메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1-361

Mixed effects models for the population approach: Models, tasks, methods and tools

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; IMPORTANCE SAMPLING; MARKOV PROCESSES; STOCHASTIC SYSTEMS;

EID: 84949283770     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b17203     Document Type: Book
Times cited : (162)

References (313)
  • 5
    • 0026355677 scopus 로고
    • A two state Markov mixture model for a time series of epileptic seizure counts
    • Albert, P. S. (1991). A two state Markov mixture model for a time series of epileptic seizure counts. Biometrics, 47(4):1371–1381.
    • (1991) Biometrics , vol.47 , Issue.4 , pp. 1371-1381
    • Albert, P.S.1
  • 6
    • 0033858416 scopus 로고    scopus 로고
    • Modeling repeated count data subject to informative dropout
    • Albert, P. S. and Follmann, D. A. (2004). Modeling repeated count data subject to informative dropout. Biometrics, 56(3):667–677.
    • (2004) Biometrics , vol.56 , Issue.3 , pp. 667-677
    • Albert, P.S.1    Follmann, D.A.2
  • 7
    • 77957599284 scopus 로고    scopus 로고
    • Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study
    • Allassonnière, S., Kuhn, E., and Trouvé, A. (2010). Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli, 16(3):641–678.
    • (2010) Bernoulli , vol.16 , Issue.3 , pp. 641-678
    • Allassonnière, S.1    Kuhn, E.2    Trouvé, A.3
  • 8
    • 0347192053 scopus 로고    scopus 로고
    • Marketing models of consumer heterogeneity
    • Allenby, G. M. and Rossi, P. E. (1998). Marketing models of consumer heterogeneity. Journal of Econometrics, 89(1):57–78.
    • (1998) Journal of Econometrics , vol.89 , Issue.1 , pp. 57-78
    • Allenby, G.M.1    Rossi, P.E.2
  • 9
    • 42749096545 scopus 로고    scopus 로고
    • A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models
    • Alonso, A., Litière, S., and Molenberghs, G. (2008). A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models. Computational Statistics & Data Analysis, 52(9):4474–4486.
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.9 , pp. 4474-4486
    • Alonso, A.1    Litière, S.2    Molenberghs, G.3
  • 10
    • 77956209227 scopus 로고    scopus 로고
    • Testing for misspecification in generalized linear mixed models
    • Alonso, A., Litière, S., and Molenberghs, G. (2010). Testing for misspecification in generalized linear mixed models. Biostatistics, 11(4):771– 786.
    • (2010) Biostatistics , vol.11 , Issue.4 , pp. 771-786
    • Alonso, A.1    Litière, S.2    Molenberghs, G.3
  • 11
    • 33947231297 scopus 로고    scopus 로고
    • Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting
    • Altman, R. M. (2007). Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting. Journal of the American Statistical Association, 102(477):201–210.
    • (2007) Journal of the American Statistical Association , vol.102 , Issue.477 , pp. 201-210
    • Altman, R.M.1
  • 12
    • 34547599511 scopus 로고    scopus 로고
    • Wiley Reference Series in Biostatistics
    • Andersen, P. K. (2006). Survival Analysis. Wiley Reference Series in Biostatistics.
    • (2006) Survival Analysis
    • Andersen, P.K.1
  • 13
    • 84872487320 scopus 로고    scopus 로고
    • On the practical application of mixed effects models for repeated measures to clinical trial data
    • Andersen, S. W. and Millen, B. A. (2013). On the practical application of mixed effects models for repeated measures to clinical trial data. Pharmaceutical Statistics, 12(1):7–16.
    • (2013) Pharmaceutical Statistics , vol.12 , Issue.1 , pp. 7-16
    • Andersen, S.W.1    Millen, B.A.2
  • 14
    • 34548650248 scopus 로고    scopus 로고
    • Analysis of responses in migraine modelling using hidden Markov models
    • Anisimov, V. V., Maas, H. J., Danhof, M., and Della Pasqua, O. (2007). Analysis of responses in migraine modelling using hidden Markov models. Statistics in Medicine, 26(22):4163–4178.
    • (2007) Statistics in Medicine , vol.26 , Issue.22 , pp. 4163-4178
    • Anisimov, V.V.1    Maas, H.J.2    Danhof, M.3    della Pasqua, O.4
  • 16
    • 0028470191 scopus 로고
    • Limit of detection (LOD)/limit of quantitation (LOQ): Comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs
    • Armbruster, D. A., Tillman, M. D., and Hubbs, L. M. (1994). Limit of detection (LOD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clinical Chemistry, 40(7):1233–1238.
    • (1994) Clinical Chemistry , vol.40 , Issue.7 , pp. 1233-1238
    • Armbruster, D.A.1    Tillman, M.D.2    Hubbs, L.M.3
  • 17
    • 54049133744 scopus 로고    scopus 로고
    • Mixed-effects modeling with crossed random effects for subjects and items
    • Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4):390–412.
    • (2008) Journal of Memory and Language , vol.59 , Issue.4 , pp. 390-412
    • Baayen, R.H.1    Davidson, D.J.2    Bates, D.M.3
  • 18
    • 84878453641 scopus 로고    scopus 로고
    • Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model
    • Baey, C., Didier, A., Lemaire, S., Maupas, F., and Cournède, P.-H. (2013). Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model. Ecological Modelling, 263:56–63.
    • (2013) Ecological Modelling , vol.263 , pp. 56-63
    • Baey, C.1    Didier, A.2    Lemaire, S.3    Maupas, F.4    Cournède, P.-H.5
  • 19
    • 84862181592 scopus 로고    scopus 로고
    • Asymptotic normality of posterior distributions for generalized linear mixed models
    • Baghishani, H. and Mohammadzadeh, M. (2012). Asymptotic normality of posterior distributions for generalized linear mixed models. Journal of Multivariate Analysis, 111:66–77.
    • (2012) Journal of Multivariate Analysis , vol.111 , pp. 66-77
    • Baghishani, H.1    Mohammadzadeh, M.2
  • 20
    • 0033987749 scopus 로고    scopus 로고
    • Mixed-effects models in psychophysiology
    • Bagiella, E., Sloan, R. P., and Heitjan, D. F. (2000). Mixed-effects models in psychophysiology. Psychophysiology, 37(1):13–20.
    • (2000) Psychophysiology , vol.37 , Issue.1 , pp. 13-20
    • Bagiella, E.1    Sloan, R.P.2    Heitjan, D.F.3
  • 23
    • 3442883206 scopus 로고    scopus 로고
    • Linear mixed models and penalized least squares
    • Bates, D. M. and DebRoy, S. (2004). Linear mixed models and penalized least squares. Journal of Multivariate Analysis, 91(1):1–17.
    • (2004) Journal of Multivariate Analysis , vol.91 , Issue.1 , pp. 1-17
    • Bates, D.M.1    Debroy, S.2
  • 24
    • 77950369264 scopus 로고    scopus 로고
    • Design evaluation and optimisation in multiple response nonlinear mixed effect models: PFIM 3.0
    • Bazzoli, C., Retout, S., and Mentré, F. (2010). Design evaluation and optimisation in multiple response nonlinear mixed effect models: PFIM 3.0. Computer Methods and Programs in Biomedicine, 98(1):55–65.
    • (2010) Computer Methods and Programs in Biomedicine , vol.98 , Issue.1 , pp. 55-65
    • Bazzoli, C.1    Retout, S.2    Mentré, F.3
  • 26
    • 79951555641 scopus 로고    scopus 로고
    • Restricted likelihood inference for generalized linear mixed models
    • Bellio, R. and Brazzale, A. R. (2011). Restricted likelihood inference for generalized linear mixed models. Statistics and Computing, 21(2):173– 183.
    • (2011) Statistics and Computing , vol.21 , Issue.2 , pp. 173-183
    • Bellio, R.1    Brazzale, A.R.2
  • 27
    • 79957451960 scopus 로고    scopus 로고
    • Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models
    • Bergstrand, M., Hooker, A. C., Wallin, J. E., and Karlsson, M. O. (2011). Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. The AAPS Journal, 13(2):143–151.
    • (2011) The AAPS Journal , vol.13 , Issue.2 , pp. 143-151
    • Bergstrand, M.1    Hooker, A.C.2    Wallin, J.E.3    Karlsson, M.O.4
  • 28
    • 68249141539 scopus 로고    scopus 로고
    • Handling data below the limit of quantification in mixed effect models
    • Bergstrand, M. and Karlsson, M. (2009). Handling data below the limit of quantification in mixed effect models. The AAPS Journal, 11(2):371–380.
    • (2009) The AAPS Journal , vol.11 , Issue.2 , pp. 371-380
    • Bergstrand, M.1    Karlsson, M.2
  • 29
    • 84870014716 scopus 로고    scopus 로고
    • Statistical analysis of longitudinal neuroimage data with linear mixed effects models
    • Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., and Sabuncu, M. R. (2013). Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage, 66:249–260.
    • (2013) Neuroimage , vol.66 , pp. 249-260
    • Bernal-Rusiel, J.L.1    Greve, D.N.2    Reuter, M.3    Fischl, B.4    Sabuncu, M.R.5
  • 30
    • 84858865570 scopus 로고    scopus 로고
    • Some alternatives to asymptotic tests for the analysis of pharmacogenetic data using nonlinear mixed effects models
    • Bertrand, J., Comets, E., Chenel, M., and Mentré, F. (2012). Some alternatives to asymptotic tests for the analysis of pharmacogenetic data using nonlinear mixed effects models. Biometrics, 68(1):146–155.
    • (2012) Biometrics , vol.68 , Issue.1 , pp. 146-155
    • Bertrand, J.1    Comets, E.2    Chenel, M.3    Mentré, F.4
  • 32
    • 0346093811 scopus 로고    scopus 로고
    • Individual effects and dynamics in count data models
    • Blundell, R., Griffith, R., and Windmeijer, F. (2002). Individual effects and dynamics in count data models. Journal of Econometrics, 108(1):113–131.
