-
1
-
-
84877732697
-
Bandit view on noisy optimization
-
MIT Press
-
Audibert, J-Y., Bubeck, S., and Munos, R. Bandit view on noisy optimization. In Optimization for Machine Learning, pp. 431-454. MIT Press, 2011.
-
(2011)
Optimization for Machine Learning
, pp. 431-454
-
-
Audibert, J.-Y.1
Bubeck, S.2
Munos, R.3
-
2
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2-3):235-256, 2002.
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
3
-
-
63049102221
-
Exponential inequalities for self- normalized martingales with applications
-
Bercu, B. and Touati, A. Exponential inequalities for self- normalized martingales with applications. The Annals of Applied Probability, 18(5): 1848-1869, 2008.
-
(2008)
The Annals of Applied Probability
, vol.18
, Issue.5
, pp. 1848-1869
-
-
Bercu, B.1
Touati, A.2
-
4
-
-
79960128338
-
X- Armed bandits
-
Bubeck, S., Munos, R., Stoltz, G., and Szepesvari, C. X- Armed bandits. Journal of Machine Learning Research, 12:1655-1695, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1655-1695
-
-
Bubeck, S.1
Munos, R.2
Stoltz, G.3
Szepesvari, C.4
-
5
-
-
80054099140
-
Upper-confidence-bound algorithms for active learning in multi-armed bandits
-
Springer-Verlag
-
Carpentier, A., Lazaric, A., Ghavamzadeh, M., Munos, R., and Auer, P. Upper-confidence-bound algorithms for active learning in multi-armed bandits. In Proceedings of the International Conference on Algorithmic Learning Theory, pp. 189-203. Springer-Verlag, 2011.
-
(2011)
Proceedings of the International Conference on Algorithmic Learning Theory
, pp. 189-203
-
-
Carpentier, A.1
Lazaric, A.2
Ghavamzadeh, M.3
Munos, R.4
Auer, P.5
-
7
-
-
84886572732
-
Parallel Gaussian process optimization with upper confidence bound and pure exploration
-
Springer Berlin Heidelberg
-
Contal, E., Buffoni, D., Robicquet, A., and Vayatis, N. Parallel Gaussian process optimization with upper confidence bound and pure exploration. In Machine Learning and Knowledge Discovery in Databases, volume 8188, pp. 225-240. Springer Berlin Heidelberg, 2013.
-
(2013)
Machine Learning and Knowledge Discovery in Databases
, vol.8188
, pp. 225-240
-
-
Contal, E.1
Buffoni, D.2
Robicquet, A.3
Vayatis, N.4
-
9
-
-
84898072179
-
Stochastic linear optimization under bandit feedback
-
Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear optimization under bandit feedback. In Proceedings of the 21st Annual Conference on Learning Theory, pp. 355-366, 2008.
-
(2008)
Proceedings of the 21st Annual Conference on Learning Theory
, pp. 355-366
-
-
Dani, V.1
Hayes, T.P.2
Kakade, S.M.3
-
10
-
-
84867124523
-
Exponential regret bounds for Gaussian process bandits with deterministic observations
-
icml.cc/Omnipress
-
de Freitas, N., Smola, A. J., and Zoghi, M. Exponential regret bounds for Gaussian process bandits with deterministic observations. In Proceedings of the 29th International Conference on Machine Learning, icml.cc/Omnipress, 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning
-
-
De Freitas, N.1
Smola, A.J.2
Zoghi, M.3
-
11
-
-
84867115523
-
Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization
-
icml.cc/Omnipress
-
Desautels, T., Krause, A., and Burdick, J.W. Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization. In Proceedings of the 29th International Conference on Machine Learning, pp. 1191-1198. icml.cc/Omnipress, 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning
, pp. 1191-1198
-
-
Desautels, T.1
Krause, A.2
Burdick, J.W.3
-
12
-
-
80055078403
-
The VOLNA code for the numerical modelling of tsunami waves: Generation, propagation and inundation
-
Dutykh, D., Poncet, R, and Dias, F. The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation. European Journal of Mechanics B/Fluids, 30:598-615, 2011.
-
(2011)
European Journal of Mechanics B/Fluids
, vol.30
, pp. 598-615
-
-
Dutykh, D.1
Poncet, R.2
Dias, F.3
-
13
-
-
0036160859
-
Efficient SVM regression training with SMO
-
Flake, G. W. and Lawrence, S. Efficient SVM regression training with SMO. Machine Learning, 46(1-3):271- 290, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 271-290
-
-
Flake, G.W.1
Lawrence, S.2
-
14
-
-
0004200503
-
Optimization in computational chemistry and molecular biology: Local and global approaches
-
Springer
-
Floudas, C.A. and Pardalos, P.M. Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches. Nonconvex Optimization and Its Applications. Springer, 2000.
