-
2
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR, 13:281-305, 2012.
-
(2012)
JMLR
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
3
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In NIPS, pages 2546-2554, 2011.
-
(2011)
NIPS
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
4
-
-
84896063352
-
Making a science of model search
-
abs/1209.5111
-
J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search. CoRR, abs/1209.5111, 2012.
-
(2012)
CoRR
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
5
-
-
77958068642
-
A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
-
and arXiv:1012.2599v1, Dept. of Computer Science, University of British Columbia
-
E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC TR-2009-23 and arXiv:1012.2599v1, Dept. of Computer Science, University of British Columbia, 2009.
-
(2009)
Technical Report UBC TR-2009-23
-
-
Brochu, E.1
Cora, V.M.2
De Freitas, N.3
-
6
-
-
80555140070
-
Convergence rates of efficient global optimization algorithms
-
A. D. Bull. Convergence rates of efficient global optimization algorithms. JMLR, 12:2879-2904, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2879-2904
-
-
Bull, A.D.1
-
7
-
-
84896062989
-
Bandit theory meets compressed sensing for high dimensional stochastic linear bandit
-
A. Carpentier and R. Munos. Bandit theory meets compressed sensing for high dimensional stochastic linear bandit. In AIStats, pages 190-198, 2012.
-
(2012)
AIStats
, pp. 190-198
-
-
Carpentier, A.1
Munos, R.2
-
8
-
-
84867136616
-
Joint optimization and variable selection of high-dimensional Gaussian processes
-
B. Chen, R.M. Castro, and A. Krause. Joint optimization and variable selection of high-dimensional Gaussian processes. In ICML, 2012.
-
(2012)
ICML
-
-
Chen, B.1
Castro, R.M.2
Krause, A.3
-
9
-
-
84867124523
-
Exponential regret bounds for Gaussian process bandits with deterministic observations
-
N. de Freitas, A. Smola, and M. Zoghi. Exponential regret bounds for Gaussian process bandits with deterministic observations. In ICML, 2012.
-
(2012)
ICML
-
-
De Freitas, N.1
Smola, A.2
Zoghi, M.3
-
10
-
-
44649111994
-
Connections in networks: A hybrid approach
-
C. P. Gomes, W.J. van Hoeve, and A. Sabharwal. Connections in networks: A hybrid approach. In CPAIOR, volume 5015, pages 303-307, 2008.
-
(2008)
CPAIOR
, vol.5015
, pp. 303-307
-
-
Gomes, C.P.1
Van Hoeve, W.J.2
Sabharwal, A.3
-
11
-
-
0035377566
-
Completely derandomized self-adaptation in evolution strategies
-
N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evol. Comput., 9(2):159-195, 2001.
-
(2001)
Evol. Comput.
, vol.9
, Issue.2
, pp. 159-195
-
-
Hansen, N.1
Ostermeier, A.2
-
12
-
-
80053160717
-
Portfolio allocation for Bayesian optimization
-
M. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In UAI, pages 327-336, 2011.
-
(2011)
UAI
, pp. 327-336
-
-
Hoffman, M.1
Brochu, E.2
De Freitas, N.3
-
13
-
-
84856827305
-
Programming by optimization
-
H. H. Hoos. Programming by optimization. Commun. ACM, 55(2):70-80, 2012.
-
(2012)
Commun. ACM
, vol.55
, Issue.2
, pp. 70-80
-
-
Hoos, H.H.1
-
14
-
-
77955439544
-
Automated configuration of mixed integer programming solvers
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer programming solvers. In CPAIOR, pages 186-202, 2010.
-
(2010)
CPAIOR
, pp. 186-202
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
15
-
-
84868554032
-
Sequential model-based optimization for general algorithm configuration
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In LION, pages 507-523, 2011.
-
(2011)
LION
, pp. 507-523
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
16
-
-
84867862661
-
Parallel algorithm configuration
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Parallel algorithm configuration. In LION, pages 55-70, 2012.
-
(2012)
LION
, pp. 55-70
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
17
-
-
84896062698
-
Identifying key algorithm parameters and instance features using forward selection
-
F. Hutter, H. Hoos, and K. Leyton-Brown. Identifying key algorithm parameters and instance features using forward selection. In LION, 2013.
