ischemia
-
Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 1996; 272: 1013-6.
-
(1996)
Science
, vol.272
, pp. 1013-1016
-
-
Koh, J.Y.1
Suh, S.W.2
Gwag, B.J.3
He, Y.Y.4
Hsu, C.Y.5
Choi, D.W.6
-
60
-
-
0038637993
-
Zinc inhibition of cellular energy production: Implications for mitochondria and neurodegeneration
-
Dineley KE, Votyakova T V, Reynolds IJ. Zinc inhibition of cellular energy production: Implications for mitochondria and neurodegeneration. J Neurochem 2003; 85: 563-70.
-
(2003)
J Neurochem
, vol.85
, pp. 563-570
-
-
Dineley, K.E.1
Votyakova, T.V.2
Reynolds, I.J.3
-
61
-
-
68249100265
-
Rising zinc: A significant cause of ischemic neuronal death in the CA1 region of rat hippocampus
-
Stork CJ, Li YV. Rising zinc: A significant cause of ischemic neuronal death in the CA1 region of rat hippocampus. J Cereb Blood Flow Metab 2009; 29: 1399-408.
-
(2009)
J Cereb Blood Flow Metab
, vol.29
, pp. 1399-1408
-
-
Stork, C.J.1
Li, Y.V.2
-
63
-
-
0033514513
-
Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production
-
Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci U S A 1999; 96: 2414-9.
-
(1999)
Proc Natl Acad Sci U. S. A.
, vol.96
, pp. 2414-2419
-
-
Sensi, S.L.1
Yin, H.Z.2
Carriedo, S.G.3
Rao, S.S.4
Weiss, J.H.5
-
64
-
-
0037082328
-
Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivationinduced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons
-
Yin HZ, Sensi SL, Ogoshi F, Weiss JH. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivationinduced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J Neurosci 2002; 22: 1273-9.
-
(2002)
J Neurosci
, vol.22
, pp. 1273-1279
-
-
Yin, H.Z.1
Sensi, S.L.2
Ogoshi, F.3
Weiss, J.H.4
-
65
-
-
24744431841
-
Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death
-
Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci U S A 2005; 102: 12230-5.
-
(2005)
Proc Natl Acad Sci U. S. A.
, vol.102
, pp. 12230-12235
-
-
Noh, K.M.1
Yokota, H.2
Mashiko, T.3
Castillo, P.E.4
Zukin, R.S.5
Bennett, M.V.6
-
66
-
-
84926372777
-
A specialized molecular motion opens the Hv1 voltage-gated proton channel
-
Mony L, Berger TK, Isacoff EY. A specialized molecular motion opens the Hv1 voltage-gated proton channel. Nat Struct Mol Biol 2015; 22: 283-90.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 283-290
-
-
Mony, L.1
Berger, T.K.2
Isacoff, E.Y.3
-
67
-
-
84872486948
-
Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation
-
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2013; 47: 9-23.
-
(2013)
Mol Neurobiol
, vol.47
, pp. 9-23
-
-
Sanderson, T.H.1
Reynolds, C.A.2
Kumar, R.3
Przyklenk, K.4
Huttemann, M.5
-
68
-
-
0344820731
-
Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures
-
Noh KM, Kim YH, Koh JY. Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J Neurochem 1999; 72: 1609-16.
-
(1999)
J Neurochem
, vol.72
, pp. 1609-1616
-
-
Noh, K.M.1
Kim, Y.H.2
Koh, J.Y.3
-
69
-
-
0036436238
-
The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture
-
Kim YH, Koh JY. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 2002; 177: 407-18.
-
(2002)
Exp Neurol
, vol.177
, pp. 407-418
-
-
Kim, Y.H.1
Koh, J.Y.2
-
70
-
-
84908373385
-
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: New therapeutic targets for stroke?
-
Leng T, Shi Y, Xiong ZG, Sun D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: New therapeutic targets for stroke? Prog Neurobiol 2014; 115: 189-209.
-
(2014)
Prog Neurobiol
, vol.115
, pp. 189-209
-
-
Leng, T.1
Shi, Y.2
Xiong, Z.G.3
Sun, D.4
-
71
-
-
79955663289
-
GluA2-lacking calcium-permeable AMPA receptors-inducers of plasticity?
-
Man HY. GluA2-lacking, calcium-permeable AMPA receptors-inducers of plasticity? Curr Opin Neurobiol 2011; 21: 291-8.
-
(2011)
Curr Opin Neurobiol
, vol.21
, pp. 291-298
-
-
Man, H.Y.1
-
72
-
-
84922479604
-
Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke
-
Gelderblom M, Melzer N, Schattling B, Gob E, Hicking G, Arunachalam P, et al. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke. Stroke 2014; 45: 3395-402.
-
(2014)
Stroke
, vol.45
, pp. 3395-3402
-
-
Gelderblom, M.1
Melzer, N.2
Schattling, B.3
Gob, E.4
Hicking, G.5
Arunachalam, P.6
-
73
-
-
84907463566
-
Pathophysiology of immune cells during the progression of cerebral ischemic injury-involvement of TRPM2-mediated induction of iNOS in microglia/macrophage
-
Shirakawa H, Sakimoto S, Nakagawa T, Kaneko S. Pathophysiology of immune cells during the progression of cerebral ischemic injury-involvement of TRPM2-mediated induction of iNOS in microglia/macrophage. Nihon Yakurigaku Zasshi 2014; 144: 104-9.