    • (2002) Journal of Econometrics , vol.108 , Issue.1 , pp. 113-131
    • Blundell, R.1    Griffith, R.2    Windmeijer, F.3
  • 35
    • 78650073483 scopus 로고    scopus 로고
    • Joint variable selection for fixed and random effects in linear mixed-effects models
    • Bondell, H. D., Krishna, A., and Ghosh, S. K. (2010). Joint variable selection for fixed and random effects in linear mixed-effects models. Biometrics, 66(4):1069–1077.
    • (2010) Biometrics , vol.66 , Issue.4 , pp. 1069-1077
    • Bondell, H.D.1    Krishna, A.2    Ghosh, S.K.3
  • 36
    • 70349505264 scopus 로고    scopus 로고
    • Forecasting and Control. Wiley Series in Probability and Statistics
    • Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control. Wiley Series in Probability and Statistics.
    • (2008) Time Series Analysis
    • Box, G.E.P.1    Jenkins, G.M.2    Reinsel, G.C.3
  • 37
    • 79961173550 scopus 로고    scopus 로고
    • Generalized linear models with clustered data: Fixed and random effects models
    • Broström, G. and Holmberg, H. (2011). Generalized linear models with clustered data: fixed and random effects models. Computational Statistics & Data Analysis, 55(12):3123–3134.
    • (2011) Computational Statistics & Data Analysis , vol.55 , Issue.12 , pp. 3123-3134
    • Broström, G.1    Holmberg, H.2
  • 40
    • 84861871138 scopus 로고    scopus 로고
    • Analysing the influence of crop management on pesticide use intensity while controlling for external sources of variability with linear mixed effects models
    • Bürger, J., Günther, A., de Mol, F., and Gerowitt, B. (2012). Analysing the influence of crop management on pesticide use intensity while controlling for external sources of variability with linear mixed effects models. Agricultural Systems, 111:13–22.
    • (2012) Agricultural Systems , vol.111 , pp. 13-22
    • Bürger, J.1    Günther, A.2    de Mol, F.3    Gerowitt, B.4
  • 44
    • 0002632234 scopus 로고
    • An introduction to empirical Bayes data analysis
    • Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39(2):83–87.
    • (1985) The American Statistician , vol.39 , Issue.2 , pp. 83-87
    • Casella, G.1
  • 46
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • Celeux, G. and Diebolt, J. (1985). The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly, 2(1):73–82.
    • (1985) Computational Statistics Quarterly , vol.2 , Issue.1 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 47
    • 79551612335 scopus 로고    scopus 로고
    • The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects
    • Chan, P. L. S., Jacqmin, P., Lavielle, M., McFadyen, L., and Weatherley, B. (2011). The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects. Journal of Pharmacokinetics and Pharmacodynamics, 38(1):41–61.
    • (2011) Journal of Pharmacokinetics and Pharmacodynamics , vol.38 , Issue.1 , pp. 41-61
    • Chan, P.L.S.1    Jacqmin, P.2    Lavielle, M.3    McFadyen, L.4    Weatherley, B.5
  • 48
    • 33745102457 scopus 로고    scopus 로고
    • Computationally efficient Monte Carlo EM algorithms for generalized linear mixed models
    • Chen, Y.-H. (2006). Computationally efficient Monte Carlo EM algorithms for generalized linear mixed models. Journal of Statistical Computation and Simulation, 76(9):817–828.
    • (2006) Journal of Statistical Computation and Simulation , vol.76 , Issue.9 , pp. 817-828
    • Chen, Y.-H.1
  • 49
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • Chen, Z. and Dunson, D. B. (2003). Random effects selection in linear mixed models. Biometrics, 59(4):762–769.
    • (2003) Biometrics , vol.59 , Issue.4 , pp. 762-769
    • Chen, Z.1    Dunson, D.B.2
  • 50
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • Chi, Y.-Y. and Ibrahim, J. G. (2006). Joint models for multivariate longitudinal and multivariate survival data. Biometrics, 62(2):432– 445.
    • (2006) Biometrics , vol.62 , Issue.2 , pp. 432-445
    • Chi, Y.-Y.1    Ibrahim, J.G.2
  • 51
    • 0035989805 scopus 로고    scopus 로고
    • Bayesian prediction of spatial count data using generalized linear mixed models
    • Christensen, O. F. and Waagepetersen, R. (2002). Bayesian prediction of spatial count data using generalized linear mixed models. Biometrics, 58(2):280–286.
    • (2002) Biometrics , vol.58 , Issue.2 , pp. 280-286
    • Christensen, O.F.1    Waagepetersen, R.2
  • 52
    • 67949114172 scopus 로고    scopus 로고
    • Goodness-of-fit tests in mixed models
    • Claeskens, G. and Hart, J. (2009). Goodness-of-fit tests in mixed models. Test, 18(2):213–239.
    • (2009) Test , vol.18 , Issue.2 , pp. 213-239
    • Claeskens, G.1    Hart, J.2
  • 53
    • 79957529778 scopus 로고    scopus 로고
    • Model evaluation in nonlinear mixed effect models, with applications to pharmacokinetics
    • Comets, E. and Brendel, K. (2010). Model evaluation in nonlinear mixed effect models, with applications to pharmacokinetics. Journal de la Société Française de Statistique, 151(1):106–128.
    • (2010) Journal De La Société Française De Statistique , vol.151 , Issue.1 , pp. 106-128
    • Comets, E.1    Brendel, K.2
  • 54
    • 40949086000 scopus 로고    scopus 로고
    • Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: The npde add-on package for R
    • Comets, E., Brendel, K., and Mentré, F. (2008). Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Computer Methods and Programs in Biomedicine, 90(2):154–166.
    • (2008) Computer Methods and Programs in Biomedicine , vol.90 , Issue.2 , pp. 154-166
    • Comets, E.1    Brendel, K.2    Mentré, F.3
  • 58
    • 0026273053 scopus 로고
    • A hierarchical model of leisure constraints
    • Crawford, D. W., Jackson, E. L., and Godbey, G. (1991). A hierarchical model of leisure constraints. Leisure Sciences, 13(4):309–320.
    • (1991) Leisure Sciences , vol.13 , Issue.4 , pp. 309-320
    • Crawford, D.W.1    Jackson, E.L.2    Godbey, G.3
  • 61
    • 0003113478 scopus 로고    scopus 로고
    • Some bootstrap methods in nonlinear mixed-effect models
    • Das, S. and Krishen, A. (1999). Some bootstrap methods in nonlinear mixed-effect models. Journal of Statistical Planning and Inference, 75(2):237–245.
    • (1999) Journal of Statistical Planning and Inference , vol.75 , Issue.2 , pp. 237-245
    • Das, S.1    Krishen, A.2
  • 63
    • 84859507479 scopus 로고    scopus 로고
    • Why statistics?
    • Davidian, M. and Louis, T. A. (2012). Why statistics? Science, 336(6077):12.
    • (2012) Science , vol.336 , Issue.6077 , pp. 12
    • Davidian, M.1    Louis, T.A.2
  • 65
    • 0028627762 scopus 로고
    • Modelling progression of CD4-lymphocyte count and its relationship to survival time
    • De Gruttola, V. and Tu, X. M. (1994). Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics, 50(4):1003–1014.
    • (1994) Biometrics , vol.50 , Issue.4 , pp. 1003-1014
    • de Gruttola, V.1    Tu, X.M.2
  • 67
    • 84857657154 scopus 로고    scopus 로고
    • Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm
    • Delattre, M. and Lavielle, M. (2012). Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm. Computational Statistics & Data Analysis, 56(6):2073–2085.
    • (2012) Computational Statistics & Data Analysis , vol.56 , Issue.6 , pp. 2073-2085
    • Delattre, M.1    Lavielle, M.2
  • 68
    • 84893350019 scopus 로고    scopus 로고
    • Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models
    • Delattre, M. and Lavielle, M. (2013). Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Statistics and Its Interfaces, 6(4):519– 532.
    • (2013) Statistics and Its Interfaces , vol.6 , Issue.4 , pp. 519-532
    • Delattre, M.1    Lavielle, M.2
  • 70
    • 84865504028 scopus 로고    scopus 로고
    • Analysis of exposure–response of CI-945 in patients with epilepsy: Application of novel mixed hidden Markov modeling methodology
    • Delattre, M., Savic, R. M., Miller, R., Karlsson, M. O., and Lavielle, M. (2012). Analysis of exposure–response of CI-945 in patients with epilepsy: application of novel mixed hidden Markov modeling methodology. Journal of Pharmacokinetics and Pharmacodynamics, 39(3):263–271.
    • (2012) Journal of Pharmacokinetics and Pharmacodynamics , vol.39 , Issue.3 , pp. 263-271
    • Delattre, M.1    Savic, R.M.2    Miller, R.3    Karlsson, M.O.4    Lavielle, M.5
  • 71
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon, B., Lavielle, M., and Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm. Annals of Statistics, 27(1):94–128.
    • (1999) Annals of Statistics , vol.27 , Issue.1 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 75
    • 79956157954 scopus 로고    scopus 로고
    • Information methods for model selection in linear mixed effects models with application to HCV data
    • Dimova, R. B., Markatou, M., and Talal, A. H. (2011). Information methods for model selection in linear mixed effects models with application to HCV data. Computational Statistics & Data Analysis, 55(9):2677–2697.
    • (2011) Computational Statistics & Data Analysis , vol.55 , Issue.9 , pp. 2677-2697
    • Dimova, R.B.1    Markatou, M.2    Talal, A.H.3
  • 76
    • 45749127284 scopus 로고    scopus 로고
    • Mixed effects in stochastic differential equation models
    • Ditlevsen, S. and Gaetano, A. D. (2005). Mixed effects in stochastic differential equation models. REVSTAT Statistical Journal, 3:137– 153.
    • (2005) REVSTAT Statistical Journal , vol.3 , pp. 137-153
    • Ditlevsen, S.1    Gaetano, A.D.2
  • 78
    • 55749092754 scopus 로고    scopus 로고
    • Parametric inference for mixed models defined by stochastic differential equations
    • Donnet, S. and Samson, A. (2008). Parametric inference for mixed models defined by stochastic differential equations. ESAIM: Probability and Statistics, 12:196–218.
