메뉴 건너뛰기




Volumn 32, Issue 1, 2016, Pages 29-41

H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes

Author keywords

Cell identity; Development; H3K9me3; Heterochromatin; Reprogramming

Indexed keywords

HISTONE; HISTONE H3K9ME3; RNA; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; HETEROCHROMATIN;

EID: 84951569125     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.11.001     Document Type: Review
Times cited : (324)

References (143)
  • 1
    • 0036532237 scopus 로고    scopus 로고
    • Gene silencing, cell fate and nuclear organisation
    • Fisher A.G., Merkenschlager M. Gene silencing, cell fate and nuclear organisation. Curr. Opin. Genet. Dev. 2002, 12:193-197.
    • (2002) Curr. Opin. Genet. Dev. , vol.12 , pp. 193-197
    • Fisher, A.G.1    Merkenschlager, M.2
  • 2
    • 68049097008 scopus 로고    scopus 로고
    • Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal
    • Hemberger M., et al. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nat. Rev. Mol. Cell Biol. 2009, 10:526-537.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 526-537
    • Hemberger, M.1
  • 3
    • 79953162695 scopus 로고    scopus 로고
    • Locking the genome: nuclear organization and cell fate
    • Meister P., et al. Locking the genome: nuclear organization and cell fate. Curr. Opin. Genet. Dev. 2011, 21:167-174.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 167-174
    • Meister, P.1
  • 5
    • 0029066360 scopus 로고
    • Position effect variegation in Drosophila is associated with an altered chromatin structure
    • Wallrath L.L., Elgin S.C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995, 9:1263-1277.
    • (1995) Genes Dev. , vol.9 , pp. 1263-1277
    • Wallrath, L.L.1    Elgin, S.C.2
  • 6
    • 0000703514 scopus 로고
    • Repressed and active chromatin isolated from interphase lymphocytes
    • Frenster J.H., et al. Repressed and active chromatin isolated from interphase lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1963, 50:1026-1032.
    • (1963) Proc. Natl. Acad. Sci. U.S.A. , vol.50 , pp. 1026-1032
    • Frenster, J.H.1
  • 7
    • 0035833993 scopus 로고    scopus 로고
    • Distinctive higher-order chromatin structure at mammalian centromeres
    • Gilbert N., Allan J. Distinctive higher-order chromatin structure at mammalian centromeres. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:11949-11954.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 11949-11954
    • Gilbert, N.1    Allan, J.2
  • 8
    • 84881049715 scopus 로고    scopus 로고
    • Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila
    • Elgin S.C.R., Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 2013, 5:a017780.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a017780
    • Elgin, S.C.R.1    Reuter, G.2
  • 9
    • 84928741638 scopus 로고    scopus 로고
    • Constitutive heterochromatin formation and transcription in mammals
    • Saksouk N., et al. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015, 8:3.
    • (2015) Epigenetics Chromatin , vol.8 , pp. 3
    • Saksouk, N.1
  • 10
    • 34948839944 scopus 로고    scopus 로고
    • Facultative heterochromatin: is there a distinctive molecular signature?
    • Trojer P., Reinberg D. Facultative heterochromatin: is there a distinctive molecular signature?. Mol. Cell 2007, 28:1-13.
    • (2007) Mol. Cell , vol.28 , pp. 1-13
    • Trojer, P.1    Reinberg, D.2
  • 11
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by site-specific histone H3 methyltransferases
    • Rea S., et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000, 406:593-599.
    • (2000) Nature , vol.406 , pp. 593-599
    • Rea, S.1
  • 12
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
    • Nakayama J., et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001, 292:110-113.
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1
  • 13
    • 15444372817 scopus 로고    scopus 로고
    • The profile of repeat-associated histone lysine methylation states in the mouse epigenome
    • Martens J.H.A., et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 2005, 24:800-812.
    • (2005) EMBO J. , vol.24 , pp. 800-812
    • Martens, J.H.A.1
  • 14
    • 0037089626 scopus 로고    scopus 로고
    • SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins
    • Schultz D.C., et al. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002, 16:919-932.
    • (2002) Genes Dev. , vol.16 , pp. 919-932
    • Schultz, D.C.1
  • 15
    • 0035816682 scopus 로고    scopus 로고
    • Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3
    • Tachibana M., et al. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 2001, 276:25309-25317.
    • (2001) J. Biol. Chem. , vol.276 , pp. 25309-25317
    • Tachibana, M.1
  • 16
    • 0037099413 scopus 로고    scopus 로고
    • G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis
    • Tachibana M., et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002, 16:1779-1791.
    • (2002) Genes Dev. , vol.16 , pp. 1779-1791
    • Tachibana, M.1
  • 17
    • 20144388930 scopus 로고    scopus 로고
    • Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9
    • Tachibana M., et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 2005, 19:815-826.
    • (2005) Genes Dev. , vol.19 , pp. 815-826
    • Tachibana, M.1
  • 18
    • 0035282458 scopus 로고    scopus 로고
    • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    • Bannister A.J., et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410:120-124.
