-
1
-
-
84882279850
-
Collaborative hyperparameter tuning
-
Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. Collaborative hyperparameter tuning. In ICML, 2013.
-
(2013)
ICML
-
-
Bardenet, R.1
Brendel, M.2
Kégl, B.3
Sebag, M.4
-
3
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
Bergstra, J. S., Bardenet, R., Bengio, Y., and Kegl, B. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems. 2011.
-
(2011)
Advances in Neural Information Processing Systems
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kegl, B.4
-
6
-
-
80555140070
-
Convergence rates of efficient global optimization algorithms
-
Bull, A. D. Convergence rates of efficient global optimization algorithms. Journal of Machine Learning Research, (3-4):2879-2904, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.3-4
, pp. 2879-2904
-
-
Bull, A.D.1
-
7
-
-
0001561263
-
Bayesian back-propagation
-
Buntine, W. L. and Weigend, A. S. Bayesian back-propagation. Complex systems, 5(6):603-643, 1991.
-
(1991)
Complex Systems
, vol.5
, Issue.6
, pp. 603-643
-
-
Buntine, W.L.1
Weigend, A.S.2
-
8
-
-
84908188761
-
-
preprint arXiv:1402.5876
-
Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P. Manifold Gaussian processes for regression, preprint arXiv:1402.5876, 2014a.
-
(2014)
Manifold Gaussian Processes for Regression
-
-
Calandra, R.1
Peters, J.2
Rasmussen, C.E.3
Deisenroth, M.P.4
-
9
-
-
84970018691
-
An experimental evaluation of Bayesian optimization on bipedal locomotion
-
Calandra, R., Peters, J., Seyfarth, A., and Deisenroth, M. P. An experimental evaluation of Bayesian optimization on bipedal locomotion. In International Conference on Robotics and Automation, 2014b.
-
(2014)
International Conference on Robotics and Automation
-
-
Calandra, R.1
Peters, J.2
Seyfarth, A.3
Deisenroth, M.P.4
-
12
-
-
84867124523
-
Exponential regret bounds for Gaussian process bandits with deterministic observations
-
de Freitas, N., Smola, A. J., and Zoghi, M. Exponential regret bounds for Gaussian process bandits with deterministic observations. In ICML, 2012.
-
(2012)
ICML
-
-
De Freitas, N.1
Smola, A.J.2
Zoghi, M.3
-
14
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., and Leyton-Brown, K. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice, 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization in Theory and Practice
-
-
Eggensperger, K.1
Feurer, M.2
Hutter, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.6
Leyton-Brown, K.7
-
19
-
-
84897543523
-
Maxout networks
-
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., and Bengio, Y. Maxout networks. In ICML, 2013.
-
(2013)
ICML
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.C.4
Bengio, Y.5
-
24
-
-
84867720412
-
-
arXiv preprint arXiv: 1207.0580
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv: 1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
26
-
-
84856930049
-
Sequential model-based optimization for general algorithm configuration
-
Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Learning and Intelligent Optimization 5, 2011.
-
(2011)
Learning and Intelligent Optimization
, pp. 5
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
27
-
-
0035577808
-
A taxonomy of global optimization methods based on response surfaces
-
Jones, D. R. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21, 2001.
-
(2001)
Journal of Global Optimization
, pp. 21
-
-
Jones, D.R.1
-
31
-
-
84998710865
-
A new method for locating the maximum point of an arbitrary multipeak curve in the presence of noise
-
Kushner, H. J. A new method for locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86, 1964.
-
(1964)
Journal of Basic Engineering
, pp. 86
-
-
Kushner, H.J.1
-
32
-
-
77955513590
-
Marginalized neural network mixtures for large-scale regression
-
Lázaro-Gredilla, M. and Figueiras-Vidal, A. R. Marginalized neural network mixtures for large-scale regression. Neural Networks, IEEE Transactions on, 21(8): 1345-1351, 2010.
-
(2010)
Neural Networks, IEEE Transactions on
, vol.21
, Issue.8
, pp. 1345-1351
-
-
Lázaro-Gredilla, M.1
Figueiras-Vidal, A.R.2
-
33
-
-
84943645147
-
Deeply supervised nets
-
Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. Deeply supervised nets. In Deep Learning and Representation Learning Workshop, NIPS, 2014.