    • (2008) ESAIM: Probability and Statistics , vol.12 , pp. 196-218
    • Donnet, S.1    Samson, A.2
  • 79
    • 80052294085 scopus 로고    scopus 로고
    • Conditional Akaike information under generalized linear and proportional hazards mixed models
    • Donohue, M. C., Overholser, R., Xu, R., and Vaida, F. (2011). Conditional Akaike information under generalized linear and proportional hazards mixed models. Biometrika, 98(3):685–700.
    • (2011) Biometrika , vol.98 , Issue.3 , pp. 685-700
    • Donohue, M.C.1    Overholser, R.2    Xu, R.3    Vaida, F.4
  • 80
    • 78650228346 scopus 로고    scopus 로고
    • Robust-efficient fitting of mixed linear models: Methodology and theory
    • Dornheim, H. and Brazauskas, V. (2011). Robust-efficient fitting of mixed linear models: methodology and theory. Journal of Statistical Planning and Inference, 141(4):1422–1435.
    • (2011) Journal of Statistical Planning and Inference , vol.141 , Issue.4 , pp. 1422-1435
    • Dornheim, H.1    Brazauskas, V.2
  • 81
    • 84871220838 scopus 로고    scopus 로고
    • Testing multiple variance components in linear mixed-effects models
    • Drikvandi, R., Verbeke, G., Khodadadi, A., and Nia, V. P. (2013). Testing multiple variance components in linear mixed-effects models. Biostatistics, 14(1):144–159.
    • (2013) Biostatistics , vol.14 , Issue.1 , pp. 144-159
    • Drikvandi, R.1    Verbeke, G.2    Khodadadi, A.3    Nia, V.P.4
  • 82
    • 80051877714 scopus 로고    scopus 로고
    • Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm
    • Dubois, A., Lavielle, M., Gsteiger, S., Pigeolet, E., and Mentré, F. (2011). Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm. Statistics in Medicine, 30(21):2582–2600.
    • (2011) Statistics in Medicine , vol.30 , Issue.21 , pp. 2582-2600
    • Dubois, A.1    Lavielle, M.2    Gsteiger, S.3    Pigeolet, E.4    Mentré, F.5
  • 85
    • 0003991665 scopus 로고
    • Chapman & Hall/CRC Monographs on Statistics and Applied Probability
    • Efron, B. and Tibshirani, R. (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC Monographs on Statistics and Applied Probability.
    • (1994) An Introduction to the Bootstrap
    • Efron, B.1    Tibshirani, R.2
  • 87
    • 40349100335 scopus 로고    scopus 로고
    • Safety and nutritional assessment of GM plants and derived food and feed: The role of animal feeding trials
    • EFSA, GMO Panel Working Group (2008). Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food and Chemical Toxicology, 46:S2–70.
    • (2008) Food and Chemical Toxicology , vol.46 , pp. S2-70
  • 88
    • 60249097990 scopus 로고    scopus 로고
    • Approximate Bayesian inference in spatial generalized linear mixed models
    • Eidsvik, J., Martino, S., and Rue, H. (2009). Approximate Bayesian inference in spatial generalized linear mixed models. Scandinavian Journal of Statistics, 36(1):1–22.
    • (2009) Scandinavian Journal of Statistics , vol.36 , Issue.1 , pp. 1-22
    • Eidsvik, J.1    Martino, S.2    Rue, H.3
  • 89
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff, R. M., Li, G., and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics, 64(3):762–771.
    • (2008) Biometrics , vol.64 , Issue.3 , pp. 762-771
    • Elashoff, R.M.1    Li, G.2    Li, N.3
  • 90
    • 18844416849 scopus 로고
    • Wald, likelihood ratio, and Lagrange multiplier tests in econometrics
    • Engle, R. F. (1984). Wald, likelihood ratio, and Lagrange multiplier tests in econometrics. Handbook of Econometrics, 2:775–826.
    • (1984) Handbook of Econometrics , vol.2 , pp. 775-826
    • Engle, R.F.1
  • 91
    • 0001241028 scopus 로고
    • Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models
    • Fahrmeir, L. and Kaufmann, H. (1985). Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. The Annals of Statistics, 13(1):342–368.
    • (1985) The Annals of Statistics , vol.13 , Issue.1 , pp. 342-368
    • Fahrmeir, L.1    Kaufmann, H.2
  • 98
    • 2342452152 scopus 로고    scopus 로고
    • Methods for handling dropouts in longitudinal clinical trials
    • Fitzmaurice, G. M. (2003). Methods for handling dropouts in longitudinal clinical trials. Statistica Neerlandica, 57(1):75–99.
    • (2003) Statistica Neerlandica , vol.57 , Issue.1 , pp. 75-99
    • Fitzmaurice, G.M.1
  • 100
    • 77956640383 scopus 로고    scopus 로고
    • Bayesian inference for generalized linear mixed models
    • Fong, Y., Rue, H., and Wakefield, J. (2010). Bayesian inference for generalized linear mixed models. Biostatistics, 11(3):397–412.
    • (2010) Biostatistics , vol.11 , Issue.3 , pp. 397-412
    • Fong, Y.1    Rue, H.2    Wakefield, J.3
  • 101
    • 0042358780 scopus 로고    scopus 로고
    • Convergence of the Monte Carlo expectation maximization for curved exponential families
    • Fort, G. and Moulines, E. (2003). Convergence of the Monte Carlo expectation maximization for curved exponential families. The Annals of Statistics, 31(4):1220–1259.
    • (2003) The Annals of Statistics , vol.31 , Issue.4 , pp. 1220-1259
    • Fort, G.1    Moulines, E.2
  • 102
  • 109
    • 57749169960 scopus 로고    scopus 로고
    • Likelihood ratio tests for variance components in linear mixed models
    • Giampaoli, V. and Singer, J. M. (2009). Likelihood ratio tests for variance components in linear mixed models. Journal of Statistical Planning and Inference, 139(4):1435–1448.
    • (2009) Journal of Statistical Planning and Inference , vol.139 , Issue.4 , pp. 1435-1448
    • Giampaoli, V.1    Singer, J.M.2
  • 110
    • 0034431911 scopus 로고    scopus 로고
    • Mixed-effects models for mental health services research
    • Gibbons, R. D. (2000). Mixed-effects models for mental health services research. Health Services and Outcomes Research Methodology, 1(2):91–129.
    • (2000) Health Services and Outcomes Research Methodology , vol.1 , Issue.2 , pp. 91-129
    • Gibbons, R.D.1
  • 114
    • 78651278795 scopus 로고    scopus 로고
    • On the behaviour of marginal and conditional AIC in linear mixed models
    • Greven, S. and Kneib, T. (2010). On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika, 97(4):773–789.
    • (2010) Biometrika , vol.97 , Issue.4 , pp. 773-789
    • Greven, S.1    Kneib, T.2
  • 118
    • 0033635967 scopus 로고    scopus 로고
    • Zero-inflated Poisson and binomial regression with random effects: A case study
    • Hall, D. B. (2004). Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics, 56(4):1030–1039.
    • (2004) Biometrics , vol.56 , Issue.4 , pp. 1030-1039
    • Hall, D.B.1
  • 119
    • 28844459033 scopus 로고    scopus 로고
    • Results of a 90-day safety assurance study with rats fed grain from corn rootworm-protected corn
    • Hammond, B., Lemen, J., Dudek, R., Ward, D., Jiang, C., Nemeth, M., and Burns, J. (2006). Results of a 90-day safety assurance study with rats fed grain from corn rootworm-protected corn. Food and Chemical Toxicology, 44(2):147–160.
    • (2006) Food and Chemical Toxicology , vol.44 , Issue.2 , pp. 147-160
    • Hammond, B.1    Lemen, J.2    Dudek, R.3    Ward, D.4    Jiang, C.5    Nemeth, M.6    Burns, J.7
  • 120
    • 0004185151 scopus 로고
    • Wiley Series in Probability and Mathematical Statistics
    • Hartigan, J. A. (1975). Clustering Algorithms. Wiley Series in Probability and Mathematical Statistics.
    • (1975) Clustering Algorithms
    • Hartigan, J.A.1
  • 123
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1(4):465– 480.
    • (2000) Biostatistics , vol.1 , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 124
    • 0022997648 scopus 로고
    • Clinical pharmacokinetics and pharmacodynamics of warfarin. Understanding the dose-effect relationship
    • Holford, N. (1986). Clinical pharmacokinetics and pharmacodynamics of warfarin. understanding the dose-effect relationship. Clinical Pharmacokinetics, 11(6):483–504.
    • (1986) Clinical Pharmacokinetics , vol.11 , Issue.6 , pp. 483-504
    • Holford, N.1
  • 126
    • 0019785890 scopus 로고
    • Understanding the dose-effect relationship
    • Holford, N. H. and Sheiner, L. B. (1981). Understanding the dose-effect relationship. Clinical Pharmacokinetics, 6(6):429–453.
    • (1981) Clinical Pharmacokinetics , vol.6 , Issue.6 , pp. 429-453
    • Holford, N.H.1    Sheiner, L.B.2
  • 128
    • 0038402581 scopus 로고    scopus 로고
    • A joint model for nonlinear longitudinal data with informative dropout
    • Hu, C. and Sale, M. E. (2003). A joint model for nonlinear longitudinal data with informative dropout. Journal of Pharmacokinetics and Pharmacodynamics, 30(1):83–103.
    • (2003) Journal of Pharmacokinetics and Pharmacodynamics , vol.30 , Issue.1 , pp. 83-103
    • Hu, C.1    Sale, M.E.2
  • 129
    • 78651422985 scopus 로고    scopus 로고
    • A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects
    • Huang, X., Li, G., Elashoff, R. M., and Pan, J. (2011). A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Analysis, 17(1):80–100.