    • (2001) Nature , vol.410 , pp. 120-124
    • Bannister, A.J.1
  • 19
    • 0035282573 scopus 로고    scopus 로고
    • Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
    • Lachner M., et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410:116-120.
    • (2001) Nature , vol.410 , pp. 116-120
    • Lachner, M.1
  • 20
    • 78650734995 scopus 로고    scopus 로고
    • Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly
    • Canzio D., et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol. Cell 2011, 41:67-81.
    • (2011) Mol. Cell , vol.41 , pp. 67-81
    • Canzio, D.1
  • 21
    • 10744230544 scopus 로고    scopus 로고
    • Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin
    • Lehnertz B., et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 2003, 13:1192-1200.
    • (2003) Curr. Biol. , vol.13 , pp. 1192-1200
    • Lehnertz, B.1
  • 22
    • 55549145072 scopus 로고    scopus 로고
    • De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes
    • Epsztejn-Litman S., et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol. 2008, 15:1176-1183.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1176-1183
    • Epsztejn-Litman, S.1
  • 23
    • 33646865180 scopus 로고    scopus 로고
    • Control of developmental regulators by Polycomb in human embryonic stem cells
    • Lee T.I., et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006, 125:301-313.
    • (2006) Cell , vol.125 , pp. 301-313
    • Lee, T.I.1
  • 24
    • 33646882068 scopus 로고    scopus 로고
    • Polycomb complexes repress developmental regulators in murine embryonic stem cells
    • Boyer L.A., et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006, 441:349-353.
    • (2006) Nature , vol.441 , pp. 349-353
    • Boyer, L.A.1
  • 25
    • 62149122634 scopus 로고    scopus 로고
    • Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells
    • Ezhkova E., et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 2009, 136:1122-1135.
    • (2009) Cell , vol.136 , pp. 1122-1135
    • Ezhkova, E.1
  • 26
    • 84908115420 scopus 로고    scopus 로고
    • Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification
    • Xu C-R., et al. Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification. EMBO J. 2014, 33:2157-2170.
    • (2014) EMBO J. , vol.33 , pp. 2157-2170
    • Xu, C.-R.1
  • 27
    • 78751662908 scopus 로고    scopus 로고
    • The Polycomb complex PRC2 and its mark in life
    • Margueron R., Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011, 469:343-349.
    • (2011) Nature , vol.469 , pp. 343-349
    • Margueron, R.1    Reinberg, D.2
  • 28
    • 78751590899 scopus 로고    scopus 로고
    • Silencing chromatin: comparing modes and mechanisms
    • Beisel C., Paro R. Silencing chromatin: comparing modes and mechanisms. Nat. Rev. Genet. 2011, 12:123-135.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 123-135
    • Beisel, C.1    Paro, R.2
  • 29
    • 77953809032 scopus 로고    scopus 로고
    • Distinct epigenomic landscapes of pluripotent and lineage-committed human cells
    • Hawkins R.D., et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010, 6:479-491.
    • (2010) Cell Stem Cell , vol.6 , pp. 479-491
    • Hawkins, R.D.1
  • 30
    • 0035833726 scopus 로고    scopus 로고
    • General transcription factors bind promoters repressed by Polycomb group proteins
    • Breiling A., et al. General transcription factors bind promoters repressed by Polycomb group proteins. Nature 2001, 412:651-655.
    • (2001) Nature , vol.412 , pp. 651-655
    • Breiling, A.1
  • 31
    • 1842473890 scopus 로고    scopus 로고
    • Polycomb silencing blocks transcription initiation
    • Dellino G.I., et al. Polycomb silencing blocks transcription initiation. Mol. Cell 2004, 13:887-893.
    • (2004) Mol. Cell , vol.13 , pp. 887-893
    • Dellino, G.I.1
  • 32
    • 84870058502 scopus 로고    scopus 로고
    • Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome
    • Soufi A., et al. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 2012, 151:994-1004.
    • (2012) Cell , vol.151 , pp. 994-1004
    • Soufi, A.1
  • 33
    • 33845295138 scopus 로고    scopus 로고
    • Human heterochromatin proteins form large domains containing KRAB-ZNF genes
    • Vogel M.J., et al. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 2006, 16:1493-1504.
    • (2006) Genome Res. , vol.16 , pp. 1493-1504
    • Vogel, M.J.1
  • 34
    • 34347353316 scopus 로고    scopus 로고
    • Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs
    • O'Geen H., et al. Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet. 2007, 3:e89.
    • (2007) PLoS Genet. , vol.3 , pp. e89
    • O'Geen, H.1
  • 35
    • 84873310426 scopus 로고    scopus 로고
    • Genome-wide chromatin state transitions associated with developmental and environmental cues
    • Zhu J., et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 2013, 152:642-654.
