메뉴 건너뛰기




Volumn 22, Issue , 2012, Pages 751-760

Adaptive MCMC with Bayesian optimization

Author keywords

[No Author keywords available]

Indexed keywords

MARKOV PROCESSES;

EID: 84954528329     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (42)

References (37)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley, David H., Hinton, Geoffrey E., and Sejnowski, Terrence J. A learning algorithm for Boltzmann machines. Cognitive Science, 9: 147-169, 1985.
    • (1985) Cognitive Science , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 2
    • 33750512542 scopus 로고    scopus 로고
    • On the ergodicity properties of some adaptive MCMC algorithms
    • Andrieu, Christophe and Moulines, Eric. On the ergodicity properties of some adaptive MCMC algorithms. The Annals of Applied Probability, 16 (3): 1462-1505, 2006.
    • (2006) The Annals of Applied Probability , vol.16 , Issue.3 , pp. 1462-1505
    • Christophe, A.1    Eric, M.2
  • 5
    • 0037262814 scopus 로고    scopus 로고
    • An introduction to MCMC for machine learning
    • January
    • Andrieu, Christophe, de Freitas, Nando, Doucet, Arnaud, and Jordan, Michael I. An Introduction to MCMC for Machine Learning. Machine Learning, 50 (1): 5-43, January 2003.
    • (2003) Machine Learning , vol.50 , Issue.1 , pp. 5-43
    • Christophe, A.1    De Freitas Nando2    Arnaud, D.3    Jordan, M.I.4
  • 7
    • 0000377218 scopus 로고
    • Projected Newton methods for optimization problems with simple constraints
    • Bertsekas, Dimitri P. Projected Newton methods for optimization problems with simple constraints. SIAM J. on Control and Optimization, 20 (2): 221-246, 1982.
    • (1982) SIAM J. on Control and Optimization , vol.20 , Issue.2 , pp. 221-246
    • Bertsekas Dimitri, P.1
  • 8
    • 84954473623 scopus 로고    scopus 로고
    • A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
    • Department of Computer Science, University of British Columbia, November
    • Brochu, Eric, Cora, Vlad M., and de Freitas, Nando. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report TR-2009-23, Department of Computer Science, University of British Columbia, November 2009.
    • (2009) Technical Report TR-2009-23
    • Eric, B.1    Cora Vlad, M.2    De Freitas Nando3
  • 13
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • Bernado, J. M. et al. (eds.). OUP
    • Gelman, Andrew, Roberts, Gareth O., and Gilks, Walter R. Efficient Metropolis jumping rules. In Bernado, J. M. et al. (eds.), Bayesian Statistics, volume 5, pp. 599. OUP, 1996.
    • (1996) Bayesian Statistics , vol.5 , pp. 599
    • Andrew, G.1    Roberts Gareth, O.2    Gilks Walter, R.3
  • 15
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, Heikki, Saksman, Eero, and Tamminen, Johanna. An adaptive Metropolis algorithm. Bernoulli, 7 (2): 223-242, 2001.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Heikki, H.1    Eero, S.2    Johanna, T.3
  • 19
    • 36049060531 scopus 로고
    • Diffusion constants near the critical point for time-dependent Ising models
    • Kawasaki, Kyozi. Diffusion constants near the critical point for time-dependent Ising models. i. Phys. Rev., 145 (1): 224-230, 1966.
    • (1966) I. Phys. Rev. , vol.145 , Issue.1 , pp. 224-230
    • Kyozi, K.1
  • 20
    • 70349318390 scopus 로고    scopus 로고
    • PhD thesis University of Alberta, Edmonton, Alberta, Canada
    • Lizotte, Daniel. Practical Bayesian Optimization. PhD thesis, University of Alberta, Edmonton, Alberta, Canada, 2008.
    • (2008) Practical Bayesian Optimization
    • Lizotte, D.1
  • 21
    • 84896062990 scopus 로고    scopus 로고
    • An experimental methodology for response surface optimization methods
    • Lizotte, Daniel, Greiner, Russell, and Schuurmans, Dale. An experimental methodology for response surface optimization methods. Journal of Global Optimization, pp. 1-38, 2011.
    • (2011) Journal of Global Optimization , pp. 1-38
    • Daniel, L.1    Russell, G.2    Dale, S.3
  • 26
    • 33751505380 scopus 로고    scopus 로고
    • Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian integrals
    • Rasmussen, Carl Edward. Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian integrals. Bayesian Statistics, 7: 651-659, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 651-659
    • Rasmussen, C.E.1
  • 28
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
    • Roberts, Gareth O. and Rosenthal, Jeffrey S. Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. Journal of applied probability, 44 (2): 458-475, 2007.
    • (2007) Journal of Applied Probability , vol.44 , Issue.2 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 30
    • 78650484041 scopus 로고    scopus 로고
    • On the ergodicity of the adaptive Metropolis algorithm on unbounded domains
    • Saksman, Eero and Vihola, Matti. On the ergodicity of the adaptive Metropolis algorithm on unbounded domains. Annals of Applied Probability, 20 (6): 2178-2203, 2010.
    • (2010) Annals of Applied Probability , vol.20 , Issue.6 , pp. 2178-2203
    • Eero, S.1    Matti, V.2
  • 32
    • 0347131360 scopus 로고    scopus 로고
    • Global versus local search in constrained optimization of computer models
    • Schonlau, Matthias, Welch, William J., and Jones, Donald R. Global versus local search in constrained optimization of computer models. Lecture Notes- Monograph Series, 34: 11-25, 1998.
    • (1998) Lecture Notes-Monograph Series , vol.34 , pp. 11-25
    • Matthias, S.1    Welch, W.J.2    Jones, D.R.3
  • 35
    • 70349269027 scopus 로고    scopus 로고
    • Grapham: Graphical models with adaptive random walk Metropolis algorithms
    • Vihola, Matti. Grapham: Graphical models with adaptive random walk Metropolis algorithms. Computational Statistics and Data Analysis, 54 (1): 49-54, 2010.
    • (2010) Computational Statistics and Data Analysis , vol.54 , Issue.1 , pp. 49-54
    • Vihola, M.1
  • 37
    • 0032286861 scopus 로고    scopus 로고
    • Orthogonal column Latin hypercubes and their application in computer experiments
    • Ye, Kenny Q. Orthogonal column Latin hypercubes and their application in computer experiments. Journal of the American Statistical Association, 93 (444): 1430-1439, 1998.
    • (1998) Journal of the American Statistical Association , vol.93 , Issue.444 , pp. 1430-1439
    • Ye Kenny, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.