메뉴 건너뛰기




Volumn 1, Issue January, 2014, Pages 918-926

Predictive entropy search for efficient global optimization of black-box functions

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ENTROPY; FUNCTION EVALUATION; INFORMATION SCIENCE; INFORMATION THEORY; LEARNING SYSTEMS; OPTIMIZATION;

EID: 84930672144     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (648)

References (30)
  • 1
    • 84939024947 scopus 로고
    • A nonparametric estimation of the entropy for absolutely continuous distributions
    • I. Ahmad and P.-E. Lin. A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Transactions on Information Theory, 22(3):372-375, 1976.
    • (1976) IEEE Transactions on Information Theory , vol.22 , Issue.3 , pp. 372-375
    • Ahmad, I.1    Lin, P.-E.2
  • 2
    • 34548563071 scopus 로고    scopus 로고
    • A nonparametric approach to noisy and costly optimization
    • B. S. Anderson, A. W. Moore, and D. Cohn. A nonparametric approach to noisy and costly optimization. In ICML, pages 17-24, 2000.
    • (2000) ICML , pp. 17-24
    • Anderson, B.S.1    Moore, A.W.2    Cohn, D.3
  • 5
    • 77958068642 scopus 로고    scopus 로고
    • A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
    • arXiv:1012.2599v1, Dept. of Computer Science, University of British Columbia
    • E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC TR-2009-23 and arXiv:1012.2599v1, Dept. of Computer Science, University of British Columbia, 2009.
    • (2009) Technical Report UBC TR-2009-23
    • Brochu, E.1    Cora, V.M.2    De Freitas, N.3
  • 6
    • 85043560166 scopus 로고    scopus 로고
    • Active preference learning with discrete choice data
    • E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with discrete choice data. In NIPS, pages 409-416, 2007.
    • (2007) NIPS , pp. 409-416
    • Brochu, E.1    De Freitas, N.2    Ghosh, A.3
  • 7
    • 69149092509 scopus 로고    scopus 로고
    • Optimization of ph and nitrogen for enhanced hydrogen production by synechocystis sp pcc 6803 via statistical and machine learning methods
    • E. H. Burrows, W.-K. Wong, X. Fern, F. W. R. Chaplen, and R. L. Ely. Optimization of ph and nitrogen for enhanced hydrogen production by synechocystis sp. pcc 6803 via statistical and machine learning methods. Biotechnology Progress, 25(4):1009-1017, 2009.
    • (2009) Biotechnology Progress , vol.25 , Issue.4 , pp. 1009-1017
    • Burrows, E.H.1    Wong, W.-K.2    Fern, X.3    Chaplen, F.W.R.4    Ely, R.L.5
  • 8
    • 85162416700 scopus 로고    scopus 로고
    • An empirical evaluation of thompson sampling
    • O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In NIPS, pages 2249-2257, 2011.
    • (2011) NIPS , pp. 2249-2257
    • Chapelle, O.1    Li, L.2
  • 10
    • 80053160717 scopus 로고    scopus 로고
    • Portfolio allocation for Bayesian optimization
    • M. W. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In UAI, pages 327-336, 2011.
    • (2011) UAI , pp. 327-336
    • Hoffman, M.W.1    Brochu, E.2    De Freitas, N.3
  • 11
    • 84877789387 scopus 로고    scopus 로고
    • Collaborative Gaussian processes for preference learning
    • N. Houlsby, J. M. Hernández-Lobato, F. Huszar, and Z. Ghahramani. Collaborative Gaussian processes for preference learning. In NIPS, pages 2096-2104, 2012.
    • (2012) NIPS , pp. 2096-2104
    • Houlsby, N.1    Hernández-Lobato, J.M.2    Huszar, F.3    Ghahramani, Z.4
  • 12
    • 33748437206 scopus 로고    scopus 로고
    • The copula-GARCH model of conditional dependencies: An international stock market application
    • E. Jondeau and M. Rockinger. The copula-GARCH model of conditional dependencies: An international stock market application. Journal of international money and finance, 25(5):827-853, 2006.
    • (2006) Journal of International Money and Finance , vol.25 , Issue.5 , pp. 827-853
    • Jondeau, E.1    Rockinger, M.2
  • 13
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4):455-492, 1998.