    • (2013) Cell , vol.152 , pp. 642-654
    • Zhu, J.1
  • 36
    • 59949085939 scopus 로고    scopus 로고
    • H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome
    • Pauler F.M., et al. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res. 2009, 19:221-233.
    • (2009) Genome Res. , vol.19 , pp. 221-233
    • Pauler, F.M.1
  • 37
    • 84864297655 scopus 로고    scopus 로고
    • Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation
    • Chandra T., et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol. Cell 2012, 47:203-214.
    • (2012) Mol. Cell , vol.47 , pp. 203-214
    • Chandra, T.1
  • 38
    • 59149083658 scopus 로고    scopus 로고
    • Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells
    • Wen B., et al. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet. 2009, 41:246-250.
    • (2009) Nat. Genet. , vol.41 , pp. 246-250
    • Wen, B.1
  • 39
    • 73349129976 scopus 로고    scopus 로고
    • Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells
    • author reply, 5-6
    • Filion G.J., van Steensel B. Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells. Nat. Genet. 2010, 42:4. author reply, 5-6.
    • (2010) Nat. Genet. , vol.42 , pp. 4
    • Filion, G.J.1    van Steensel, B.2
  • 40
    • 79959853781 scopus 로고    scopus 로고
    • Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells
    • Lienert F., et al. Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet. 2011, 7:e1002090.
    • (2011) PLoS Genet. , vol.7 , pp. e1002090
    • Lienert, F.1
  • 41
    • 85005843352 scopus 로고    scopus 로고
    • Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability
    • Liu N., et al. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev. 2015, 29:379-393.
    • (2015) Genes Dev. , vol.29 , pp. 379-393
    • Liu, N.1
  • 42
    • 84880329213 scopus 로고    scopus 로고
    • Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency
    • Sridharan R., et al. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat. Cell Biol. 2013, 15:872-882.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 872-882
    • Sridharan, R.1
  • 43
    • 33747195353 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
    • Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
    • (2006) Cell , vol.126 , pp. 663-676
    • Takahashi, K.1    Yamanaka, S.2
  • 44
    • 84866780162 scopus 로고    scopus 로고
    • Molecular roadblocks for cellular reprogramming
    • Vierbuchen T., Wernig M. Molecular roadblocks for cellular reprogramming. Mol. Cell 2012, 47:827-838.
    • (2012) Mol. Cell , vol.47 , pp. 827-838
    • Vierbuchen, T.1    Wernig, M.2
  • 45
    • 84875125402 scopus 로고    scopus 로고
    • Epigenetics of reprogramming to induced pluripotency
    • Papp B., Plath K. Epigenetics of reprogramming to induced pluripotency. Cell 2013, 152:1324-1343.
    • (2013) Cell , vol.152 , pp. 1324-1343
    • Papp, B.1    Plath, K.2
  • 46
    • 84937532893 scopus 로고    scopus 로고
    • Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming
    • Soufi A., et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 2015, 161:555-568.
    • (2015) Cell , vol.161 , pp. 555-568
    • Soufi, A.1
  • 47
    • 84918527386 scopus 로고    scopus 로고
    • Pioneer transcription factors in cell reprogramming
    • Iwafuchi-Doi M., Zaret K.S. Pioneer transcription factors in cell reprogramming. Genes Dev. 2014, 28:2679-2692.
    • (2014) Genes Dev. , vol.28 , pp. 2679-2692
    • Iwafuchi-Doi, M.1    Zaret, K.S.2
  • 48
    • 25144525014 scopus 로고    scopus 로고
    • Core transcriptional regulatory circuitry in human embryonic stem cells
    • Boyer L.A., et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122:947-956.
    • (2005) Cell , vol.122 , pp. 947-956
    • Boyer, L.A.1
  • 49
    • 84871586080 scopus 로고    scopus 로고
    • A molecular roadmap of reprogramming somatic cells into iPS cells
    • Polo J.M., et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012, 151:1617-1632.
    • (2012) Cell , vol.151 , pp. 1617-1632
    • Polo, J.M.1
  • 50
    • 84866369892 scopus 로고    scopus 로고
    • Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
    • Buganim Y., et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012, 150:1209-1222.
    • (2012) Cell , vol.150 , pp. 1209-1222
    • Buganim, Y.1
  • 51
    • 79952264847 scopus 로고    scopus 로고
    • Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells
    • Lister R., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471:68-73.
    • (2011) Nature , vol.471 , pp. 68-73
    • Lister, R.1
  • 52
    • 84859218238 scopus 로고    scopus 로고
    • Chromatin-modifying enzymes as modulators of reprogramming
    • Onder T.T., et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012, 483:598-602.
    • (2012) Nature , vol.483 , pp. 598-602
    • Onder, T.T.1
  • 53
    • 44349103591 scopus 로고    scopus 로고
    • A combined chemical and genetic approach for the generation of induced pluripotent stem cells
    • Shi Y., et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008, 2:525-528.
