메뉴 건너뛰기




Volumn 6, Issue 4, 2013, Pages 519-532

Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models

Author keywords

Extended kalman filter; Mixed effects models; SAEM; Stochastic differential equations

Indexed keywords


EID: 84893350019     PISSN: 19387989     EISSN: 19387997     Source Type: Journal    
DOI: 10.4310/SII.2013.v6.n4.a10     Document Type: Article
Times cited : (32)

References (25)
  • 1
    • 77957599284 scopus 로고    scopus 로고
    • Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study
    • MR2730643
    • Allassonniere, S., Kuhn, E. and Trouvé, A. (2010). Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study. Bernoulli 16 641-678. MR2730643
    • (2010) Bernoulli , vol.16 , pp. 641-678
    • Allassonniere, S.1    Kuhn, E.2    Trouvé, A.3
  • 3
    • 79957451960 scopus 로고    scopus 로고
    • Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models
    • Bergstrand, M., Hooker, A., Wallin, J. E. and Karlsson, M. O. (2011). Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 13 143-151.
    • (2011) AAPS J. , vol.13 , pp. 143-151
    • Bergstrand, M.1    Hooker, A.2    Wallin, J.E.3    Karlsson, M.O.4
  • 4
    • 84855652211 scopus 로고    scopus 로고
    • Automatic data binning for improved visual diagnosis of pharmacometric models
    • Bleakley, K. and Lavielle, M. (2011). Automatic data binning for improved visual diagnosis of pharmacometric models. Journal of Pharmacokinetics and Pharmacodynamics 38 861-871.
    • (2011) Journal of Pharmacokinetics and Pharmacodynamics , vol.38 , pp. 861-871
    • Bleakley, K.1    Lavielle, M.2
  • 5
    • 44649107771 scopus 로고    scopus 로고
    • An overview of existing methods and recent advances in sequential Monte Carlo
    • Cappé, O., Godsill, S. J. and Moulines, E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE 95 899-924.
    • (2007) Proceedings of the IEEE , vol.95 , pp. 899-924
    • Cappé, O.1    Godsill, S.J.2    Moulines, E.3
  • 6
    • 84877925546 scopus 로고    scopus 로고
    • Maximum likelihood estimation for stochastic differential equations with random effects
    • to appear
    • Delattre, M., Genon-Catalot, V. and Samson, A. (2013). Maximum likelihood estimation for stochastic differential equations with random effects. Scandinavian Journal of Statistics, to appear.
    • (2013) Scandinavian Journal of Statistics
    • Delattre, M.1    Genon-Catalot, V.2    Samson, A.3
  • 7
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • MR1701103
    • Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm. The Annals of Statistics 27 94-128. MR1701103
    • (1999) The Annals of Statistics , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 9
    • 45749127284 scopus 로고    scopus 로고
    • Mixed effects in stochastic differential equation models
    • MR2259358
    • Ditlevsen, S. and Gaetano, A. D. (2005). Mixed effects in stochastic differential equation models. REVSTAT Statistical Journal 3 137-153. MR2259358
    • (2005) REVSTAT Statistical Journal , vol.3 , pp. 137-153
    • Ditlevsen, S.1    Gaetano, A.D.2
  • 10
    • 55749092754 scopus 로고    scopus 로고
    • Parametric inference for mixed models defined by stochastic differential equations
    • MR2374638
    • Donnet, S. and Samson, A. (2008). Parametric inference for mixed models defined by stochastic differential equations. ESAIM: Probability and Statistics 12 196-218. MR2374638
    • (2008) ESAIM: Probability and Statistics , vol.12 , pp. 196-218
    • Donnet, S.1    Samson, A.2
  • 11
    • 84887887005 scopus 로고    scopus 로고
    • EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models
    • Donnet, S. and Samson, A. (2010). EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models. Technical report. http://hal.archives-ouvertes.fr/hal-00519576/.
    • (2010) Technical report
    • Donnet, S.1    Samson, A.2
  • 13
    • 77958032223 scopus 로고    scopus 로고
    • A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs
    • Faugeras, O., Touboul, J. and Cessac, B. (2009). A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs. Frontiers in Computational Neuroscience 3 1-28.
    • (2009) Frontiers in Computational Neuroscience , vol.3 , pp. 1-28
    • Faugeras, O.1    Touboul, J.2    Cessac, B.3
  • 14
    • 84889623836 scopus 로고    scopus 로고
    • Kalman Filtering: Theory and Practice Using MATLAB
    • Third ed.Wiley.
    • Grewal, M. S. and Andrews, A. P. (2008). Kalman Filtering: Theory and Practice Using MATLAB, Third ed. Wiley.
    • (2008)
    • Grewal, M.S.1    Andrews, A.P.2
  • 16
    • 13444249563 scopus 로고    scopus 로고
    • Coupling a stochastic approximation version of EM with an MCMC procedure
    • MR2085610
    • Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: Probability and Statistics 8 115-131. MR2085610
    • (2004) ESAIM: Probability and Statistics , vol.8 , pp. 115-131
    • Kuhn, E.1    Lavielle, M.2
  • 17
    • 19044400906 scopus 로고    scopus 로고
    • Maximum likelihood estimation in nonlinear mixed effects models
    • MR2143055
    • Kuhn, E. and Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics and Data Analysis 49 1020-1038. MR2143055
    • (2005) Computational Statistics and Data Analysis , vol.49 , pp. 1020-1038
    • Kuhn, E.1    Lavielle, M.2
  • 18
    • 84893427716 scopus 로고    scopus 로고
    • Lixoft
    • Lixoft, (2013). Monolix 4.2.1 User Guide. http://www.lixoft.eu/monolix/documentation.
    • (2013) Monolix 4.2.1 User Guide.
  • 19
    • 53549089851 scopus 로고    scopus 로고
    • Computational aspects of continuousdiscrete extended Kalman-filtering
    • MR2448180
    • Mazzoni, T. (2008). Computational aspects of continuousdiscrete extended Kalman-filtering. Computational Statistics 23 519-539. MR2448180
    • (2008) Computational Statistics , vol.23 , pp. 519-539
    • Mazzoni, T.1
  • 20
    • 84878557349 scopus 로고    scopus 로고
    • Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering
    • Mbalawata, I. S., Särkkä, S. and Haario, H. (2012). Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics 1-29.
    • (2012) Computational Statistics , pp. 1-29
    • Mbalawata, I.S.1    Särkkä, S.2    Haario, H.3
  • 21
    • 23844551829 scopus 로고    scopus 로고
    • Non-linear mixed-effects models with stochastic differential equations: Implementation of an estimation algorithm
    • Overgaard, R. V., Jonsson, N., TornØe, C. W. and Madsen, H. (2005). Non-linear mixed-effects models with stochastic differential equations: Implementation of an estimation algorithm. Journal of Pharmacokinetics and Pharmacodynamics 32 85-107.
    • (2005) Journal of Pharmacokinetics and Pharmacodynamics , vol.32 , pp. 85-107
    • Overgaard, R.V.1    Jonsson, N.2    Tornøe, C.W.3    Madsen, H.4
  • 22
    • 78649325422 scopus 로고    scopus 로고
    • Practical estimation of high dimensional stochastic differential mixed-effects models
    • MR2741425
    • Picchini, U. and Ditlevsen, S. (2011). Practical estimation of high dimensional stochastic differential mixed-effects models. Computational Statistics and Data Analysis 55 1426-1444. MR2741425
    • (2011) Computational Statistics and Data Analysis , vol.55 , pp. 1426-1444
    • Picchini, U.1    Ditlevsen, S.2
  • 25
    • 23844485993 scopus 로고    scopus 로고
    • Stochastic differential equations in NONMEM: Implementation, application, and comparison with ordinary differential equations
    • TornØe, C. W., Overgaard, R. V., AgersØ, H., Nielsen, H. A., Madsen, H. and Jonsson, E. N. (2005). Stochastic differential equations in NONMEM: Implementation, application, and comparison with ordinary differential equations. Pharmaceutical Research 22 1247-1258.
    • (2005) Pharmaceutical Research , vol.22 , pp. 1247-1258
    • Tornøe, C.W.1    Overgaard, R.V.2    Agersø, H.3    Nielsen, H.A.4    Madsen, H.5    Jonsson, E.N.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.