-
(2013)
LION
-
-
Hutter, F.1
Hoos, H.2
Leyton-Brown, K.3
-
19
-
-
0027678534
-
Lipschitzian optimization without the Lipschitz constant
-
David R Jones, C D Perttunen, and B E Stuckman. Lipschitzian optimization without the Lipschitz constant. J. of Optimization Theory and Applications, 79(1):157-181, 1993.
-
(1993)
J. of Optimization Theory and Applications
, vol.79
, Issue.1
, pp. 157-181
-
-
Jones, D.R.1
Perttunen, C.D.2
Stuckman, B.E.3
-
20
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box functions. J. of Global optimization, 13(4):455-492, 1998.
-
(1998)
J. of Global Optimization
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
21
-
-
0035577808
-
A taxonomy of global optimization methods based on response surfaces
-
D.R. Jones. A taxonomy of global optimization methods based on response surfaces. J. of Global Optimization, 21(4):345-383, 2001.
-
(2001)
J. of Global Optimization
, vol.21
, Issue.4
, pp. 345-383
-
-
Jones, D.R.1
-
22
-
-
84896062990
-
An experimental methodology for response surface optimization methods
-
D. Lizotte, R. Greiner, and D. Schuurmans. An experimental methodology for response surface optimization methods. J. of Global Optimization, pages 1-38, 2011.
-
(2011)
J. of Global Optimization
, pp. 1-38
-
-
Lizotte, D.1
Greiner, R.2
Schuurmans, D.3
-
24
-
-
70349325516
-
A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
-
R. Martinez-Cantin, N. de Freitas, E. Brochu, J. Castellanos, and A. Doucet. A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2):93-103, 2009.
-
(2009)
Autonomous Robots
, vol.27
, Issue.2
, pp. 93-103
-
-
Martinez-Cantin, R.1
De Freitas, N.2
Brochu, E.3
Castellanos, J.4
Doucet, A.5
-
25
-
-
84896063378
-
Bayesian approach for randomization of heuristic algorithms of discrete programming
-
J. Močkus, A. Močkus, and L. Močkus. Bayesian approach for randomization of heuristic algorithms of discrete programming. American Math. Society, 1999.
-
(1999)
American Math. Society
-
-
Močkus, J.1
Močkus, A.2
Močkus, L.3
-
26
-
-
84867137347
-
The Bayesian approach to global optimization
-
Springer
-
J. Močkus. The Bayesian approach to global optimization. In Systems Modeling and Optimization, volume 38, pages 473-481. Springer, 1982.
-
(1982)
Systems Modeling and Optimization
, vol.38
, pp. 473-481
-
-
Močkus, J.1
-
27
-
-
0012499686
-
Application of Bayesian approach to numerical methods of global and stochastic optimization
-
J. Močkus. Application of Bayesian approach to numerical methods of global and stochastic optimization. J. of Global Optimization, 4(4):347-365, 1994.
-
(1994)
J. of Global Optimization
, vol.4
, Issue.4
, pp. 347-365
-
-
Močkus, J.1
-
31
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In NIPS, 2012.
-
(2012)
NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
32
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, 2010.
-
(2010)
ICML
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.M.3
Seeger, M.4
-
33
-
-
84867847475
-
Generating fast domain-optimized planners by automatically configuring a generic parameterised planner
-
M. Vallati, C. Fawcett, A. E. Gerevini, H. H. Hoos, and A. Saetti. Generating fast domain-optimized planners by automatically configuring a generic parameterised planner. In ICAPS-PAL, 2011.
-
(2011)
ICAPS-PAL
-
-
Vallati, M.1
Fawcett, C.2
Gerevini, A.E.3
Hoos, H.H.4
Saetti, A.5
-
35
-
-
84890958552
-
-
ArXiv e-prints, January
-
Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian Optimization in a Billion Dimensions via Random Embeddings. ArXiv e-prints, January 2013.
-
(2013)
Bayesian Optimization in A Billion Dimensions Via Random Embeddings
-
-
Wang, Z.1
Zoghi, M.2
Hutter, F.3
Matheson, D.4
De Freitas, N.5
|