    • (2008) Cell Stem Cell , vol.2 , pp. 525-528
    • Shi, Y.1
  • 54
    • 46949085597 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
    • Huangfu D., et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 2008, 26:795-797.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 795-797
    • Huangfu, D.1
  • 55
    • 77950965653 scopus 로고    scopus 로고
    • Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes
    • Mali P., et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 2010, 28:713-720.
    • (2010) Stem Cells , vol.28 , pp. 713-720
    • Mali, P.1
  • 56
    • 77955501968 scopus 로고    scopus 로고
    • Butyrate promotes induced pluripotent stem cell generation
    • Liang G., et al. Butyrate promotes induced pluripotent stem cell generation. J. Biol. Chem. 2010, 285:25516-25521.
    • (2010) J. Biol. Chem. , vol.285 , pp. 25516-25521
    • Liang, G.1
  • 57
    • 46449094276 scopus 로고    scopus 로고
    • Dissecting direct reprogramming through integrative genomic analysis
    • Mikkelsen T.S., et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008, 454:49-55.
    • (2008) Nature , vol.454 , pp. 49-55
    • Mikkelsen, T.S.1
  • 58
    • 84862662420 scopus 로고    scopus 로고
    • Dynamics and memory of heterochromatin in living cells
    • Hathaway N.A., et al. Dynamics and memory of heterochromatin in living cells. Cell 2012, 149:1447-1460.
    • (2012) Cell , vol.149 , pp. 1447-1460
    • Hathaway, N.A.1
  • 59
    • 84865112255 scopus 로고    scopus 로고
    • The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
    • Mansour A.A., et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 2012, 488:409-413.
    • (2012) Nature , vol.488 , pp. 409-413
    • Mansour, A.A.1
  • 60
    • 84872442222 scopus 로고    scopus 로고
    • Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency
    • Pasque V., et al. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J. Cell Sci. 2012, 125:6094-6104.
    • (2012) J. Cell Sci. , vol.125 , pp. 6094-6104
    • Pasque, V.1
  • 61
    • 84875887547 scopus 로고    scopus 로고
    • MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency
    • Gaspar-Maia A., et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 2013, 4:1565.
    • (2013) Nat. Commun. , vol.4 , pp. 1565
    • Gaspar-Maia, A.1
  • 62
    • 77953086963 scopus 로고    scopus 로고
    • ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency
    • Pereira C.F., et al. ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 2010, 6:547-556.
    • (2010) Cell Stem Cell , vol.6 , pp. 547-556
    • Pereira, C.F.1
  • 63
    • 84885619736 scopus 로고    scopus 로고
    • Deterministic direct reprogramming of somatic cells to pluripotency
    • Rais Y., et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 2013, 502:65-70.
    • (2013) Nature , vol.502 , pp. 65-70
    • Rais, Y.1
  • 64
    • 84879968102 scopus 로고    scopus 로고
    • NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells
    • Luo M., et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells 2013, 31:1278-1286.
    • (2013) Stem Cells , vol.31 , pp. 1278-1286
    • Luo, M.1
  • 65
    • 77956272401 scopus 로고    scopus 로고
    • Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo
    • Ahmed K., et al. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 2010, 5:e10531.
    • (2010) PLoS ONE , vol.5 , pp. e10531
    • Ahmed, K.1
  • 66
    • 75649092667 scopus 로고    scopus 로고
    • Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis
    • Hiratani I., et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 2010, 20:155-169.
    • (2010) Genome Res. , vol.20 , pp. 155-169
    • Hiratani, I.1
  • 67
    • 33745865934 scopus 로고    scopus 로고
    • Chromatin in pluripotent embryonic stem cells and differentiation
    • Meshorer E., Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol. 2006, 7:540-546.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 540-546
    • Meshorer, E.1    Misteli, T.2
  • 68
    • 42649094468 scopus 로고    scopus 로고
    • Global transcription in pluripotent embryonic stem cells
    • Efroni S., et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008, 2:437-447.
    • (2008) Cell Stem Cell , vol.2 , pp. 437-447
    • Efroni, S.1
  • 69
    • 84919432607 scopus 로고    scopus 로고
    • LncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs
    • Savić N., et al. lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 2014, 15:720-734.
    • (2014) Cell Stem Cell , vol.15 , pp. 720-734
    • Savić, N.1
  • 70
    • 58249085824 scopus 로고    scopus 로고
    • Role of the murine reprogramming factors in the induction of pluripotency
    • Sridharan R., et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009, 136:364-377.
    • (2009) Cell , vol.136 , pp. 364-377
    • Sridharan, R.1
  • 71
    • 79955625071 scopus 로고    scopus 로고
    • Constitutive heterochromatin reorganization during somatic cell reprogramming
    • Fussner E., et al. Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J. 2011, 30:1778-1789.
    • (2011) EMBO J. , vol.30 , pp. 1778-1789
    • Fussner, E.1
  • 72
    • 84871990064 scopus 로고    scopus 로고
    • H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
    • Chen J., et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 2013, 45:34-42.
