-
1
-
-
84939024947
-
A nonparametric estimation of the entropy for absolutely continuous distributions
-
I. Ahmad and P.-E. Lin. A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Transactions on Information Theory, 22(3):372-375, 1976.
-
(1976)
IEEE Transactions on Information Theory
, vol.22
, Issue.3
, pp. 372-375
-
-
Ahmad, I.1
Lin, P.-E.2
-
2
-
-
34548563071
-
A nonparametric approach to noisy and costly optimization
-
B. S. Anderson, A. W. Moore, and D. Cohn. A nonparametric approach to noisy and costly optimization. In ICML, pages 17-24, 2000.
-
(2000)
ICML
, pp. 17-24
-
-
Anderson, B.S.1
Moore, A.W.2
Cohn, D.3
-
5
-
-
77958068642
-
A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
-
arXiv:1012.2599v1, Dept. of Computer Science, University of British Columbia
-
E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC TR-2009-23 and arXiv:1012.2599v1, Dept. of Computer Science, University of British Columbia, 2009.
-
(2009)
Technical Report UBC TR-2009-23
-
-
Brochu, E.1
Cora, V.M.2
De Freitas, N.3
-
6
-
-
85043560166
-
Active preference learning with discrete choice data
-
E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with discrete choice data. In NIPS, pages 409-416, 2007.
-
(2007)
NIPS
, pp. 409-416
-
-
Brochu, E.1
De Freitas, N.2
Ghosh, A.3
-
7
-
-
69149092509
-
Optimization of ph and nitrogen for enhanced hydrogen production by synechocystis sp pcc 6803 via statistical and machine learning methods
-
E. H. Burrows, W.-K. Wong, X. Fern, F. W. R. Chaplen, and R. L. Ely. Optimization of ph and nitrogen for enhanced hydrogen production by synechocystis sp. pcc 6803 via statistical and machine learning methods. Biotechnology Progress, 25(4):1009-1017, 2009.
-
(2009)
Biotechnology Progress
, vol.25
, Issue.4
, pp. 1009-1017
-
-
Burrows, E.H.1
Wong, W.-K.2
Fern, X.3
Chaplen, F.W.R.4
Ely, R.L.5
-
8
-
-
85162416700
-
An empirical evaluation of thompson sampling
-
O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In NIPS, pages 2249-2257, 2011.
-
(2011)
NIPS
, pp. 2249-2257
-
-
Chapelle, O.1
Li, L.2
-
10
-
-
80053160717
-
Portfolio allocation for Bayesian optimization
-
M. W. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In UAI, pages 327-336, 2011.
-
(2011)
UAI
, pp. 327-336
-
-
Hoffman, M.W.1
Brochu, E.2
De Freitas, N.3
-
11
-
-
84877789387
-
Collaborative Gaussian processes for preference learning
-
N. Houlsby, J. M. Hernández-Lobato, F. Huszar, and Z. Ghahramani. Collaborative Gaussian processes for preference learning. In NIPS, pages 2096-2104, 2012.
-
(2012)
NIPS
, pp. 2096-2104
-
-
Houlsby, N.1
Hernández-Lobato, J.M.2
Huszar, F.3
Ghahramani, Z.4
-
12
-
-
33748437206
-
The copula-GARCH model of conditional dependencies: An international stock market application
-
E. Jondeau and M. Rockinger. The copula-GARCH model of conditional dependencies: An international stock market application. Journal of international money and finance, 25(5):827-853, 2006.
-
(2006)
Journal of International Money and Finance
, vol.25
, Issue.5
, pp. 827-853
-
-
Jondeau, E.1
Rockinger, M.2
-
13
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4):455-492, 1998.
-
(1998)
Journal of Global Optimization
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
14
-
-
84998710865
-
A new method of locating the maximum of an arbitrary multipeak curve in the presence of noise
-
H. Kushner. A new method of locating the maximum of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86, 1964.
-
(1964)
Journal of Basic Engineering
, vol.86
-
-
Kushner, H.1
-
16
-
-
84880890296
-
Automatic gait optimization with Gaussian process regression
-
D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait optimization with Gaussian process regression. In IJCAI, pages 944-949, 2007.
-
(2007)
IJCAI
, pp. 944-949
-
-
Lizotte, D.1
Wang, T.2
Bowling, M.3
Schuurmans, D.4
-
17
-
-
0000695404
-
Information-based objective functions for active data selection
-
D. J. MacKay. Information-based objective functions for active data selection. Neural Computation, 4(4):590-604, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.4
, pp. 590-604
-
-
MacKay, D.J.1
-
19
-
-
0342813049
-
The application of Bayesian methods for seeking the extremum
-
L. Dixon and G. Szego, editors Elsevier
-
J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum. In L. Dixon and G. Szego, editors, Toward Global Optimization, Volume 2. Elsevier, 1978.
-
(1978)
Toward Global Optimization
, vol.2
-
-
Močkus, J.1
Tiesis, V.2
Žilinskas, A.3
-
20
-
-
79961092747
-
The knowledge-gradient algorithm for sequencing experiments in drug discovery
-
D. M. Negoescu, P. I. Frazier, and W. B. Powell. The knowledge-gradient algorithm for sequencing experiments in drug discovery. INFORMS Journal on Computing, 23(3):346-363, 2011.
-
(2011)
INFORMS Journal on Computing
, vol.23
, Issue.3
, pp. 346-363
-
-
Negoescu, D.M.1
Frazier, P.I.2
Powell, W.B.3
-
21
-
-
77953218689
-
Random features for large-scale kernel machines
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177-1184, 2007.
-
(2007)
NIPS
, pp. 1177-1184
-
-
Rahimi, A.1
Recht, B.2
-
23
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 759-813
-
-
Seeger, M.W.1
-
24
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In NIPS, pages 2960-2968, 2012.
-
(2012)
NIPS
, pp. 2960-2968
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
25
-
-
84898995949
-
Derivative observations in Gaussian process models of dynamic systems
-
E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen. Derivative observations in Gaussian process models of dynamic systems. In NIPS, pages 1057-1064, 2003.
-
(2003)
NIPS
, pp. 1057-1064
-
-
Solak, E.1
Murray-Smith, R.2
Leithead, W.E.3
Leith, D.J.4
Rasmussen, C.E.5
-
26
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, pages 1015-1022, 2010.
-
(2010)
ICML
, pp. 1015-1022
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.M.3
Seeger, M.4
-
27
-
-
84937854195
-
Bayesian modeling with Gaussian processes using the matlab toolbox GPstuff (v3.3)
-
J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari. Bayesian modeling with Gaussian processes using the matlab toolbox GPstuff (v3.3). CoRR, abs/1206.5754, 2012.
-
(2012)
CoRR, Abs/1206.5754
-
-
Vanhatalo, J.1
Riihimäki, J.2
Hartikainen, J.3
Jylänki, P.4
Tolvanen, V.5
Vehtari, A.6
-
28
-
-
67650938640
-
An informational approach to the global optimization of expensive-to-evaluate functions
-
J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509-534, 2009.
-
(2009)
Journal of Global Optimization
, vol.44
, Issue.4
, pp. 509-534
-
-
Villemonteix, J.1
Vazquez, E.2
Walter, E.3
-
29
-
-
84897559913
-
Adaptive hamiltonian and riemann Monte Carlo samplers
-
Z. Wang, S. Mohamed, and N. de Freitas. Adaptive Hamiltonian and Riemann Monte Carlo samplers. In ICML, 2013.
-
(2013)
ICML
-
-
Wang, Z.1
Mohamed, S.2
De Freitas, N.3
|