    • (2011) Lifetime Data Analysis , vol.17 , Issue.1 , pp. 80-100
    • Huang, X.1    Li, G.2    Elashoff, R.M.3    Pan, J.4
  • 130
    • 34547653644 scopus 로고    scopus 로고
    • A joint frailty model for survival and gap times between recurrent events
    • Huang, X. and Liu, L. (2007). A joint frailty model for survival and gap times between recurrent events. Biometrics, 63(2):389–397.
    • (2007) Biometrics , vol.63 , Issue.2 , pp. 389-397
    • Huang, X.1    Liu, L.2
  • 132
    • 0032967506 scopus 로고    scopus 로고
    • Mixed effects models with censored data with application to HIV RNA levels
    • Hughes, J. P. (1999). Mixed effects models with censored data with application to HIV RNA levels. Biometrics, 55(2):625–629.
    • (1999) Biometrics , vol.55 , Issue.2 , pp. 625-629
    • Hughes, J.P.1
  • 133
    • 84974064773 scopus 로고
    • How are foreign policy attitudes structured? A hierarchical model
    • Hurwitz, J. and Peffley, M. (1987). How are foreign policy attitudes structured? a hierarchical model. The American Political Science Review, 81(4):1099–1120.
    • (1987) The American Political Science Review , vol.81 , Issue.4 , pp. 1099-1120
    • Hurwitz, J.1    Peffley, M.2
  • 135
    • 77954944281 scopus 로고    scopus 로고
    • Basic concepts and methods for joint models of longitudinal and survival data
    • Ibrahim, J. G., Chu, H., and Chen, L. M. (2010). Basic concepts and methods for joint models of longitudinal and survival data. Journal of Clinical Oncology, 28(16):2796–2801.
    • (2010) Journal of Clinical Oncology , vol.28 , Issue.16 , pp. 2796-2801
    • Ibrahim, J.G.1    Chu, H.2    Chen, L.M.3
  • 136
    • 79959368569 scopus 로고    scopus 로고
    • Fixed and random effects selection in mixed effects models
    • Ibrahim, J. G., Zhu, H., Garcia, R. I., and Guo, R. (2011). Fixed and random effects selection in mixed effects models. Biometrics, 67(2):495– 503.
    • (2011) Biometrics , vol.67 , Issue.2 , pp. 495-503
    • Ibrahim, J.G.1    Zhu, H.2    Garcia, R.I.3    Guo, R.4
  • 137
    • 84859185340 scopus 로고    scopus 로고
    • Mixed effects modeling of proliferation rates in cell-based models: Consequence for pharmacogenomics and cancer
    • Im, H. K., Gamazon, E. R., Stark, A. L., Huang, R. S., Cox, N. J., and Dolan, M. E. (2012). Mixed effects modeling of proliferation rates in cell-based models: Consequence for pharmacogenomics and cancer. PLoS genetics, 8(2):e1002525.
    • (2012) Plos Genetics , vol.8 , Issue.2
    • Im, H.K.1    Gamazon, E.R.2    Stark, A.L.3    Huang, R.S.4    Cox, N.J.5    Dolan, M.E.6
  • 138
    • 0001025775 scopus 로고    scopus 로고
    • Analysis of left-censored longitudinal data with application to viral load in HIV infection
    • Jacqmin-Gadda, H., Thiébaut, R., Chêne, G., and Commenges, D. (2000). Analysis of left-censored longitudinal data with application to viral load in HIV infection. Biostatistics, 1(4):355–368.
    • (2000) Biostatistics , vol.1 , Issue.4 , pp. 355-368
    • Jacqmin-Gadda, H.1    Thiébaut, R.2    Chêne, G.3    Commenges, D.4
  • 140
    • 47749090885 scopus 로고    scopus 로고
    • Accuracy of Laplace approximation for discrete response mixed models
    • Joe, H. (2008). Accuracy of Laplace approximation for discrete response mixed models. Computational Statistics & Data Analysis, 52(12):5066–5074.
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.12 , pp. 5066-5074
    • Joe, H.1
  • 142
    • 79951993423 scopus 로고    scopus 로고
    • Performance of three estimation methods in repeated time-to-event modeling
    • Karlsson, K. E., Plan, E. L., and Karlsson, M. O. (2011). Performance of three estimation methods in repeated time-to-event modeling. The AAPS journal, 13(1):83–91.
    • (2011) The AAPS Journal , vol.13 , Issue.1 , pp. 83-91
    • Karlsson, K.E.1    Plan, E.L.2    Karlsson, M.O.3
  • 145
    • 0034650320 scopus 로고    scopus 로고
    • Survival analysis for recurrent event data: An application to childhood infectious disease
    • Kelly, P. J. and Jim, L. L. (2000). Survival analysis for recurrent event data: an application to childhood infectious disease. Statistics in Medicine, 19(1):13–33.
    • (2000) Statistics in Medicine , vol.19 , Issue.1 , pp. 13-33
    • Kelly, P.J.1    Jim, L.L.2
  • 146
    • 34548381836 scopus 로고    scopus 로고
    • Fixed and random effects selection in linear and logistic models
    • Kinney, S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear and logistic models. Biometrics, 63(3):690–698.
    • (2007) Biometrics , vol.63 , Issue.3 , pp. 690-698
    • Kinney, S.K.1    Dunson, D.B.2
  • 147
    • 0343136966 scopus 로고
    • Optimization by simulated annealing: Quantitative studies
    • Kirkpatrick, S. (1984). Optimization by simulated annealing: quantitative studies. Journal of Statistical Physics, 34(5-6):975–986.
    • (1984) Journal of Statistical Physics , vol.34 , Issue.5-6 , pp. 975-986
    • Kirkpatrick, S.1
  • 148
    • 80054719165 scopus 로고    scopus 로고
    • Modeling sleep data for a new drug in development using Markov mixed-effects models
    • Kjellsson, M. C., Ouellet, D., Corrigan, B., and Karlsson, M. O. (2011). Modeling sleep data for a new drug in development using Markov mixed-effects models. Pharmaceutical Research, 28(10):2610–2627.
    • (2011) Pharmaceutical Research , vol.28 , Issue.10 , pp. 2610-2627
    • Kjellsson, M.C.1    Ouellet, D.2    Corrigan, B.3    Karlsson, M.O.4
  • 151
    • 63649145251 scopus 로고    scopus 로고
    • Population stochastic modelling (PSM) – an R package for mixed-effects models based on stochastic differential equations
    • Klim, S., Mortensen, S. B., Kristensen, N. R., Overgaard, R. V., and Madsen, H. (2009). Population stochastic modelling (PSM) – an R package for mixed-effects models based on stochastic differential equations. Computer Methods and Programs in Biomedicine, 94(3):279– 289.
    • (2009) Computer Methods and Programs in Biomedicine , vol.94 , Issue.3 , pp. 279-289
    • Klim, S.1    Mortensen, S.B.2    Kristensen, N.R.3    Overgaard, R.V.4    Madsen, H.5
  • 152
    • 0040998240 scopus 로고
    • The analysis of categorical data from mixed models
    • Koch, G. G. and Reinfurt, D. W. (1971). The analysis of categorical data from mixed models. Biometrics, 27(1):157–173.
    • (1971) Biometrics , vol.27 , Issue.1 , pp. 157-173
    • Koch, G.G.1    Reinfurt, D.W.2
  • 153
    • 78651234517 scopus 로고    scopus 로고
    • Conditional and unconditional methods for selecting variables in linear mixed models
    • Kubokawa, T. (2011). Conditional and unconditional methods for selecting variables in linear mixed models. Journal of Multivariate Analysis, 102(3):641–660.
    • (2011) Journal of Multivariate Analysis , vol.102 , Issue.3 , pp. 641-660
    • Kubokawa, T.1
  • 154
    • 13444249563 scopus 로고    scopus 로고
    • Coupling a stochastic approximation version of EM with an MCMC procedure
    • Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: Probability and Statistics, 8:115–131.
    • (2004) ESAIM: Probability and Statistics , vol.8 , pp. 115-131
    • Kuhn, E.1    Lavielle, M.2
  • 155
    • 19044400906 scopus 로고    scopus 로고
    • Maximum likelihood estimation in nonlinear mixed effects models
    • Kuhn, E. and Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics & Data Analysis, 49(4):1020–1038.
    • (2005) Computational Statistics & Data Analysis , vol.49 , Issue.4 , pp. 1020-1038
    • Kuhn, E.1    Lavielle, M.2
  • 156
    • 0023716933 scopus 로고    scopus 로고
    • Missing data in longitudinal studies
    • Laird, N. M. (2006). Missing data in longitudinal studies. Statistics in Medicine, 7(1-2):305–315.
    • (2006) Statistics in Medicine , vol.7 , Issue.1-2 , pp. 305-315
    • Laird, N.M.1
  • 157
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4):963–974.
    • (1982) Biometrics , vol.38 , Issue.4 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 158
    • 84855652211 scopus 로고    scopus 로고
    • Automatic data binning for improved visual diagnosis of pharmacometric models
    • Lavielle, M. and Bleakley, K. (2011). Automatic data binning for improved visual diagnosis of pharmacometric models. Journal of Pharmacokinetics and Pharmacodynamics, 38(6):861–871.
    • (2011) Journal of Pharmacokinetics and Pharmacodynamics , vol.38 , Issue.6 , pp. 861-871
    • Lavielle, M.1    Bleakley, K.2
  • 160
    • 34249707233 scopus 로고    scopus 로고
    • A parameter expansion version of the SAEM algorithm
    • Lavielle, M. and Meza, C. (2007). A parameter expansion version of the SAEM algorithm. Statistics and Computing, 17(2):121–130.
    • (2007) Statistics and Computing , vol.17 , Issue.2 , pp. 121-130
    • Lavielle, M.1    Meza, C.2
  • 161
    • 79952585713 scopus 로고    scopus 로고
    • Maximum likelihood estimation of long-term HIV dynamic models and antiviral response
    • Lavielle, M., Samson, A., Karina Fermin, A., and Mentré, F. (2011). Maximum likelihood estimation of long-term HIV dynamic models and antiviral response. Biometrics, 67(1):250–259.