    • (2013) Nat. Genet. , vol.45 , pp. 34-42
    • Chen, J.1
  • 73
    • 79959553843 scopus 로고    scopus 로고
    • Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?
    • Jullien J., et al. Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?. Nat. Rev. Mol. Cell Biol. 2011, 12:453-459.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 453-459
    • Jullien, J.1
  • 74
    • 84910092474 scopus 로고    scopus 로고
    • Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation
    • Matoba S., et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 2014, 159:884-895.
    • (2014) Cell , vol.159 , pp. 884-895
    • Matoba, S.1
  • 75
    • 81055149750 scopus 로고    scopus 로고
    • Histone deacetylase inhibition improves activation of ribosomal RNA genes and embryonic nucleolar reprogramming in cloned mouse embryos
    • Bui H-T., et al. Histone deacetylase inhibition improves activation of ribosomal RNA genes and embryonic nucleolar reprogramming in cloned mouse embryos. Biol. Reprod. 2011, 85:1048-1056.
    • (2011) Biol. Reprod. , vol.85 , pp. 1048-1056
    • Bui, H.-T.1
  • 76
    • 51349162065 scopus 로고    scopus 로고
    • Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos
    • Iager A.E., et al. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells 2008, 10:371-379.
    • (2008) Cloning Stem Cells , vol.10 , pp. 371-379
    • Iager, A.E.1
  • 77
    • 33745525505 scopus 로고    scopus 로고
    • Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus
    • Blelloch R., et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 2006, 24:2007-2013.
    • (2006) Stem Cells , vol.24 , pp. 2007-2013
    • Blelloch, R.1
  • 78
    • 79958815889 scopus 로고    scopus 로고
    • Histone variant macroH2A confers resistance to nuclear reprogramming
    • Pasque V., et al. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J. 2011, 30:2373-2387.
    • (2011) EMBO J. , vol.30 , pp. 2373-2387
    • Pasque, V.1
  • 79
    • 84876308699 scopus 로고    scopus 로고
    • Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions
    • Fadloun A., et al. Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr. Top. Dev. Biol. 2013, 104:1-45.
    • (2013) Curr. Top. Dev. Biol. , vol.104 , pp. 1-45
    • Fadloun, A.1
  • 80
    • 84908205907 scopus 로고    scopus 로고
    • Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis
    • Burton A., Torres-Padilla M-E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15:723-734.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 723-734
    • Burton, A.1    Torres-Padilla, M.-E.2
  • 81
    • 70350686180 scopus 로고    scopus 로고
    • SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state
    • Bilodeau S., et al. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 2009, 23:2484-2489.
    • (2009) Genes Dev. , vol.23 , pp. 2484-2489
    • Bilodeau, S.1
  • 82
    • 77149138834 scopus 로고    scopus 로고
    • KMT1E mediated H3K9 methylation is required for the maintenance of embryonic stem cells by repressing trophectoderm differentiation
    • Lohmann F., et al. KMT1E mediated H3K9 methylation is required for the maintenance of embryonic stem cells by repressing trophectoderm differentiation. Stem Cells 2010, 28:201-212.
    • (2010) Stem Cells , vol.28 , pp. 201-212
    • Lohmann, F.1
  • 83
    • 77149144362 scopus 로고    scopus 로고
    • ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage
    • Yeap L-S., et al. ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics Chromatin 2009, 2:12.
    • (2009) Epigenetics Chromatin , vol.2 , pp. 12
    • Yeap, L.-S.1
  • 84
    • 70350686165 scopus 로고    scopus 로고
    • Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells
    • Yuan P., et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 2009, 23:2507-2520.
    • (2009) Genes Dev. , vol.23 , pp. 2507-2520
    • Yuan, P.1
  • 85
    • 35348982301 scopus 로고    scopus 로고
    • Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells
    • Loh Y-H., et al. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007, 21:2545-2557.
    • (2007) Genes Dev. , vol.21 , pp. 2545-2557
    • Loh, Y.-H.1
  • 86
    • 33645132331 scopus 로고    scopus 로고
    • G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis
    • Feldman N., et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 2006, 8:188-194.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 188-194
    • Feldman, N.1
  • 87
    • 84929281565 scopus 로고    scopus 로고
    • Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells
    • Kurimoto K., et al. Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells. Cell Stem Cell 2015, 16:517-532.
    • (2015) Cell Stem Cell , vol.16 , pp. 517-532
    • Kurimoto, K.1
  • 88
    • 84920871341 scopus 로고    scopus 로고
    • Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins
    • Harr J.C., et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 2015, 208:33-52.
    • (2015) J. Cell Biol. , vol.208 , pp. 33-52
    • Harr, J.C.1
  • 89
    • 1542314243 scopus 로고    scopus 로고
    • Histone H3-K9 methyltransferase ESET is essential for early development
    • Dodge J.E., et al. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell. Biol. 2004, 24:2478-2486.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 2478-2486
    • Dodge, J.E.1
  • 90
    • 17944380227 scopus 로고    scopus 로고
    • Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability
    • Peters A.H., et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001, 107:323-337.
