메뉴 건너뛰기




Volumn 23, Issue 1, 2013, Pages

Self-avoiding random dynamics on integer complex systems

Author keywords

Adaptive MCMC; Algorithm configuration; Bayesian optimization; Boltzmann machines; Gibbs sampling; Ising models; Markov chain Monte Carlo; Monte Carlo; SARDONICS; Swendswen Wang

Indexed keywords

ADAPTIVE MCMC; ALGORITHM CONFIGURATIONS; BAYESIAN OPTIMIZATION; BOLTZMANN MACHINES; GIBBS SAMPLING; MARKOV CHAIN MONTE-CARLO; MONTE CARLO; SARDONICS; SWENDSWEN-WANG;

EID: 84873695090     PISSN: 10493301     EISSN: 15581195     Source Type: Journal    
DOI: 10.1145/2414416.2414790     Document Type: Article
Times cited : (9)

References (66)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley, D. H., Hinton, G., and Sejnowski, T. 1985. a learning algorithm for Boltzmann machines. Cog. Sci. 9, 147-169.
    • (1985) Cog. Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.2    Sejnowski, T.3
  • 2
    • 2442578536 scopus 로고    scopus 로고
    • Controlled MCMC for optimal sampling
    • Cahiers de Mathematiques du Ceremade, Universite Paris-Dauphine
    • Andrieu, C. and Robert, C. 2001. Controlled MCMC for optimal sampling. Tech. rep. 0125, Cahiers de Mathematiques du Ceremade, Universite Paris-Dauphine.
    • (2001) Tech. Rep. 0125
    • Andrieu, C.1    Robert, C.2
  • 3
    • 0001051761 scopus 로고
    • On the computational complexity of Ising spin glass models
    • Barahona, F. 1982. On the computational complexity of Ising spin glass models. J. Phys. A:Math. Gen. 15, 10, 3241.
    • (1982) J. Phys. A:Math. Gen. , vol.15 , Issue.10 , pp. 3241
    • Barahona, F.1
  • 4
    • 0000106469 scopus 로고
    • Multicanonical algorithms for first order phase transitions
    • Berg, B. A. and Neuhaus, T. 1991. Multicanonical algorithms for first order phase transitions. Phys. Lett. B 267, 2, 249-253.
    • (1991) Phys. Lett. B , vol.267 , Issue.2 , pp. 249-253
    • Berg, B.A.1    Neuhaus, T.2
  • 5
    • 0000377218 scopus 로고
    • Projected Newton methods for optimization problems with simple constraints
    • Bertsekas, D. P. 1982. Projected Newton methods for optimization problems with simple constraints. SIAM J. Contr. Optimiz. 20, 2, 221-246.
    • (1982) SIAM J. Contr. Optimiz. , vol.20 , Issue.2 , pp. 221-246
    • Bertsekas, D.P.1
  • 6
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc., Ser. B 36, 192-236.
    • (1974) J. Roy. Statist. Soc., Ser. B , vol.36 , pp. 192-236
    • Besag, J.1
  • 7
    • 84982212658 scopus 로고    scopus 로고
    • The Ising model: Teaching an old problem new tricks
    • D-Wave Systems
    • Bian, Z., Chudak, F., Macready, W. G., and Rose, G. 2011. the Ising model: Teaching an old problem new tricks. Tech. rep., D-Wave Systems.
    • (2011) Tech. Rep.
    • Bian, Z.1    Chudak, F.2    Macready, W.G.3    Rose, G.4
  • 9
    • 81955165474 scopus 로고    scopus 로고
    • Efficient Monte Carlo simulation via the generalized splitting method
    • Botev, Z. I. and Kroese, D. P. 2012. Efficient Monte Carlo simulation via the generalized splitting method. Stat. Comput. 22, 1, 1-16.
    • (2012) Stat. Comput. , vol.22 , Issue.1 , pp. 1-16
    • Botev, Z.I.1    Kroese, D.P.2
  • 10
    • 77958068642 scopus 로고    scopus 로고
    • A tutorial on Bayesian optimization of expensive cost functions
    • University of British Columbia, Department of Computer Science
    • Brochu, E., Cora, V. M., and de Freitas, N. 2009. a tutorial on Bayesian optimization of expensive cost functions. Tech. rep. TR-2009-023, University of British Columbia, Department of Computer Science.
    • (2009) Tech. Rep. TR-2009-2023
    • Brochu, E.1    Cora, V.M.2    De Freitas, N.3
  • 11
    • 80053138837 scopus 로고    scopus 로고
    • Convergence rates of efficient global optimization algorithms
    • arXiv:1101.3501v2
    • Bull, A. D. 2011. Convergence rates of efficient global optimization algorithms. Tech. rep., arXiv:1101.3501v2.
