메뉴 건너뛰기




Volumn 3, Issue , 2015, Pages 2161-2170

Scalable Bayesian optimization using deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DISTRIBUTION FUNCTIONS; FUNCTION EVALUATION; GLOBAL OPTIMIZATION; LEARNING SYSTEMS; OBJECT RECOGNITION;

EID: 84970022032     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (752)

References (58)
  • 6
    • 80555140070 scopus 로고    scopus 로고
    • Convergence rates of efficient global optimization algorithms
    • Bull, A. D. Convergence rates of efficient global optimization algorithms. Journal of Machine Learning Research, (3-4):2879-2904, 2011.
    • (2011) Journal of Machine Learning Research , vol.3-4 , pp. 2879-2904
    • Bull, A.D.1
  • 7
    • 0001561263 scopus 로고
    • Bayesian back-propagation
    • Buntine, W. L. and Weigend, A. S. Bayesian back-propagation. Complex systems, 5(6):603-643, 1991.
    • (1991) Complex Systems , vol.5 , Issue.6 , pp. 603-643
    • Buntine, W.L.1    Weigend, A.S.2
  • 12
    • 84867124523 scopus 로고    scopus 로고
    • Exponential regret bounds for Gaussian process bandits with deterministic observations
    • de Freitas, N., Smola, A. J., and Zoghi, M. Exponential regret bounds for Gaussian process bandits with deterministic observations. In ICML, 2012.
    • (2012) ICML
    • De Freitas, N.1    Smola, A.J.2    Zoghi, M.3
  • 27
    • 0035577808 scopus 로고    scopus 로고
    • A taxonomy of global optimization methods based on response surfaces
    • Jones, D. R. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21, 2001.
    • (2001) Journal of Global Optimization , pp. 21
    • Jones, D.R.1
  • 31
    • 84998710865 scopus 로고
    • A new method for locating the maximum point of an arbitrary multipeak curve in the presence of noise
    • Kushner, H. J. A new method for locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86, 1964.
    • (1964) Journal of Basic Engineering , pp. 86
    • Kushner, H.J.1
  • 34
    • 84908678178 scopus 로고    scopus 로고
    • Network in network
    • abs/1312.4400, URL
    • Lin, M., Chen, Q., and Yan, S. Network in network. CoRR, abs/1312.4400, 2013. URL http ://arxiv.org/abs/1312.4400.
    • (2013) CoRR
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 36
    • 70349318390 scopus 로고    scopus 로고
    • PhD thesis, University of Alberta, Edmonton, Alberta
    • Lizotte, D. Practical Bayesian Optimization. PhD thesis, University of Alberta, Edmonton, Alberta, 2008.
    • (2008) Practical Bayesian Optimization
    • Lizotte, D.1
  • 37
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. J. A practical Bayesian framework for backpropagation networks. Neural computation, 4(3):448-472, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.1
  • 39
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A. and Gregor, K. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 41
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal, R. Slice sampling. Annals of Statistics, 31:705-767, 2000.
    • (2000) Annals of Statistics , vol.31 , pp. 705-767
    • Neal, R.1
  • 45
    • 84919908080 scopus 로고    scopus 로고
    • Stochastic back-propagation and variational inference in deep latent Gaussian models
    • Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic back-propagation and variational inference in deep latent Gaussian models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 49
    • 84919794855 scopus 로고    scopus 로고
    • Input warping for Bayesian optimization of non-stationary functions
    • Snoek, J., Swersky, K., Zemel, R. S., and Adams, R. P. Input warping for Bayesian optimization of non-stationary functions. In ICML, 2014.
    • (2014) ICML
    • Snoek, J.1    Swersky, K.2    Zemel, R.S.3    Adams, R.P.4
  • 50
    • 84969925912 scopus 로고    scopus 로고
    • Striving for simplicity: The all convolutional net
    • abs/1412.6806, URL
    • Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014. URL http://arxiv.org/abs/1412. 6806.
    • (2014) CoRR
    • Springenberg, J.T.1    Dosovitskiy, A.2    Brox, T.3    Riedmiller, M.A.4
  • 51
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaussian process optimization in the bandit setting: no regret and experimental design. In ICML, 2010.
    • (2010) ICML
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 55


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.