-
(2000)
Nonconvex Optimization and its Applications
-
-
Floudas, C.A.1
Pardalos, P.M.2
-
15
-
-
84862294467
-
Regret bounds for Gaussian process bandit problems
-
MIT Press
-
Grunewalder, S., Audibert, J-Y., Opper, M., and Shawe-Taylor, J. Regret bounds for Gaussian process bandit problems. In Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 273- 280. MIT Press, 2010.
-
(2010)
Proceedings of the International Conference on Artificial Intelligence and Statistics
, pp. 273-280
-
-
Grunewalder, S.1
Audibert, J.-Y.2
Opper, M.3
Shawe-Taylor, J.4
-
16
-
-
84861898498
-
The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data
-
Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., Elosegui, P., Fritz, H. M., Suwargadi, B. W., Pranantyo, I. R., Li, L., Macpherson, K. A., Skanavis, V., Synolakis, C. E., and Sieh, K. The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J. Geophys. Res., 117: B06402-, 2012.
-
(2012)
J. Geophys. Res.
, vol.117
, pp. B06402
-
-
Hill, E.M.1
Borrero, J.C.2
Huang, Z.3
Qiu, Q.4
Banerjee, P.5
Natawidjaja, D.H.6
Elosegui, P.7
Fritz, H.M.8
Suwargadi, B.W.9
Pranantyo, I.R.10
Li, L.11
Macpherson, K.A.12
Skanavis, V.13
Synolakis, C.E.14
Sieh, K.15
-
17
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
December
-
Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455-492, December 1998.
-
(1998)
Journal of Global Optimization
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
18
-
-
38049011420
-
Nearly tight bounds for the continuum-armed bandit problem
-
MIT Press
-
Kleinberg, R. Nearly tight bounds for the continuum-armed bandit problem. In Advances in Neural Information Processing Systems 17, pp. 697-704. MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.17
, pp. 697-704
-
-
Kleinberg, R.1
-
20
-
-
66349126734
-
Approximate inference for robust Gaussian process regression
-
Kuss, M., Pfingsten, T., Csato, L., and Rasmussen, C.E. Approximate inference for robust Gaussian process regression. Max Planck Inst. Biological Cybern., Tubingen, GermanyTech. Rep, 136, 2005.
-
(2005)
Max Planck Inst. Biological Cybern., Tubingen, GermanyTech. Rep
, pp. 136
-
-
Kuss, M.1
Pfingsten, T.2
Csato, L.3
Rasmussen, C.E.4
-
21
-
-
0003486101
-
Bayesian approach to global optimization
-
Kluwer Academic
-
Mockus, J. Bayesian approach to global optimization. Mathematics and its applications. Kluwer Academic, 1989.
-
(1989)
Mathematics and its Applications
-
-
Mockus, J.1
-
24
-
-
84869201485
-
Practical bayesian optimization of machine learning algorithms
-
Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems 25, pp. 2960-2968, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2960-2968
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
25
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
icml.cc/Omnipress
-
Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaussian process optimization in the bandit setting: No regret and experimental design. In Proceedings of the International Conference on Machine Learning, pp. 1015-1022. icml.cc/Omnipress, 2010.
-
(2010)
Proceedings of the International Conference on Machine Learning
, pp. 1015-1022
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.3
Seeger, M.4
-
26
-
-
84860236413
-
Information-theoretic regret bounds for Gaussian process optimization in the bandit setting
-
Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory, 58(5):3250-3265, 2012.
-
(2012)
IEEE Transactions on Information Theory
, vol.58
, Issue.5
, pp. 3250-3265
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.3
Seeger, M.4
-
27
-
-
84919893473
-
Long-wave runup on a plane beach behind a conical island
-
Stefanakis, T. S., Dias, F., Vayatis, N., and Guillas, S. Long-wave runup on a plane beach behind a conical island. In Proceedings of the World Conference on Earthquake Engineering, 2012.
-
(2012)
Proceedings of the World Conference on Earthquake Engineering
-
-
Stefanakis, T.S.1
Dias, F.2
Vayatis, N.3
Guillas, S.4
-
28
-
-
84919893472
-
-
arXiv preprint arXiv: 1305.7385
-
Stefanakis, T. S., Contal, E., Vayatis, N., Dias, F., and Synolakis, C. E. Can small islands protect nearby coasts from tsunamis ? An active experimental design approach. arXiv preprint arXiv: 1305.7385, 2013.
-
(2013)
Can Small Islands Protect Nearby Coasts from Tsunamis ? An Active Experimental Design Ap-proach
-
-
Stefanakis, T.S.1
Contal, E.2
Vayatis, N.3
Dias, F.4
Synolakis, C.E.5
-
29
-
-
34248346299
-
Review of metamodeling techniques in support of engineering design optimization
-
Wang, G. and Shan, S. Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 129(4): 370-380, 2007.
-
(2007)
Journal of Mechanical Design
, vol.129
, Issue.4
, pp. 370-380
-
-
Wang, G.1
Shan, S.2
|