-
(2014)
Nihon Yakurigaku Zasshi
, vol.144
, pp. 104-109
-
-
Shirakawa, H.1
Sakimoto, S.2
Nakagawa, T.3
Kaneko, S.4
-
74
-
-
77958087459
-
TRP-ing up heart and vessels: Canonical transient receptor potential channels and cardiovascular disease
-
Rowell J, Koitabashi N, Kass DA. TRP-ing up heart and vessels: Canonical transient receptor potential channels and cardiovascular disease. J Cardiovasc Transl Res 2010; 3: 516-24.
-
(2010)
J Cardiovasc Transl Res
, vol.3
, pp. 516-524
-
-
Rowell, J.1
Koitabashi, N.2
Kass, D.A.3
-
75
-
-
84655167884
-
Pathophysiology and pathogenesis of postresuscitation myocardial stunning
-
Chalkias A, Xanthos T. Pathophysiology and pathogenesis of postresuscitation myocardial stunning. Heart Fail Rev 2012; 17: 117-28.
-
(2012)
Heart Fail Rev
, vol.17
, pp. 117-128
-
-
Chalkias, A.1
Xanthos, T.2
-
76
-
-
0345258505
-
Oxidative stress-induced signal transduction pathways in cardiac myocytes: Involvement of ROS in heart diseases
-
Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I. Oxidative stress-induced signal transduction pathways in cardiac myocytes: Involvement of ROS in heart diseases. Antioxid Redox Signal 2003; 5: 789-94.
-
(2003)
Antioxid Redox Signal
, vol.5
, pp. 789-794
-
-
Takano, H.1
Zou, Y.2
Hasegawa, H.3
Akazawa, H.4
Nagai, T.5
Komuro, I.6
-
77
-
-
78650971588
-
TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure
-
Kleinbongard P, Schulz R, Heusch G. TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16: 49-69.
-
(2011)
Heart Fail Rev
, vol.16
, pp. 49-69
-
-
Kleinbongard, P.1
Schulz, R.2
Heusch, G.3
-
78
-
-
84877575360
-
Type 2 ryanodine receptor: A novel therapeutic target in myocardial ischemia/reperfusion
-
Fauconnier J, Roberge S, Saint N, Lacampagne A. Type 2 ryanodine receptor: A novel therapeutic target in myocardial ischemia/reperfusion. Pharmacol Ther 2013; 138: 323-32.
-
(2013)
Pharmacol Ther
, vol.138
, pp. 323-332
-
-
Fauconnier, J.1
Roberge, S.2
Saint, N.3
Lacampagne, A.4
-
80
-
-
33744462507
-
Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death
-
Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, Su MJ, et al. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ 2006; 13: 1815-26.
-
(2006)
Cell Death Differ
, vol.13
, pp. 1815-1826
-
-
Yang, K.T.1
Chang, W.L.2
Yang, P.C.3
Chien, C.L.4
Lai, M.S.5
Su, M.J.6
-
81
-
-
84903980623
-
TNF-alpha-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes
-
Roberge S, Roussel J, Andersson DC, Meli AC, Vidal B, Blandel F, et al. TNF-alpha-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res 2014; 103: 90-9.
-
(2014)
Cardiovasc Res
, vol.103
, pp. 90-99
-
-
Roberge, S.1
Roussel, J.2
Andersson, D.C.3
Meli, A.C.4
Vidal, B.5
Blandel, F.6
-
82
-
-
57549116385
-
Ischemia/reperfusion injury in kidney transplantation: Mechanisms and prevention
-
Kosieradzki M, Rowinski W. Ischemia/reperfusion injury in kidney transplantation: Mechanisms and prevention. Transplant Proc 2008; 40: 3279-88.
-
(2008)
Transplant Proc
, vol.40
, pp. 3279-3288
-
-
Kosieradzki, M.1
Rowinski, W.2
-
83
-
-
84888382854
-
Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury
-
Blattner SM, Hodgin JB, Nishio M, Wylie SA, Saha J, Soofi AA, et al. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int 2013; 84: 920-30.
-
(2013)
Kidney Int
, vol.84
, pp. 920-930
-
-
Blattner, S.M.1
Hodgin, J.B.2
Nishio, M.3
Wylie, S.A.4
Saha, J.5
Soofi, A.A.6
-
84
-
-
77958555016
-
Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat
-
Raz L, Zhang QG, Zhou CF, Han D, Gulati P, Yang LC, et al. Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat. PLoS One 2010; 5: E12606.
-
(2010)
PLoS One
, vol.5
, pp. e12606
-
-
Raz, L.1
Zhang, Q.G.2
Zhou, C.F.3
Han, D.4
Gulati, P.5
Yang, L.C.6
-
85
-
-
84856951132
-
The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death
-
Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, et al. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium 2012; 51: 179-85.
-
(2012)
Cell Calcium
, vol.51
, pp. 179-185
-
-
Katano, M.1
Numata, T.2
Aguan, K.3
Hara, Y.4
Kiyonaka, S.5
Yamamoto, S.6
-
86
-
-
84893605058
-
Effect of verapamil and lidocaine on TRPM and NaV1.9 gene expressions in renal ischemia-reperfusion
-
Dusmez D, Cengiz B, Yumrutas O, Demir T, Oztuzcu S, Demiryurek S, et al. Effect of verapamil and lidocaine on TRPM and NaV1.9 gene expressions in renal ischemia-reperfusion. Transplant Proc 2014; 46: 33-9.
-
(2014)
Transplant Proc
, vol.46
, pp. 33-39
-
-
Dusmez, D.1
Cengiz, B.2
Yumrutas, O.3
Demir, T.4
Oztuzcu, S.5
Demiryurek, S.6
|