    • (2001) Cell , vol.107 , pp. 323-337
    • Peters, A.H.1
  • 91
    • 58149202451 scopus 로고    scopus 로고
    • HP1-beta is required for development of the cerebral neocortex and neuromuscular junctions
    • Aucott R., et al. HP1-beta is required for development of the cerebral neocortex and neuromuscular junctions. J. Cell Biol. 2008, 183:597-606.
    • (2008) J. Cell Biol. , vol.183 , pp. 597-606
    • Aucott, R.1
  • 92
    • 84863724616 scopus 로고    scopus 로고
    • An epigenetic silencing pathway controlling T helper 2 cell lineage commitment
    • Allan R.S., et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 2012, 487:249-253.
    • (2012) Nature , vol.487 , pp. 249-253
    • Allan, R.S.1
  • 93
    • 84920520612 scopus 로고    scopus 로고
    • Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation
    • Liu J., et al. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J. Neurosci. 2015, 35:352-365.
    • (2015) J. Neurosci. , vol.35 , pp. 352-365
    • Liu, J.1
  • 94
    • 0033118322 scopus 로고    scopus 로고
    • Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31
    • Aagaard L., et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 1999, 18:1923-1938.
    • (1999) EMBO J. , vol.18 , pp. 1923-1938
    • Aagaard, L.1
  • 95
    • 0037309997 scopus 로고    scopus 로고
    • Structure of SET domain proteins: a new twist on histone methylation
    • Marmorstein R. Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci. 2003, 28:59-62.
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 59-62
    • Marmorstein, R.1
  • 96
    • 0035797384 scopus 로고    scopus 로고
    • Rb targets histone H3 methylation and HP1 to promoters
    • Nielsen S.J., et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001, 412:561-565.
    • (2001) Nature , vol.412 , pp. 561-565
    • Nielsen, S.J.1
  • 97
    • 0029858585 scopus 로고    scopus 로고
    • KAP-1, a novel corepressor for the highly conserved KRAB repression domain
    • Friedman J.R., et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996, 10:2067-2078.
    • (1996) Genes Dev. , vol.10 , pp. 2067-2078
    • Friedman, J.R.1
  • 98
    • 0033013868 scopus 로고    scopus 로고
    • KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing
    • Ryan R.F., et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 1999, 19:4366-4378.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4366-4378
    • Ryan, R.F.1
  • 99
    • 77950421703 scopus 로고    scopus 로고
    • KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading
    • Groner A.C., et al. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 2010, 6:e1000869.
    • (2010) PLoS Genet. , vol.6 , pp. e1000869
    • Groner, A.C.1
  • 100
    • 79955410721 scopus 로고    scopus 로고
    • Functional analysis of KAP1 genomic recruitment
    • Iyengar S., et al. Functional analysis of KAP1 genomic recruitment. Mol. Cell. Biol. 2011, 31:1833-1847.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 1833-1847
    • Iyengar, S.1
  • 101
    • 33745756792 scopus 로고    scopus 로고
    • Gfi1b alters histone methylation at target gene promoters and sites of gamma-satellite containing heterochromatin
    • Vassen L., et al. Gfi1b alters histone methylation at target gene promoters and sites of gamma-satellite containing heterochromatin. EMBO J. 2006, 25:2409-2419.
    • (2006) EMBO J. , vol.25 , pp. 2409-2419
    • Vassen, L.1
  • 102
    • 33846549607 scopus 로고    scopus 로고
    • Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains
    • Yamashita K., et al. Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. Genes Cells 2007, 12:171-182.
    • (2007) Genes Cells , vol.12 , pp. 171-182
    • Yamashita, K.1
  • 103
    • 84867218450 scopus 로고    scopus 로고
    • A transcription factor-based mechanism for mouse heterochromatin formation
    • Bulut-Karslioglu A., et al. A transcription factor-based mechanism for mouse heterochromatin formation. Nat. Struct. Mol. Biol. 2012, 19:1023-1030.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1023-1030
    • Bulut-Karslioglu, A.1
  • 104
    • 0037072661 scopus 로고    scopus 로고
    • Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi
    • Volpe T.A., et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002, 297:1833-1837.
    • (2002) Science , vol.297 , pp. 1833-1837
    • Volpe, T.A.1
  • 105
    • 0037183856 scopus 로고    scopus 로고
    • Establishment and maintenance of a heterochromatin domain
    • Hall I.M., et al. Establishment and maintenance of a heterochromatin domain. Science 2002, 297:2232-2237.
    • (2002) Science , vol.297 , pp. 2232-2237
    • Hall, I.M.1
  • 106
    • 25844480848 scopus 로고    scopus 로고
    • RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing
    • Djupedal I., et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev. 2005, 19:2301-2306.