    • (2011) Biometrics , vol.67 , Issue.1 , pp. 250-259
    • Lavielle, M.1    Samson, A.2    Karina Fermin, A.3    Mentré, F.4
  • 163
    • 84857646089 scopus 로고    scopus 로고
    • Modeling the random effects covariance matrix for the generalized linear mixed models
    • Lee, K., Lee, J., Hagan, J., and Yoo, J. K. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models. Computational Statistics & Data Analysis, 56(6):1545–1551.
    • (2012) Computational Statistics & Data Analysis , vol.56 , Issue.6 , pp. 1545-1551
    • Lee, K.1    Lee, J.2    Hagan, J.3    Yoo, J.K.4
  • 164
    • 84862880796 scopus 로고    scopus 로고
    • Permutation tests for random effects in linear mixed models
    • Lee, O. E. and Braun, T. M. (2011). Permutation tests for random effects in linear mixed models. Biometrics, 68(2):486–493.
    • (2011) Biometrics , vol.68 , Issue.2 , pp. 486-493
    • Lee, O.E.1    Braun, T.M.2
  • 165
    • 70349293611 scopus 로고    scopus 로고
    • Approximate conditional inference in mixed effects models with binary data
    • Lee, W., Shi, J. Q., and Lee, Y. (2009). Approximate conditional inference in mixed effects models with binary data. Computational Statistics & Data Analysis, 54(1):173–184.
    • (2009) Computational Statistics & Data Analysis , vol.54 , Issue.1 , pp. 173-184
    • Lee, W.1    Shi, J.Q.2    Lee, Y.3
  • 167
    • 0031744665 scopus 로고    scopus 로고
    • Local influence in linear mixed models
    • Lesaffre, E. and Verbeke, G. (1998). Local influence in linear mixed models. Biometrics, 54(2):570–582.
    • (1998) Biometrics , vol.54 , Issue.2 , pp. 570-582
    • Lesaffre, E.1    Verbeke, G.2
  • 168
    • 84866279938 scopus 로고    scopus 로고
    • A new test for random effects in linear mixed models with longitudinal data
    • Li, Z. and Zhu, L. (2013). A new test for random effects in linear mixed models with longitudinal data. Journal of Statistical Planning and Inference, 143(1):82–95.
    • (2013) Journal of Statistical Planning and Inference , vol.143 , Issue.1 , pp. 82-95
    • Li, Z.1    Zhu, L.2
  • 169
    • 84857066102 scopus 로고    scopus 로고
    • A note on conditional Akaike information for Poisson regression with random effects
    • Lian, H. (2012). A note on conditional Akaike information for Poisson regression with random effects. Electronic Journal of Statistics, 6:1–9.
    • (2012) Electronic Journal of Statistics , vol.6 , pp. 1-9
    • Lian, H.1
  • 170
    • 50949086329 scopus 로고    scopus 로고
    • A note on conditional AIC for linear mixed-effects models
    • Liang, H., Wu, H., and Zou, G. (2008). A note on conditional AIC for linear mixed-effects models. Biometrika, 95(3):773–778.
    • (2008) Biometrika , vol.95 , Issue.3 , pp. 773-778
    • Liang, H.1    Wu, H.2    Zou, G.3
  • 171
    • 37649024707 scopus 로고    scopus 로고
    • Estimation using penalized quasilikelihood and quasi-pseudo-likelihood in Poisson mixed models
    • Lin, X. (2007). Estimation using penalized quasilikelihood and quasi-pseudo-likelihood in Poisson mixed models. Lifetime Data Analysis, 13(4):533–544.
    • (2007) Lifetime Data Analysis , vol.13 , Issue.4 , pp. 533-544
    • Lin, X.1
  • 172
    • 84950419603 scopus 로고
    • Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data
    • Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association, 83(404):1014–1022.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.404 , pp. 1014-1022
    • Lindstrom, M.J.1    Bates, D.M.2
  • 173
    • 0025170004 scopus 로고
    • Nonlinear mixed effects models for repeated measures data
    • Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3):673–687.
    • (1990) Biometrics , vol.46 , Issue.3 , pp. 673-687
    • Lindstrom, M.J.1    Bates, D.M.2
  • 175
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90(431):1112–1121.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.431 , pp. 1112-1121
    • Little, R.J.A.1
  • 177
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion to accelerate EM: The PX-EM algorithm
    • Liu, C., Rubin, D. B., and Wu, Y. N. (1998). Parameter expansion to accelerate EM: The PX-EM algorithm. Biometrika, 85(4):755–770.
    • (1998) Biometrika , vol.85 , Issue.4 , pp. 755-770
    • Liu, C.1    Rubin, D.B.2    Wu, Y.N.3
  • 178
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society: Series B, 44(2):226–233.
    • (1982) Journal of the Royal Statistical Society: Series B , vol.44 , Issue.2 , pp. 226-233
    • Louis, T.A.1
  • 179
    • 0006407254 scopus 로고    scopus 로고
    • Win-BUGS – a Bayesian modelling framework: Concepts, structure, and extensibility
    • Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). Win-BUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10(4):325–337.
    • (2000) Statistics and Computing , vol.10 , Issue.4 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 182
    • 0036725442 scopus 로고    scopus 로고
    • Mathematical modeling in glucose metabolism and insulin secretion
    • Mari, A. (2002). Mathematical modeling in glucose metabolism and insulin secretion. Current Opinion in Clinical Nutrition & Metabolic Care, 5(5):495–501.
    • (2002) Current Opinion in Clinical Nutrition & Metabolic Care , vol.5 , Issue.5 , pp. 495-501
    • Mari, A.1
  • 183
    • 82055200209 scopus 로고    scopus 로고
    • Mixed hidden Markov models for longitudinal data: An overview
    • Maruotti, A. (2011). Mixed hidden Markov models for longitudinal data: an overview. International Statistical Review, 79(3):427–454.
    • (2011) International Statistical Review , vol.79 , Issue.3 , pp. 427-454
    • Maruotti, A.1
  • 184
  • 185
    • 85019000400 scopus 로고    scopus 로고
    • Between-subject and within-subject model mixtures for classifying HIV treatment response
    • Mbogning, C., Bleakley, K., and Lavielle, M. (2012). Between-subject and within-subject model mixtures for classifying HIV treatment response. Progress in Applied Mathematics, 4(2):148–166.
    • (2012) Progress in Applied Mathematics , vol.4 , Issue.2 , pp. 148-166
    • Mbogning, C.1    Bleakley, K.2    Lavielle, M.3
  • 186
    • 85060427843 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and repeated time-to-event data with maximum likelihood estimation via the SAEM algorithm
    • Mbogning, C., Bleakley, K., and Lavielle, M. (2014). Joint modeling of longitudinal and repeated time-to-event data with maximum likelihood estimation via the SAEM algorithm. Journal of Statistical Computation and Simulation, online.
    • (2014) Journal of Statistical Computation and Simulation
    • Mbogning, C.1    Bleakley, K.2    Lavielle, M.3
  • 190
    • 33847255363 scopus 로고    scopus 로고
    • Bayesian inference for generalized linear mixed models of portfolio credit risk
    • McNeil, A. J. and Wendin, J. P. (2007). Bayesian inference for generalized linear mixed models of portfolio credit risk. Journal of Empirical Finance, 14(2):131–149.
    • (2007) Journal of Empirical Finance , vol.14 , Issue.2 , pp. 131-149
    • McNeil, A.J.1    Wendin, J.P.2
  • 193
    • 33745804100 scopus 로고    scopus 로고
    • Prediction discrepancies for the evaluation of nonlinear mixed-effects models
    • Mentré, F. and Escolano, S. (2006). Prediction discrepancies for the evaluation of nonlinear mixed-effects models. Journal of Pharmacokinetics and Pharmacodynamics, 33(3):345–367.
    • (2006) Journal of Pharmacokinetics and Pharmacodynamics , vol.33 , Issue.3 , pp. 345-367
    • Mentré, F.1    Escolano, S.2
  • 195
    • 38049121396 scopus 로고    scopus 로고
    • REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm
    • Meza, C., Jaffrézic, F., and Foulley, J.-L. (2007). REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm. Biometrical Journal, 49(6):876–888.
    • (2007) Biometrical Journal , vol.49 , Issue.6 , pp. 876-888
    • Meza, C.1    Jaffrézic, F.2    Foulley, J.-L.3
  • 196
    • 58549090692 scopus 로고    scopus 로고
    • Estimation in the probit normal model for binary outcomes using the SAEM algorithm
    • Meza, C., Jaffrézic, F., and Foulley, J.-L. (2009). Estimation in the probit normal model for binary outcomes using the SAEM algorithm. Computational Statistics & Data Analysis, 53(4):1350–1360.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 1350-1360
    • Meza, C.1    Jaffrézic, F.2    Foulley, J.-L.3
  • 197
    • 81955165471 scopus 로고    scopus 로고
    • Estimation in nonlinear mixed-effects models using heavy-tailed distributions
    • Meza, C., Osorio, F., and De la Cruz, R. (2010). Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Statistics and Computing, 22(1):121–139.
    • (2010) Statistics and Computing , vol.22 , Issue.1 , pp. 121-139
    • Meza, C.1    Osorio, F.2    de la Cruz, R.3
  • 199
    • 17444399651 scopus 로고    scopus 로고
    • Random effect models for repeated measures of zero-inflated count data
    • Min, Y. and Agresti, A. (2005). Random effect models for repeated measures of zero-inflated count data. Statistical Modelling, 5(1):1–19.
    • (2005) Statistical Modelling , vol.5 , Issue.1 , pp. 1-19
    • Min, Y.1    Agresti, A.2
  • 203
    • 84875261016 scopus 로고    scopus 로고
    • Diagnostics for repeated measurements in linear mixed effects models
    • Mun, J. and Lindstrom, M. J. (2013). Diagnostics for repeated measurements in linear mixed effects models. Statistics in Medicine, 32(8):1361–1375.
