메뉴 건너뛰기




Volumn , Issue , 2014, Pages 588-595

Bayesian Optimization with an empirical hardness model for approximate nearest neighbour search

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS;

EID: 84904632376     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2014.6836049     Document Type: Conference Paper
Times cited : (1)

References (25)
  • 4
    • 84869826137 scopus 로고    scopus 로고
    • A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
    • E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010
    • (2010) Arxiv Preprint ArXiv , vol.1012 , pp. 2599
    • Brochu, E.1    Cora, V.M.2    De Freitas, N.3
  • 7
    • 84856930049 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration
    • F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proc. of LION-5, page 507523, 2011
    • (2011) Proc. of LION-5 , pp. 507523
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 11
    • 84957035400 scopus 로고    scopus 로고
    • Learning the empirical hardness of optimization problems: The case of combinatorial auctions
    • Springer 2002
    • K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness of optimization problems: The case of combinatorial auctions. In Principles and Practice of Constraint Programming-CP 2002, pages 556-572. Springer, 2002
    • (2002) Principles and Practice of Constraint Programming-CP , pp. 556-572
    • Leyton-Brown, K.1    Nudelman, E.2    Shoham, Y.3
  • 12
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • D. G. Lowe. Distinctive image features from scaleinvariant keypoints. International journal of computer vision, 60(2):91-110, 2004
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 13
    • 70349675925 scopus 로고    scopus 로고
    • Fast approximate nearest neighbors with automatic algorithm configuration
    • M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISAPP (1), pages 331-340, 2009
    • (2009) VISAPP , vol.1 , pp. 331-340
    • Muja, M.1    Lowe, D.G.2
  • 15
    • 33749236045 scopus 로고    scopus 로고
    • Building the gist of a scene: The role of global image features in recognition
    • A. Oliva and A. Torralba. Building the gist of a scene: The role of global image features in recognition. Progress in brain research, 155:23-36, 2006
    • (2006) Progress in Brain Research , vol.155 , pp. 23-36
    • Oliva, A.1    Torralba, A.2
  • 21
    • 77956522732 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009
    • (2009) Arxiv Preprint ArXiv , vol.912 , pp. 3995
    • Srinivas, N.1    Krause, A.2    Kakade, S.M.3    Seeger, M.4
  • 22
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition. Pattern Analysis and Machine Intelligence
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(11):1958-1970, 2008
    • (2008) IEEE Transactions on , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.