    • (2005) Genes Dev. , vol.19 , pp. 2301-2306
    • Djupedal, I.1
  • 107
    • 22344434734 scopus 로고    scopus 로고
    • RNA polymerase II is required for RNAi-dependent heterochromatin assembly
    • Kato H., et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 2005, 309:467-469.
    • (2005) Science , vol.309 , pp. 467-469
    • Kato, H.1
  • 108
    • 33646923128 scopus 로고    scopus 로고
    • Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing
    • Bühler M., et al. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 2006, 125:873-886.
    • (2006) Cell , vol.125 , pp. 873-886
    • Bühler, M.1
  • 109
    • 41649092299 scopus 로고    scopus 로고
    • Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin
    • Zhang K., et al. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 2008, 15:381-388.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 381-388
    • Zhang, K.1
  • 110
    • 77649105301 scopus 로고    scopus 로고
    • Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity
    • Bayne E.H., et al. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 2010, 140:666-677.
    • (2010) Cell , vol.140 , pp. 666-677
    • Bayne, E.H.1
  • 111
    • 34249304470 scopus 로고    scopus 로고
    • Transcription and RNA interference in the formation of heterochromatin
    • Grewal S.I.S., Elgin S.C.R. Transcription and RNA interference in the formation of heterochromatin. Nature 2007, 447:399-406.
    • (2007) Nature , vol.447 , pp. 399-406
    • Grewal, S.I.S.1    Elgin, S.C.R.2
  • 112
    • 35848962284 scopus 로고    scopus 로고
    • Transcription and RNAi in heterochromatic gene silencing
    • Bühler M., Moazed D. Transcription and RNAi in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 2007, 14:1041-1048.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 1041-1048
    • Bühler, M.1    Moazed, D.2
  • 113
    • 34249057729 scopus 로고    scopus 로고
    • RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing
    • Bühler M., et al. RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 2007, 129:707-721.
    • (2007) Cell , vol.129 , pp. 707-721
    • Bühler, M.1
  • 114
    • 80455164575 scopus 로고    scopus 로고
    • Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin
    • Reyes-Turcu F.E., et al. Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat. Struct. Mol. Biol. 2011, 18:1132-1138.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1132-1138
    • Reyes-Turcu, F.E.1
  • 115
    • 4143149753 scopus 로고    scopus 로고
    • Dicer is essential for formation of the heterochromatin structure in vertebrate cells
    • Fukagawa T., et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat. Cell Biol. 2004, 6:784-791.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 784-791
    • Fukagawa, T.1
  • 116
    • 13844294261 scopus 로고    scopus 로고
    • Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing
    • Kanellopoulou C., et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005, 19:489-501.
    • (2005) Genes Dev. , vol.19 , pp. 489-501
    • Kanellopoulou, C.1
  • 117
    • 26844560213 scopus 로고    scopus 로고
    • The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity
    • Terranova R., et al. The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp. Cell Res. 2005, 310:344-356.
    • (2005) Exp. Cell Res. , vol.310 , pp. 344-356
    • Terranova, R.1
  • 118
    • 35948951117 scopus 로고    scopus 로고
    • Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin
    • Lu J., Gilbert D.M. Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J. Cell Biol. 2007, 179:411-421.
    • (2007) J. Cell Biol. , vol.179 , pp. 411-421
    • Lu, J.1    Gilbert, D.M.2
  • 119
    • 0036509836 scopus 로고    scopus 로고
    • Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component
    • Maison C., et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 2002, 30:329-334.
    • (2002) Nat. Genet. , vol.30 , pp. 329-334
    • Maison, C.1
  • 120
    • 0036775704 scopus 로고    scopus 로고
    • Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha
    • Muchardt C., et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep. 2002, 3:975-981.
    • (2002) EMBO Rep. , vol.3 , pp. 975-981
    • Muchardt, C.1
  • 121
    • 79952189085 scopus 로고    scopus 로고
    • SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin
    • Maison C., et al. SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat. Genet. 2011, 43:220-227.
    • (2011) Nat. Genet. , vol.43 , pp. 220-227
    • Maison, C.1
  • 122
    • 77956409475 scopus 로고    scopus 로고
    • Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3
    • Santenard A., et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 2010, 12:853-862.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 853-862
    • Santenard, A.1
  • 123
    • 77957857693 scopus 로고    scopus 로고
    • A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development
    • Probst A.V., et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 2010, 19:625-638.
    • (2010) Dev. Cell , vol.19 , pp. 625-638
    • Probst, A.V.1
  • 124
    • 84884560142 scopus 로고    scopus 로고
    • Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript
    • Casanova M., et al. Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep. 2013, 4:1156-1167.
    • (2013) Cell Rep. , vol.4 , pp. 1156-1167
    • Casanova, M.1
  • 125
    • 84890220396 scopus 로고    scopus 로고
    • Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition
    • Millanes-Romero A., et al. Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition. Mol. Cell 2013, 52:746-757.