    • (2013) Statistics in Medicine , vol.32 , Issue.8 , pp. 1361-1375
    • Mun, J.1    Lindstrom, M.J.2
  • 204
    • 0026120554 scopus 로고
    • Generalized linear models for the analysis of taguchi-type experiments
    • Nelder, J. A. and Lee, Y. (1991). Generalized linear models for the analysis of taguchi-type experiments. Applied Stochastic Models and Data Analysis, 7(1):107–120.
    • (1991) Applied Stochastic Models and Data Analysis , vol.7 , Issue.1 , pp. 107-120
    • Nelder, J.A.1    Lee, Y.2
  • 205
    • 0001020829 scopus 로고    scopus 로고
    • Representing uncertainty in climate change scenarios: A Monte-Carlo approach
    • New, M. and Hulme, M. (2000). Representing uncertainty in climate change scenarios: a Monte-Carlo approach. Integrated Assessment, 1(3):203–213.
    • (2000) Integrated Assessment , vol.1 , Issue.3 , pp. 203-213
    • New, M.1    Hulme, M.2
  • 206
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with mixed effects components for clustering correlated gene-expression profiles
    • Ng, S. K., McLachlan, G. J., Wang, K., Ben-Tovim, L., and Ng, S. W. (2006). A mixture model with mixed effects components for clustering correlated gene-expression profiles. Bioinformatics, 22(14):1745–1752.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1745-1752
    • Ng, S.K.1    McLachlan, G.J.2    Wang, K.3    Ben-Tovim, L.4    Ng, S.W.5
  • 207
    • 84861190766 scopus 로고    scopus 로고
    • Design evaluation and optimisation in crossover pharmacokinetic studies analysed by nonlinear mixed effects models
    • Nguyen, T. T., Bazzoli, C., and Mentré, F. (2011). Design evaluation and optimisation in crossover pharmacokinetic studies analysed by nonlinear mixed effects models. Statistics in Medicine, 31(11-12):1043–1058.
    • (2011) Statistics in Medicine , vol.31 , Issue.11-12 , pp. 1043-1058
    • Nguyen, T.T.1    Bazzoli, C.2    Mentré, F.3
  • 208
    • 33846339755 scopus 로고    scopus 로고
    • Convergence rate of MLE in generalized linear and nonlinear mixed-effects models: Theory and applications
    • Nie, L. (2007). Convergence rate of MLE in generalized linear and nonlinear mixed-effects models: theory and applications. Journal of Statistical Planning and Inference, 137(6):1787–1804.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , Issue.6 , pp. 1787-1804
    • Nie, L.1
  • 209
    • 38049181505 scopus 로고    scopus 로고
    • Residual analysis for linear mixed models
    • Nobre, J. S. S. and da Motta Singer, J. (2007). Residual analysis for linear mixed models. Biometrical Journal, 49(6):863–875.
    • (2007) Biometrical Journal , vol.49 , Issue.6 , pp. 863-875
    • Nobre, J.S.S.1    da Motta Singer, J.2
  • 212
    • 0034061974 scopus 로고    scopus 로고
    • Estimating data transformations in nonlinear mixed effects models
    • Oberg, A. and Davidian, M. (2000). Estimating data transformations in nonlinear mixed effects models. Biometrics, 56(1):65–72.
    • (2000) Biometrics , vol.56 , Issue.1 , pp. 65-72
    • Oberg, A.1    Davidian, M.2
  • 213
    • 39449097881 scopus 로고    scopus 로고
    • A mixed model estimation of age, period, and cohort effects
    • O’Brien, R. M., Hudson, K., and Stockard, J. (2008). A mixed model estimation of age, period, and cohort effects. Sociological Methods Research, 36(3):402–428.
    • (2008) Sociological Methods Research , vol.36 , Issue.3 , pp. 402-428
    • O’Brien, R.M.1    Hudson, K.2    Stockard, J.3
  • 215
    • 0014314758 scopus 로고
    • Studies on coumarin antico-agulant drugs initiation of warfarin therapy without a loading dose
    • O’Reilly, R. A. and Aggeler, P. M. (1968). Studies on coumarin antico-agulant drugs initiation of warfarin therapy without a loading dose. Circulation, 38(1):169–177.
    • (1968) Circulation , vol.38 , Issue.1 , pp. 169-177
    • O’Reilly, R.A.1    Aggeler, P.M.2
  • 216
    • 0018405522 scopus 로고
    • Maximum likelihood estimation by counting methods under polygenic and mixed models in human pedigrees
    • Ott, J. (1979). Maximum likelihood estimation by counting methods under polygenic and mixed models in human pedigrees. American Journal of Human Genetics, 31(2):161–175.
    • (1979) American Journal of Human Genetics , vol.31 , Issue.2 , pp. 161-175
    • Ott, J.1
  • 217
    • 23844551829 scopus 로고    scopus 로고
    • Nonlinear mixed-effects models with stochastic differential equations: Implementation of an estimation algorithm
    • Overgaard, R., Jonsson, N., Tornøe, C., and Madsen, H. (2005). Nonlinear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm. Journal of Pharmacokinetics and Pharmacodynamics, 32(1):85–107.
    • (2005) Journal of Pharmacokinetics and Pharmacodynamics , vol.32 , Issue.1 , pp. 85-107
    • Overgaard, R.1    Jonsson, N.2    Tornøe, C.3    Madsen, H.4
  • 219
    • 0033120135 scopus 로고    scopus 로고
    • A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models
    • Parke, J. (1999). A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Computer Methods and Programs in Biomedicine, 59(1):19–29.
    • (1999) Computer Methods and Programs in Biomedicine , vol.59 , Issue.1 , pp. 19-29
    • Parke, J.1
  • 220
    • 84860437900 scopus 로고    scopus 로고
    • Model selection in linear mixed effect models
    • Peng, H. and Lu, Y. (2012). Model selection in linear mixed effect models. Journal of Multivariate Analysis, 109(C):109–129.
    • (2012) Journal of Multivariate Analysis , vol.109 , Issue.C , pp. 109-129
    • Peng, H.1    Lu, Y.2
  • 221
    • 78649325422 scopus 로고    scopus 로고
    • Practical estimation of high dimensional stochastic differential mixed-effects models
    • Picchini, U. and Ditlevsen, S. (2010). Practical estimation of high dimensional stochastic differential mixed-effects models. Computational Statistics & Data Analysis, 55(3):1426–1444.
    • (2010) Computational Statistics & Data Analysis , vol.55 , Issue.3 , pp. 1426-1444
    • Picchini, U.1    Ditlevsen, S.2
  • 224
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro, J. C. and Bates, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4(1):12–35.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , Issue.1 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 225
    • 0035632583 scopus 로고    scopus 로고
    • Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution
    • Pinheiro, J. C., Liu, C., and Wu, Y. N. (2001). Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. Journal of Computational and Graphical Statistics, 10(2):249–276.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , Issue.2 , pp. 249-276
    • Pinheiro, J.C.1    Liu, C.2    Wu, Y.N.3
  • 226
  • 228
    • 17644379544 scopus 로고    scopus 로고
    • Estimation of linear mixed models with a mixture of distribution for the random effects
    • Proust, C. and Jacqmin-Gadda, H. (2005). Estimation of linear mixed models with a mixture of distribution for the random effects. Computer Methods and Programs in Biomedicine, 78(2):165–173.
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 165-173
    • Proust, C.1    Jacqmin-Gadda, H.2
  • 229
    • 80054905986 scopus 로고    scopus 로고
    • Misuse of the linear mixed model when evaluating risk factors of cognitive decline
    • Proust-Lima, C., Dartigues, J.-F. F., and Jacqmin-Gadda, H. (2011). Misuse of the linear mixed model when evaluating risk factors of cognitive decline. American Journal of Epidemiology, 174(9):1077–1088.
    • (2011) American Journal of Epidemiology , vol.174 , Issue.9 , pp. 1077-1088
    • Proust-Lima, C.1    Dartigues, J.-F.F.2    Jacqmin-Gadda, H.3
  • 230
    • 24144482731 scopus 로고    scopus 로고
    • Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects
    • Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128(2):301–323.
    • (2005) Journal of Econometrics , vol.128 , Issue.2 , pp. 301-323
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 231
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257–286.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 232
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25:111–163.
    • (1995) Sociological Methodology , vol.25 , pp. 111-163
    • Raftery, A.E.1
  • 234
    • 2342665693 scopus 로고    scopus 로고
    • Using latent mixed Markov models for the choice of the best pharmacological treatment
    • Reuter, M., Hennig, J., Netter, P., Buehner, M., and Hueppe, M. (2004). Using latent mixed Markov models for the choice of the best pharmacological treatment. Statistics in Medicine, 23(9):1337–1349.
    • (2004) Statistics in Medicine , vol.23 , Issue.9 , pp. 1337-1349
    • Reuter, M.1    Hennig, J.2    Netter, P.3    Buehner, M.4    Hueppe, M.5
  • 236
    • 34447116287 scopus 로고    scopus 로고
    • The Lasso: A novel method for predictive covariate model building in nonlinear mixed effects models
    • Ribbing, J., Nyberg, J., Caster, O., and Jonsson, E. (2007). The Lasso: a novel method for predictive covariate model building in nonlinear mixed effects models. Journal of Pharmacokinetics and Pharmacodynamics, 34(4):485–517.
    • (2007) Journal of Pharmacokinetics and Pharmacodynamics , vol.34 , Issue.4 , pp. 485-517
    • Ribbing, J.1    Nyberg, J.2    Caster, O.3    Jonsson, E.4
  • 237
    • 4043165629 scopus 로고    scopus 로고
    • Goodness-of-fit tests for mixed models
    • Ritz, C. (2004). Goodness-of-fit tests for mixed models. Scandinavian Journal of Statistics, 31(3):443–458.
    • (2004) Scandinavian Journal of Statistics , vol.31 , Issue.3 , pp. 443-458
    • Ritz, C.1
  • 239
    • 80455176985 scopus 로고    scopus 로고
    • Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule
    • Rizopoulos, D. (2011). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. Computational Statistics & Data Analysis, 56(3):491–501.