    • (2011) Tech. Rep.
    • Bull, A.D.1
  • 12
    • 84859211583 scopus 로고    scopus 로고
    • Sequential Monte Carlo for rare event estimation
    • Cérou, F., Moral, P., Furon, T., and Guyader, A. 2012. Sequential Monte Carlo for rare event estimation. Stat. Comput. 22, 3, 795-808.
    • (2012) Stat. Comput. , vol.22 , Issue.3 , pp. 795-808
    • Cérou, F.1    Moral, P.2    Furon, T.3    Guyader, A.4
  • 15
    • 28844454252 scopus 로고    scopus 로고
    • Parallel tempering: Theory, applications, and new perspectives
    • Earl, D. J. and Deem, M. W. 2005. Parallel tempering: Theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910-3916.
    • (2005) Phys Chem. Chem. Phys. , vol.7 , pp. 3910-3916
    • Earl, D.J.1    Deem, M.W.2
  • 16
    • 4344712172 scopus 로고    scopus 로고
    • Center for Research in Scientific Computation, North Carolina State University
    • Finkel, D. E. 2003. DIRECT Optimization Algorithm User Guide. Center for Research in Scientific Computation, North Carolina State University.
    • (2003) DIRECT Optimization Algorithm User Guide
    • Finkel, D.E.1
  • 20
    • 0000411214 scopus 로고
    • Tabu search - Part I
    • Glover, F. 1989. Tabu search - Part I. ORSA J. Comput. 1, 190-206.
    • (1989) ORSA J. Comput. , vol.1 , pp. 190-206
    • Glover, F.1
  • 22
    • 0002000130 scopus 로고    scopus 로고
    • The multicanonical monte carlo method
    • Gubernatis, J. and Hatano, N. 2000. the multicanonical monte carlo method. Comput. Sci. Eng. 2, 2, 95-102.
    • (2000) Comput. Sci. Eng. , vol.2 , Issue.2 , pp. 95-102
    • Gubernatis, J.1    Hatano, N.2
  • 23
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E., and Tamminen, J. 2001. An adaptive Metropolis algorithm. Bernoulli 7, 2, 223- 242.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 24
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • Halko, N., Martinsson, P. G., and Tropp, J. A. 2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. Science 53, 2, 217-288.
    • (2011) Science , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 26
    • 64149131309 scopus 로고    scopus 로고
    • Hot coupling: A particle approach to inference and normalization on pairwise undirected graphs
    • Hamze, F. and de Freitas, N. 2005. Hot coupling: a particle approach to inference and normalization on pairwise undirected graphs. Adv. Neural Inf. Proc. Syst. 18, 491-498.
    • (2005) Adv. Neural Inf. Proc. Syst. , vol.18 , pp. 491-498
    • Hamze, F.1    De Freitas, N.2
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. and Salakhutdinov, R. 2006. Reducing the dimensionality of data with neural networks. Science 313, 5786, 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 30
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J. J. 1984. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 81, 10, 3088-3092.
    • (1984) Proc. Nat. Acad. Sci. , vol.81 , Issue.10 , pp. 3088-3092
    • Hopfield, J.J.1
  • 34
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. 2009. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. in International Conference on Machine Learning. 609-616.
    • (2009) International Conference on Machine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 36
    • 15044339834 scopus 로고    scopus 로고
    • Bayesian clustering with variable and transformation selections
    • Liu, J. S., Zhang, J. L., Palumbo, M. J., and Lawrence, C. E. 2003. Bayesian clustering with variable and transformation selections. Bayesian Stat. 7, 249-275.
    • (2003) Bayesian Stat. , vol.7 , pp. 249-275
    • Liu, J.S.1    Zhang, J.L.2    Palumbo, M.J.3    Lawrence, C.E.4
  • 37
    • 70349318390 scopus 로고    scopus 로고
    • Ph.D. thesis, University of Alberta, Edmonton, Alberta, Canada
    • Lizotte, D. 2008. Practical Bayesian optimization. Ph.D. thesis, University of Alberta, Edmonton, Alberta, Canada.
    • (2008) Practical Bayesian optimization