    • (2013) Mol. Cell , vol.52 , pp. 746-757
    • Millanes-Romero, A.1
  • 126
    • 84875226981 scopus 로고    scopus 로고
    • Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA
    • Fadloun A., et al. Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat. Struct. Mol. Biol. 2013, 20:332-338.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 332-338
    • Fadloun, A.1
  • 127
    • 77953703353 scopus 로고    scopus 로고
    • LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation
    • Chow J.C., et al. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 2010, 141:956-969.
    • (2010) Cell , vol.141 , pp. 956-969
    • Chow, J.C.1
  • 128
    • 33646070846 scopus 로고    scopus 로고
    • A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    • Bernstein B.E., et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125:315-326.
    • (2006) Cell , vol.125 , pp. 315-326
    • Bernstein, B.E.1
  • 129
    • 84867009687 scopus 로고    scopus 로고
    • Asymmetrically modified nucleosomes
    • Voigt P., et al. Asymmetrically modified nucleosomes. Cell 2012, 151:181-193.
    • (2012) Cell , vol.151 , pp. 181-193
    • Voigt, P.1
  • 130
    • 77953466536 scopus 로고    scopus 로고
    • Nuclear reprogramming to a pluripotent state by three approaches
    • Yamanaka S., Blau H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010, 465:704-712.
    • (2010) Nature , vol.465 , pp. 704-712
    • Yamanaka, S.1    Blau, H.M.2
  • 131
    • 0001981347 scopus 로고
    • Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei
    • Gurdon J.B., et al. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958, 182:64-65.
    • (1958) Nature , vol.182 , pp. 64-65
    • Gurdon, J.B.1
  • 132
    • 0031044215 scopus 로고    scopus 로고
    • Viable offspring derived from fetal and adult mammalian cells
    • Wilmut I., et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997, 385:810-813.
    • (1997) Nature , vol.385 , pp. 810-813
    • Wilmut, I.1
  • 133
    • 0032560827 scopus 로고    scopus 로고
    • Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei
    • Wakayama T., et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998, 394:369-374.
    • (1998) Nature , vol.394 , pp. 369-374
    • Wakayama, T.1
  • 134
    • 81055156879 scopus 로고    scopus 로고
    • Epigenetic factors influencing resistance to nuclear reprogramming
    • Pasque V., et al. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet. 2011, 27:516-525.
    • (2011) Trends Genet. , vol.27 , pp. 516-525
    • Pasque, V.1
  • 135
    • 84906349098 scopus 로고    scopus 로고
    • Hierarchical molecular events driven by oocyte-specific factors lead to rapid and extensive reprogramming
    • Jullien J., et al. Hierarchical molecular events driven by oocyte-specific factors lead to rapid and extensive reprogramming. Mol. Cell 2014, 55:524-536.
    • (2014) Mol. Cell , vol.55 , pp. 524-536
    • Jullien, J.1
  • 136
    • 84878273239 scopus 로고    scopus 로고
    • Induction of pluripotency in mouse somatic cells with lineage specifiers
    • Shu J., et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013, 153:963-975.
    • (2013) Cell , vol.153 , pp. 963-975
    • Shu, J.1
  • 137
    • 34249908901 scopus 로고    scopus 로고
    • In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state
    • Wernig M., et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007, 448:318-324.
    • (2007) Nature , vol.448 , pp. 318-324
    • Wernig, M.1
  • 138
    • 0023663888 scopus 로고
    • Expression of a single transfected cDNA converts fibroblasts to myoblasts
    • Davis R.L., et al. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987, 51:987-1000.
    • (1987) Cell , vol.51 , pp. 987-1000
    • Davis, R.L.1
  • 139
    • 71449125977 scopus 로고    scopus 로고
    • Forcing cells to change lineages
    • Graf T., Enver T. Forcing cells to change lineages. Nature 2009, 462:587-594.
    • (2009) Nature , vol.462 , pp. 587-594
    • Graf, T.1    Enver, T.2
  • 140
    • 84875448554 scopus 로고    scopus 로고
    • Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies
    • Ladewig J., et al. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat. Rev. Mol. Cell Biol. 2013, 14:225-236.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 225-236
    • Ladewig, J.1
  • 141
    • 84908446782 scopus 로고    scopus 로고
    • CellNet: network biology applied to stem cell engineering
    • Cahan P., et al. CellNet: network biology applied to stem cell engineering. Cell 2014, 158:903-915.
    • (2014) Cell , vol.158 , pp. 903-915
    • Cahan, P.1
  • 142
    • 84908431507 scopus 로고    scopus 로고
    • Dissecting engineered cell types and enhancing cell fate conversion via CellNet
    • Morris S.A., et al. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 2014, 158:889-902.
    • (2014) Cell , vol.158 , pp. 889-902
    • Morris, S.A.1
  • 143
    • 84947738181 scopus 로고    scopus 로고
    • H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation
    • Matsumura Y., et al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell 2015, 60:584-596.
    • (2015) Mol. Cell , vol.60 , pp. 584-596
    • Matsumura, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.