    • (2011) Computational Statistics & Data Analysis , vol.56 , Issue.3 , pp. 491-501
    • Rizopoulos, D.1
  • 244
    • 34848918154 scopus 로고    scopus 로고
    • Joint frailty models for recurring events and death using maximum penalized likelihood estimation: Application on cancer events
    • Rondeau, V., Mathoulin-Pelissier, S., Jacqmin-Gadda, H., Brouste, V., and Soubeyran, P. (2007). Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Biostatistics, 8(4):708–721.
    • (2007) Biostatistics , vol.8 , Issue.4 , pp. 708-721
    • Rondeau, V.1    Mathoulin-Pelissier, S.2    Jacqmin-Gadda, H.3    Brouste, V.4    Soubeyran, P.5
  • 245
    • 0030683646 scopus 로고    scopus 로고
    • Bayesian population pharmacokinetic and pharmacodynamic analyses using mixture models
    • Rosner, G. L. and Müller, P. (1997). Bayesian population pharmacokinetic and pharmacodynamic analyses using mixture models. Journal of Pharmacokinetics and Biopharmaceutics, 25(2):209–233.
    • (1997) Journal of Pharmacokinetics and Biopharmaceutics , vol.25 , Issue.2 , pp. 209-233
    • Rosner, G.L.1    Müller, P.2
  • 246
    • 28244479374 scopus 로고    scopus 로고
    • Editorial to the first issue dedicated to Lewis Sheiner
    • Rowland, M. (2005). Editorial to the first issue dedicated to Lewis Sheiner. Journal of Pharmacokinetics and Pharmacodynamics, 32(2):157.
    • (2005) Journal of Pharmacokinetics and Pharmacodynamics , vol.32 , Issue.2 , pp. 157
    • Rowland, M.1
  • 247
    • 84866085859 scopus 로고    scopus 로고
    • Assessment of variance components in nonlinear mixed-effects elliptical models
    • Russo, C., Aoki, R., and Paula, G. (2011). Assessment of variance components in nonlinear mixed-effects elliptical models. TEST, 21(3):519– 545.
    • (2011) TEST , vol.21 , Issue.3 , pp. 519-545
    • Russo, C.1    Aoki, R.2    Paula, G.3
  • 248
    • 33750740728 scopus 로고    scopus 로고
    • Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model
    • Samson, A., Lavielle, M., and Mentré, F. (2006). Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: application to HIV dynamics model. Computational Statistics & Data Analysis, 51(3):1562–1574.
    • (2006) Computational Statistics & Data Analysis , vol.51 , Issue.3 , pp. 1562-1574
    • Samson, A.1    Lavielle, M.2    Mentré, F.3
  • 249
    • 35948944562 scopus 로고    scopus 로고
    • The SAEM algorithm for group comparison tests in longitudinal data analysis based on nonlinear mixed-effects model
    • Samson, A., Lavielle, M., and Mentré, F. (2007). The SAEM algorithm for group comparison tests in longitudinal data analysis based on nonlinear mixed-effects model. Statistics in Medicine, 26(27):4860–4875.
    • (2007) Statistics in Medicine , vol.26 , Issue.27 , pp. 4860-4875
    • Samson, A.1    Lavielle, M.2    Mentré, F.3
  • 250
    • 73349104384 scopus 로고    scopus 로고
    • Importance of shrinkage in empirical Bayes estimates for diagnostics: Problems and solutions
    • Savic, R. and Karlsson, M. (2009). Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. The AAPS Journal, 11(3):558–569.
    • (2009) The AAPS Journal , vol.11 , Issue.3 , pp. 558-569
    • Savic, R.1    Karlsson, M.2
  • 251
    • 69049117095 scopus 로고    scopus 로고
    • Performance in population models for count data, part ii: A new SAEM algorithm
    • Savic, R. and Lavielle, M. (2009). Performance in population models for count data, part ii: a new SAEM algorithm. Journal of Pharmacokinetics and Pharmacodynamics, 36(4):367–379.
    • (2009) Journal of Pharmacokinetics and Pharmacodynamics , vol.36 , Issue.4 , pp. 367-379
    • Savic, R.1    Lavielle, M.2
  • 252
    • 79951981548 scopus 로고    scopus 로고
    • Implementation and evaluation of the SAEM algorithm for longitudinal ordered categorical data with an illustration in pharmacokinetics-pharmacodynamics
    • Savic, R. M., Mentré, F., and Lavielle, M. (2011). Implementation and evaluation of the SAEM algorithm for longitudinal ordered categorical data with an illustration in pharmacokinetics-pharmacodynamics. The AAPS Journal, 13(1):44–53.
    • (2011) The AAPS Journal , vol.13 , Issue.1 , pp. 44-53
    • Savic, R.M.1    Mentré, F.2    Lavielle, M.3
  • 253
    • 66949128330 scopus 로고    scopus 로고
    • Testing random effects in the linear mixed model using approximate Bayes factors
    • Saville, B. R. and Herring, A. H. (2009). Testing random effects in the linear mixed model using approximate Bayes factors. Biometrics, 65(2):369–376.
    • (2009) Biometrics , vol.65 , Issue.2 , pp. 369-376
    • Saville, B.R.1    Herring, A.H.2
  • 255
    • 0027092589 scopus 로고
    • Methods for the analysis of informatively censored longitudinal data
    • Schluchter, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine, 11(14-15):1861– 1870.
    • (1992) Statistics in Medicine , vol.11 , Issue.14-15 , pp. 1861-1870
    • Schluchter, M.D.1
  • 256
    • 84857652265 scopus 로고    scopus 로고
    • Residual analysis of linear mixed models using a simulation approach
    • Schützenmeister, A. and Piepho, H.-P. (2012). Residual analysis of linear mixed models using a simulation approach. Computational Statistics & Data Analysis, 56(6):1405–1416.
    • (2012) Computational Statistics & Data Analysis , vol.56 , Issue.6 , pp. 1405-1416
    • Schützenmeister, A.1    Piepho, H.-P.2
  • 257
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 259
    • 34247253329 scopus 로고    scopus 로고
    • New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity
    • Séralini, G., Cellier, D., and De Vendomois, J. (2007). New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Archives of Environmental Contamination and Toxicology, 52(4):596–602.
    • (2007) Archives of Environmental Contamination and Toxicology , vol.52 , Issue.4 , pp. 596-602
    • Séralini, G.1    Cellier, D.2    de Vendomois, J.3
  • 261
    • 0031890386 scopus 로고    scopus 로고
    • Characteristics of indirect pharmacodynamic models and applications to clinical drug responses
    • Sharma, A. and Jusko, W. J. (1998). Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. British Journal of Clinical Pharmacology, 45(3):229–239.
    • (1998) British Journal of Clinical Pharmacology , vol.45 , Issue.3 , pp. 229-239
    • Sharma, A.1    Jusko, W.J.2
  • 262
    • 0025755806 scopus 로고
    • An introduction to mixed effect modeling: Concepts, definitions, and justification
    • Sheiner, L. and Grasela, T. (1991). An introduction to mixed effect modeling: Concepts, definitions, and justification. Journal of Pharmacokinetics and Pharmacodynamics, 19(3):11S–24S.
    • (1991) Journal of Pharmacokinetics and Pharmacodynamics , vol.19 , Issue.3 , pp. 11S-24S
    • Sheiner, L.1    Grasela, T.2
  • 264
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • Song, X., Davidian, M., and Tsiatis, A. A. (2004). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics, 58(4):742–753.
    • (2004) Biometrics , vol.58 , Issue.4 , pp. 742-753
    • Song, X.1    Davidian, M.2    Tsiatis, A.A.3
  • 267
    • 0028641810 scopus 로고
    • Variance components testing in the longitudinal mixed effects model
    • Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics, 50(4):1171–1177.
    • (1994) Biometrics , vol.50 , Issue.4 , pp. 1171-1177
    • Stram, D.O.1    Lee, J.W.2
  • 269
    • 0030003478 scopus 로고    scopus 로고
    • A mixed effects model for overdispersed count data in animal breeding
    • Tempelman, R. J. and Gianola, D. (1996). A mixed effects model for overdispersed count data in animal breeding. Biometrics, 52(1):265– 279.
    • (1996) Biometrics , vol.52 , Issue.1 , pp. 265-279
    • Tempelman, R.J.1    Gianola, D.2
  • 270
    • 0032714354 scopus 로고    scopus 로고
    • Empirical Bayes estimation of random effects parameters in mixed effects logistic regression models
    • Ten Have, T. R. and Localio, A. R. (1999). Empirical Bayes estimation of random effects parameters in mixed effects logistic regression models. Biometrics, 55(4):1022–1029.
    • (1999) Biometrics , vol.55 , Issue.4 , pp. 1022-1029
    • Ten Have, T.R.1    Localio, A.R.2
  • 271
    • 84895073636 scopus 로고    scopus 로고
    • Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: A simulation study in population pharmacokinetics
    • Thai, H.-T., Mentré, F., Holford, N. H., Veyrat-Follet, C., and Comets, E. (2014). Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: a simulation study in population pharmacokinetics. Journal of Pharmacokinetics and Pharmacodynamics, 41(1):15–33.
    • (2014) Journal of Pharmacokinetics and Pharmacodynamics , vol.41 , Issue.1 , pp. 15-33
    • Thai, H.-T.1    Mentré, F.2    Holford, N.H.3    Veyrat-Follet, C.4    Comets, E.5
  • 272
    • 0025172155 scopus 로고
    • Some covariance models for longitudinal count data with overdispersion
    • Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics, 46(3):657–671.
    • (1990) Biometrics , vol.46 , Issue.3 , pp. 657-671
    • Thall, P.F.1    Vail, S.C.2
  • 274
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: An overview
    • Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica, 14(3):809–834.
    • (2004) Statistica Sinica , vol.14 , Issue.3 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 276
    • 21644476631 scopus 로고    scopus 로고
    • Conditional Akaike information for mixed-effects models
    • Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika, 92(2):351–370.