    • (1998) Journal of Global Optimization , vol.13 , Issue.4 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 14
    • 84998710865 scopus 로고
    • A new method of locating the maximum of an arbitrary multipeak curve in the presence of noise
    • H. Kushner. A new method of locating the maximum of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86, 1964.
    • (1964) Journal of Basic Engineering , vol.86
    • Kushner, H.1
  • 16
    • 84880890296 scopus 로고    scopus 로고
    • Automatic gait optimization with Gaussian process regression
    • D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait optimization with Gaussian process regression. In IJCAI, pages 944-949, 2007.
    • (2007) IJCAI , pp. 944-949
    • Lizotte, D.1    Wang, T.2    Bowling, M.3    Schuurmans, D.4
  • 17
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. J. MacKay. Information-based objective functions for active data selection. Neural Computation, 4(4):590-604, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.1
  • 19
    • 0342813049 scopus 로고
    • The application of Bayesian methods for seeking the extremum
    • L. Dixon and G. Szego, editors Elsevier
    • J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum. In L. Dixon and G. Szego, editors, Toward Global Optimization, Volume 2. Elsevier, 1978.
    • (1978) Toward Global Optimization , vol.2
    • Močkus, J.1    Tiesis, V.2    Žilinskas, A.3
  • 20
    • 79961092747 scopus 로고    scopus 로고
    • The knowledge-gradient algorithm for sequencing experiments in drug discovery
    • D. M. Negoescu, P. I. Frazier, and W. B. Powell. The knowledge-gradient algorithm for sequencing experiments in drug discovery. INFORMS Journal on Computing, 23(3):346-363, 2011.
    • (2011) INFORMS Journal on Computing , vol.23 , Issue.3 , pp. 346-363
    • Negoescu, D.M.1    Frazier, P.I.2    Powell, W.B.3
  • 21
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177-1184, 2007.
    • (2007) NIPS , pp. 1177-1184
    • Rahimi, A.1    Recht, B.2
  • 23
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.W.1
  • 24
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In NIPS, pages 2960-2968, 2012.
    • (2012) NIPS , pp. 2960-2968
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 25
    • 84898995949 scopus 로고    scopus 로고
    • Derivative observations in Gaussian process models of dynamic systems
    • E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen. Derivative observations in Gaussian process models of dynamic systems. In NIPS, pages 1057-1064, 2003.
    • (2003) NIPS , pp. 1057-1064
    • Solak, E.1    Murray-Smith, R.2    Leithead, W.E.3    Leith, D.J.4    Rasmussen, C.E.5
  • 26
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, pages 1015-1022, 2010.
    • (2010) ICML , pp. 1015-1022
    • Srinivas, N.1    Krause, A.2    Kakade, S.M.3    Seeger, M.4
  • 28
    • 67650938640 scopus 로고    scopus 로고
    • An informational approach to the global optimization of expensive-to-evaluate functions
    • J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509-534, 2009.
    • (2009) Journal of Global Optimization , vol.44 , Issue.4 , pp. 509-534
    • Villemonteix, J.1    Vazquez, E.2    Walter, E.3
  • 29
    • 84897559913 scopus 로고    scopus 로고
    • Adaptive hamiltonian and riemann Monte Carlo samplers
    • Z. Wang, S. Mohamed, and N. de Freitas. Adaptive Hamiltonian and Riemann Monte Carlo samplers. In ICML, 2013.
    • (2013) ICML
    • Wang, Z.1    Mohamed, S.2    De Freitas, N.3
  • 30
    • 34548231850 scopus 로고    scopus 로고
    • Feedback control of dynamic bipedal robot locomotion
    • CRC PressINC
    • E. Westervelt and J. Grizzle. Feedback Control of Dynamic Bipedal Robot Locomotion. Control and Automation Series. CRC PressINC, 2007.
    • (2007) Control and Automation Series
    • Westervelt, E.1    Grizzle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.