-
(2014)
Deep Learning and Representation Learning Workshop, NIPS
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
34
-
-
84908678178
-
Network in network
-
abs/1312.4400, URL
-
Lin, M., Chen, Q., and Yan, S. Network in network. CoRR, abs/1312.4400, 2013. URL http ://arxiv.org/abs/1312.4400.
-
(2013)
CoRR
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
35
-
-
84906493406
-
Microsoft COCO: Common objects in context
-
Springer
-
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft COCO: Common objects in context. In ECCV 2014, pp. 740-755. Springer, 2014.
-
(2014)
ECCV 2014
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
36
-
-
70349318390
-
-
PhD thesis, University of Alberta, Edmonton, Alberta
-
Lizotte, D. Practical Bayesian Optimization. PhD thesis, University of Alberta, Edmonton, Alberta, 2008.
-
(2008)
Practical Bayesian Optimization
-
-
Lizotte, D.1
-
37
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay, D. J. A practical Bayesian framework for backpropagation networks. Neural computation, 4(3):448-472, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.1
-
38
-
-
85017445853
-
Adaptive MCMC with Bayesian optimization
-
Mahendran, N., Wang, Z., Hamze, E, and de Freitas, N. Adaptive MCMC with Bayesian optimization. In Artificial Intelligence and Statistics, 2012.
-
(2012)
Artificial Intelligence and Statistics
-
-
Mahendran, N.1
Wang, Z.2
Hamze, E.3
De Freitas, N.4
-
39
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A. and Gregor, K. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
40
-
-
0342813049
-
The application of Bayesian methods for seeking the extremum
-
Mockus, J., Tiesis, V., and Zilinskas, A. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2, 1978.
-
(1978)
Towards Global Optimization
, pp. 2
-
-
Mockus, J.1
Tiesis, V.2
Zilinskas, A.3
-
41
-
-
1642370803
-
Slice sampling
-
Neal, R. Slice sampling. Annals of Statistics, 31:705-767, 2000.
-
(2000)
Annals of Statistics
, vol.31
, pp. 705-767
-
-
Neal, R.1
-
43
-
-
84969950310
-
Automated machine learning using stochastic algorithm tuning
-
Nickson, T., Osborne, M. A., Reece, S., and Roberts, S. Automated machine learning using stochastic algorithm tuning. NIPS Workshop on Bayesian Optimization, 2014.
-
(2014)
NIPS Workshop on Bayesian Optimization
-
-
Nickson, T.1
Osborne, M.A.2
Reece, S.3
Roberts, S.4
-
45
-
-
84919908080
-
Stochastic back-propagation and variational inference in deep latent Gaussian models
-
Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic back-propagation and variational inference in deep latent Gaussian models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
49
-
-
84919794855
-
Input warping for Bayesian optimization of non-stationary functions
-
Snoek, J., Swersky, K., Zemel, R. S., and Adams, R. P. Input warping for Bayesian optimization of non-stationary functions. In ICML, 2014.
-
(2014)
ICML
-
-
Snoek, J.1
Swersky, K.2
Zemel, R.S.3
Adams, R.P.4
-
50
-
-
84969925912
-
Striving for simplicity: The all convolutional net
-
abs/1412.6806, URL
-
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014. URL http://arxiv.org/abs/1412. 6806.
-
(2014)
CoRR
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.A.4
-
51
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaussian process optimization in the bandit setting: no regret and experimental design. In ICML, 2010.
-
(2010)
ICML
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.3
Seeger, M.4
-
54
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Wan, L., Zeiler, M. D., Zhang, S., Le Cun, Y., and Fergus, R. Regularization of neural networks using dropconnect. In ICML, 2013.
-
(2013)
ICML
-
-
Wan, L.1
Zeiler, M.D.2
Zhang, S.3
Le Cun, Y.4
Fergus, R.5
-
55
-
-
84896058897
-
Bayesian optimization in high dimensions via random embeddings
-
Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and de Freitas, N. Bayesian optimization in high dimensions via random embeddings. In IJCAI, 2013.
-
(2013)
IJCAI
-
-
Wang, Z.1
Zoghi, M.2
Hutter, F.3
Matheson, D.4
De Freitas, N.5
-
57
-
-
84939821074
-
-
arXiv preprint arXiv:1502.03044v2
-
Xu, K., Ba, J., Kiros, R., Cho, K, Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044v2, 2015.
-
(2015)
Attend and Tell: Neural Image Caption Generation with Visual Attention
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.5
Salakhutdinov, R.6
Zemel, R.7
Bengio, Y.S.8
|