    • (2005) Biometrika , vol.92 , Issue.2 , pp. 351-370
    • Vaida, F.1    Blanchard, S.2
  • 278
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association, 91(433):217–221.
    • (1996) Journal of the American Statistical Association , vol.91 , Issue.433 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 281
    • 83755163655 scopus 로고    scopus 로고
    • Mixed model analysis of censored longitudinal data with flexible random-effects density
    • Vock, D. M., Davidian, M., Tsiatis, A. A., and Muir, A. J. (2012). Mixed model analysis of censored longitudinal data with flexible random-effects density. Biostatistics, 13(1):61–73.
    • (2012) Biostatistics , vol.13 , Issue.1 , pp. 61-73
    • Vock, D.M.1    Davidian, M.2    Tsiatis, A.A.3    Muir, A.J.4
  • 282
    • 0000474486 scopus 로고    scopus 로고
    • A note on the use of the Laplace’s approximation for nonlinear mixed-effects models
    • Vonesh, E. F. (1996). A note on the use of the Laplace’s approximation for nonlinear mixed-effects models. Biometrika, 83(2):447–452.
    • (1996) Biometrika , vol.83 , Issue.2 , pp. 447-452
    • Vonesh, E.F.1
  • 284
    • 0029887528 scopus 로고    scopus 로고
    • Goodness-of-fit in generalized nonlinear mixed-effects models
    • Vonesh, E. F., Chinchilli, V. M., and Pu, K. (1996). Goodness-of-fit in generalized nonlinear mixed-effects models. Biometrics, 52(2):572– 587.
    • (1996) Biometrics , vol.52 , Issue.2 , pp. 572-587
    • Vonesh, E.F.1    Chinchilli, V.M.2    Pu, K.3
  • 285
    • 77249140934 scopus 로고    scopus 로고
    • Bayesian estimation of random effects models for multivariate responses of mixed data
    • Wagner, H. and Tüchler, R. (2010). Bayesian estimation of random effects models for multivariate responses of mixed data. Computational Statistics & Data Analysis, 54(5):1206–1218.
    • (2010) Computational Statistics & Data Analysis , vol.54 , Issue.5 , pp. 1206-1218
    • Wagner, H.1    Tüchler, R.2
  • 287
    • 0000167944 scopus 로고
    • Note on the consistency of the maximum likelihood estimate
    • Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. The Annals of Mathematical Statistics, 20(4):595–602.
    • (1949) The Annals of Mathematical Statistics , vol.20 , Issue.4 , pp. 595-602
    • Wald, A.1
  • 288
    • 48249108773 scopus 로고    scopus 로고
    • An integrated approach for the analysis of biological pathways using mixed models
    • Wang, L., Zhang, B., Wolfinger, R. D., and Chen, X. (2008). An integrated approach for the analysis of biological pathways using mixed models. PLoS Genet, 4(7):e1000115+.
    • (2008) Plos Genet , vol.4 , Issue.7
    • Wang, L.1    Zhang, B.2    Wolfinger, R.D.3    Chen, X.4
  • 289
    • 0000474487 scopus 로고    scopus 로고
    • A note on covariate measurement error in nonlinear mixed effects models
    • Wang, N. and Davidian, M. (1996). A note on covariate measurement error in nonlinear mixed effects models. Biometrika, 83(4):801–812.
    • (1996) Biometrika , vol.83 , Issue.4 , pp. 801-812
    • Wang, N.1    Davidian, M.2
  • 290
    • 34547188255 scopus 로고    scopus 로고
    • Nonlinear random effects mixture models: Maximum likelihood estimation via the EM algorithm
    • Wang, X., Schumitzky, A., and D’Argenio, D. Z. (2007). Nonlinear random effects mixture models: maximum likelihood estimation via the EM algorithm. Computational Statistics and Data Analysis, 51(12):6614–6623.
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.12 , pp. 6614-6623
    • Wang, X.1    Schumitzky, A.2    D’Argenio, D.Z.3
  • 291
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms
    • Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 85(411):699– 704.
    • (1990) Journal of the American Statistical Association , vol.85 , Issue.411 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 292
    • 84856043269 scopus 로고    scopus 로고
    • An overview of current software procedures for fitting linear mixed models
    • West, B. T. and Galecki, A. T. (2012). An overview of current software procedures for fitting linear mixed models. The American Statistician, 65(4):274–282.
    • (2012) The American Statistician , vol.65 , Issue.4 , pp. 274-282
    • West, B.T.1    Galecki, A.T.2
  • 295
    • 33646521094 scopus 로고    scopus 로고
    • Generalized ordered logit/partial proportional odds models for ordinal dependent variables
    • Williams, R. (2006). Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata Journal, 6(1):58–82.
    • (2006) Stata Journal , vol.6 , Issue.1 , pp. 58-82
    • Williams, R.1
  • 297
    • 0001684437 scopus 로고
    • Laplace’s approximation for nonlinear mixed models
    • Wolfinger, R. (1993). Laplace’s approximation for nonlinear mixed models. Biometrika, 80(4):791–795.
    • (1993) Biometrika , vol.80 , Issue.4 , pp. 791-795
    • Wolfinger, R.1
  • 298
    • 0030831433 scopus 로고    scopus 로고
    • An example of using mixed models and proc mixed for longitudinal data
    • Wolfinger, R. D. (1997). An example of using mixed models and proc mixed for longitudinal data. Journal of Biopharmaceutical Statistics, 7(4):481–500.
    • (1997) Journal of Biopharmaceutical Statistics , vol.7 , Issue.4 , pp. 481-500
    • Wolfinger, R.D.1
  • 299
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics, pages 95–103.
    • (1983) The Annals of Statistics , pp. 95-103
    • Wu, C.F.J.1
  • 300
    • 78349285308 scopus 로고    scopus 로고
    • Chapman & Hall/CRC Monographs on Statistics and Applied Probability
    • Wu, L. (2010). Mixed Effects Models for Complex Data. Chapman & Hall/CRC Monographs on Statistics and Applied Probability.
    • (2010) Mixed Effects Models for Complex Data
    • Wu, L.1
  • 301
    • 41149167559 scopus 로고    scopus 로고
    • Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data
    • Wu, L., Hu, X. J., and Wu, H. (2008). Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data. Biostatistics, 9(2):308–320.
    • (2008) Biostatistics , vol.9 , Issue.2 , pp. 308-320
    • Wu, L.1    Hu, X.J.2    Wu, H.3
  • 302
    • 69349086381 scopus 로고    scopus 로고
    • Estimation of variance components in the mixed effects models: A comparison between analysis of variance and spectral decomposition
    • Wu, M.-X., Yu, K.-F., and Liu, A.-Y. (2009). Estimation of variance components in the mixed effects models: a comparison between analysis of variance and spectral decomposition. Journal of Statistical Planning and Inference, 139(12):3962–3973.
    • (2009) Journal of Statistical Planning and Inference , vol.139 , Issue.12 , pp. 3962-3973
    • Wu, M.-X.1    Yu, K.-F.2    Liu, A.-Y.3
  • 303
    • 84857652127 scopus 로고    scopus 로고
    • The robust estimation method for a finite mixture of Poisson mixed-effect models
    • Xiang, L., Yau, K. K., and Lee, A. H. (2012). The robust estimation method for a finite mixture of Poisson mixed-effect models. Computational Statistics & Data Analysis, 56(6):1994–2005.
    • (2012) Computational Statistics & Data Analysis , vol.56 , Issue.6 , pp. 1994-2005
    • Xiang, L.1    Yau, K.K.2    Lee, A.H.3
  • 304
    • 34548186666 scopus 로고    scopus 로고
    • Regression models for mixed Poisson and continuous longitudinal data
    • Yang, Y., Kang, J., Mao, K., and Zhang, J. (2007). Regression models for mixed Poisson and continuous longitudinal data. Statistics in Medicine, 26(20):3782–3800.
    • (2007) Statistics in Medicine , vol.26 , Issue.20 , pp. 3782-3800
    • Yang, Y.1    Kang, J.2    Mao, K.3    Zhang, J.4
  • 306
    • 0037669808 scopus 로고    scopus 로고
    • Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros
    • Yau, K. K. W., Wang, K., and Lee, A. H. (2003). Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biometrical Journal, 45(4):437–452.
    • (2003) Biometrical Journal , vol.45 , Issue.4 , pp. 437-452
    • Yau, K.K.W.1    Wang, K.2    Lee, A.H.3
  • 308
    • 84895072562 scopus 로고    scopus 로고
    • Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings
    • Zechner, C., Unger, M., Pelet, S., Peter, M., and Koeppl, H. (2014). Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nature Methods, 11:197–202.
    • (2014) Nature Methods , vol.11 , pp. 197-202
    • Zechner, C.1    Unger, M.2    Pelet, S.3    Peter, M.4    Koeppl, H.5
  • 310
    • 20444476802 scopus 로고    scopus 로고
    • Maximum likelihood estimation for the proportional odds model with random effects
    • Zeng, D., Lin, D., and Yin, G. (2005). Maximum likelihood estimation for the proportional odds model with random effects. Journal of the American Statistical Association, 100(470):470–483.
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.470 , pp. 470-483
    • Zeng, D.1    Lin, D.2    Yin, G.3
  • 311
    • 80455176945 scopus 로고    scopus 로고
    • Generalized degrees of freedom and adaptive model selection in linear mixed-effects models
    • Zhang, B., Shen, X., and Mumford, S. L. (2011). Generalized degrees of freedom and adaptive model selection in linear mixed-effects models. Computational Statistics & Data Analysis, 56(3):574–586.
    • (2011) Computational Statistics & Data Analysis , vol.56 , Issue.3 , pp. 574-586
    • Zhang, B.1    Shen, X.2    Mumford, S.L.3
  • 312
    • 0034862723 scopus 로고    scopus 로고
    • Linear mixed models with flexible distributions of random effects for longitudinal data
    • Zhang, D. and Davidian, M. (2001). Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics, 57(3):795–802.
    • (2001) Biometrics , vol.57 , Issue.3 , pp. 795-802
    • Zhang, D.1    Davidian, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.