    • Lizotte, D.1
  • 38
  • 41
    • 84864939787 scopus 로고    scopus 로고
    • Optimistic Bayesian sampling in contextual bandit problems
    • 98888
    • May, B. C., Korda, N., Lee, A., and Leslie, D. S. 2012. Optimistic Bayesian sampling in contextual bandit problems. J. Mach. Learn. Res. 98888, 2069-2106.
    • (2012) J. Mach. Learn. Res. , pp. 2069-2106
    • May, B.C.1    Korda, N.2    Lee, A.3    Leslie, D.S.4
  • 42
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higherorder Boltzmann machines
    • Memisevic, R. and Hinton, G. 2009. Learning to represent spatial transformations with factored higherorder Boltzmann machines. Neural Computation 22, 1473-1492.
    • (2009) Neural Computation , vol.22 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.2
  • 43
    • 84867137347 scopus 로고
    • The Bayesian approach to global optimization
    • Springer Berlin /Heidelberg
    • Mockus, J. 1982. the Bayesian approach to global optimization. in System Modeling and Optimization. Vol. 38. Springer Berlin /Heidelberg, 473-481.
    • (1982) System Modeling and Optimization , vol.38 , pp. 473-481
    • Mockus, J.1
  • 44
    • 4644263656 scopus 로고    scopus 로고
    • Rejection-free Monte Carlo algorithms for models with continuous degrees of freedom
    • Munoz, J. D., Novotny, M. A., and Mitchell, S. J. 2003. Rejection-free Monte Carlo algorithms for models with continuous degrees of freedom. Phys. Rev. E 67.
    • (2003) Phys. Rev. E , vol.67
    • Munoz, J.D.1    Novotny, M.A.2    Mitchell, S.J.3
  • 52
    • 36849137515 scopus 로고
    • Monte Carlo calculation of the average extension of molecular chains
    • Rosenbluth,M.N. and Rosenbluth, A.W. 1955. Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23, 356-359.
    • (1955) J. Chem. Phys. , vol.23 , pp. 356-359
    • Rosenbluth, M.N.1    Rosenbluth, A.W.2
  • 53
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H., Martino, S., and Chopin, N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B 71, 2, 319-392.
    • (2009) Journal of the Royal Statistical Society Series B , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 56
    • 0347131360 scopus 로고    scopus 로고
    • Global versus local search in constrained optimization of computer models
    • Schonlau, M., Welch, W. J., and Jones, D. R. 1998. Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series 34, 11-25.
    • (1998) Lecture Notes-Monograph Series , vol.34 , pp. 11-25
    • Schonlau, M.1    Welch, W.J.2    Jones, D.R.3
  • 60
    • 33747349191 scopus 로고
    • Nonuniversal critical dynamics in Monte Carlo simulations
    • Swendsen, R. H. and Wang, J.-S. 1987. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 2, 86-88.
    • (1987) Phys. Rev. Lett. , vol.58 , Issue.2 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.-S.2
  • 63
    • 70349269027 scopus 로고    scopus 로고
    • Grapham: Graphical models with adaptive random walk Metropolis algorithms
    • Vihola,M. 2010. Grapham: Graphical models with adaptive random walk Metropolis algorithms. Computat. Stat. Data Anal. 54, 1, 49-54.
    • (2010) Computat. Stat. Data Anal. , vol.54 , Issue.1 , pp. 49-54
    • Vihola, M.1
  • 64
    • 6644221271 scopus 로고    scopus 로고
    • Efficient, multiple-range random walk algorithm to calculate the density of states
    • Wang, F. and Landau, D. P. 2001. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050-2053.
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2050-2053
    • Wang, F.1    Landau, D.P.2
  • 66
    • 0032286861 scopus 로고    scopus 로고
    • Orthogonal column Latin hypercubes and their application in computer experiments
    • Ye, K. Q. 1998. Orthogonal column Latin hypercubes and their application in computer experiments. J. ASA 93, 444, 1430-1439.
    • (1998) J. ASA , vol.93 , Issue.444 , pp. 1430-1439
    • Ye, K.Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.