메뉴 건너뛰기




Volumn 33, Issue , 2014, Pages 1005-1014

Bayesian multi-scale optimistic optimization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); GLOBAL OPTIMIZATION; MERGERS AND ACQUISITIONS;

EID: 84955498823     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (69)

References (42)
  • 3
    • 77956526263 scopus 로고    scopus 로고
    • Surrogating the surrogate: Accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm
    • Bardenet, R. and Kégl, B. Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm. In International Conference on Machine Learning, pp. 55-62, 2010.
    • (2010) International Conference on Machine Learning , pp. 55-62
    • Bardenet, R.1    Kégl, B.2
  • 9
    • 80555140070 scopus 로고    scopus 로고
    • Convergence rates of efficient global optimization algorithms
    • Bull, A. D. Convergence rates of efficient global optimization algorithms. Journal of Machine Learning Research, 12:2879-2904, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2879-2904
    • Bull, A.D.1
  • 14
    • 33847339319 scopus 로고    scopus 로고
    • Posterior consistency of Gaussian process prior for nonparametric binary regression
    • Ghosal, S. and Roy, A. Posterior consistency of Gaussian process prior for nonparametric binary regression. The Annals of Statistics, 34:2413-2429, 2006.
    • (2006) The Annals of Statistics , vol.34 , pp. 2413-2429
    • Ghosal, S.1    Roy, A.2
  • 15
    • 0035377566 scopus 로고    scopus 로고
    • Completely derandomized self-adaptation in evolution strategies
    • Hansen, N. and Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput., 9(2):159-195, 2001.
    • (2001) Evol. Comput. , vol.9 , Issue.2 , pp. 159-195
    • Hansen, N.1    Ostermeier, A.2
  • 16
  • 17
    • 78751705157 scopus 로고    scopus 로고
    • New inference strategies for solving Markov decision processes using reversible jump MCMC
    • Hoffman, M., Kueck, H., de Freitas, N., and Doucet, A. New inference strategies for solving Markov decision processes using reversible jump MCMC. In Uncertainty in Artificial Intelligence, pp. 223-231, 2009.
    • (2009) Uncertainty in Artificial Intelligence , pp. 223-231
    • Hoffman, M.1    Kueck, H.2    De Freitas, N.3    Doucet, A.4
  • 19
    • 84955451375 scopus 로고    scopus 로고
    • On correlation and budget constraints in model-based multi-armed-bandit optimization with application to automatic machine learning
    • Hoffman, M.W., Shahriari, B., and de Freitas, N. On correlation and budget constraints in model-based multi-armed-bandit optimization with application to automatic machine learning. In AI and Statistics, 2014.
    • (2014) AI and Statistics
    • Hoffman, M.W.1    Shahriari, B.2    De Freitas, N.3
  • 20
    • 84868554032 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration
    • Hutter, F., and Hoos, H. H., and Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Proceedings of LION-5, pp. 507-523, 2011.
    • (2011) Proceedings of LION-5 , pp. 507-523
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 22
    • 0035577808 scopus 로고    scopus 로고
    • A taxonomy of global optimization methods based on response surfaces
    • Jones, D.R. A taxonomy of global optimization methods based on response surfaces. J. of Global Optimization, 21(4):345-383, 2001.
    • (2001) J. of Global Optimization , vol.21 , Issue.4 , pp. 345-383
    • Jones, D.R.1
  • 27
    • 68749108525 scopus 로고    scopus 로고
    • Inference and learning for active sensing, experimental design and control
    • Araujo, H., Mendonca, A., Pinho, A., and Torres, M. (eds.) Springer Berlin Heidelberg
    • Kueck, H., Hoffman, M., Doucet, A., and de Freitas, N. Inference and learning for active sensing, experimental design and control. In Araujo, H., Mendonca, A., Pinho, A., and Torres, M. (eds.), Pattern Recognition and Image Analysis, Volume 5524, pp. 1-10. Springer Berlin Heidelberg, 2009.
    • (2009) Pattern Recognition and Image Analysis , vol.5524 , pp. 1-10
    • Kueck, H.1    Hoffman, M.2    Doucet, A.3    De Freitas, N.4
  • 28
    • 84896062990 scopus 로고    scopus 로고
    • An experimental methodology for response surface optimization methods
    • Lizotte, D., Greiner, R., and Schuurmans, D. An experimental methodology for response surface optimization methods. J. of Global Optimization, pp. 1-38, 2011.
    • (2011) J. of Global Optimization , pp. 1-38
    • Lizotte, D.1    Greiner, R.2    Schuurmans, D.3
  • 31
    • 84860620509 scopus 로고    scopus 로고
    • Optimistic Bayesian sampling in contextual bandit problems
    • School of Mathematics, University of Bristol
    • May, B. C., Korda, N., Lee, A., and Leslie, D. S. Optimistic Bayesian sampling in contextual bandit problems. Technical Report 11:01 Statistics Group, School of Mathematics, University of Bristol, 2011.
    • (2011) Technical Report 11:01 Statistics Group
    • May, B.C.1    Korda, N.2    Lee, A.3    Leslie, D.S.4
  • 32
    • 84867137347 scopus 로고
    • The Bayesian approach to global optimization
    • Springer
    • Močkus, J. The Bayesian approach to global optimization. In Systems Modeling and Optimization, Volume 38, pp. 473-481. Springer, 1982.
    • (1982) Systems Modeling and Optimization , vol.38 , pp. 473-481
    • Močkus, J.1
  • 33
    • 85162504694 scopus 로고    scopus 로고
    • Optimistic optimization of a deterministic function without the knowledge of its smoothness
    • Munos, R. Optimistic optimization of a deterministic function without the knowledge of its smoothness. In Advances in Neural Information Processing Systems, pp. 783-791, 2011.
    • (2011) Advances in Neural Information Processing Systems , pp. 783-791
    • Munos, R.1
  • 34
    • 84955439192 scopus 로고    scopus 로고
    • From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization and planning
    • Munos, R. From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning. Technical Report hal-00747575, INRIA Lille, 2014.
    • (2014) Technical Report Hal-00747575, INRIA Lille
    • Munos, R.1
  • 41
    • 77954033598 scopus 로고    scopus 로고
    • Convergence properties of the expected improvement algorithm with fixed mean and covariance functions
    • Vazquez, E. and Bect, J. Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. of Statistical Planning and Inference, 140:3088-3095, 2010.
    • (2010) J. of Statistical Planning and Inference , vol.140 , pp. 3088-3095
    • Vazquez, E.1    Bect, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.