메뉴 건너뛰기




Volumn 56, Issue 3, 2012, Pages 491-501

Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule

Author keywords

GaussHermite rule; Numerical integration; Random effects; Survival analysis; Time dependent covariates

Indexed keywords

GAUSSHERMITE RULE; NUMERICAL INTEGRATIONS; RANDOM EFFECTS; SURVIVAL ANALYSIS; TIME-DEPENDENT COVARIATES;

EID: 80455176985     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2011.09.007     Document Type: Article
Times cited : (62)

References (39)
  • 1
    • 0001646484 scopus 로고
    • Cox's regression model for counting processes: A large sample study
    • P. Andersen, and R. Gill Cox's regression model for counting processes: a large sample study Annals of Statistics 10 1982 1100 1120
    • (1982) Annals of Statistics , vol.10 , pp. 1100-1120
    • Andersen, P.1    Gill, R.2
  • 2
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo em algorithm
    • J. Booth, and J. Hobert Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm Journal of the Royal Statistical Society, Series B 61 1999 265 285
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 265-285
    • Booth, J.1    Hobert, J.2
  • 4
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • DOI 10.1111/1541-0420.00028
    • E. Brown, and J. Ibrahim A Bayesian semiparametric joint hierarchical model for longitudinal and survival data Biometrics 59 2003 221 228 (Pubitemid 36750335)
    • (2003) Biometrics , vol.59 , Issue.2 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 5
    • 15044356987 scopus 로고    scopus 로고
    • A flexible B-spline model for multiple longitudinal biomarkers and survival
    • DOI 10.1111/j.0006-341X.2005.030929.x
    • E. Brown, J. Ibrahim, and V. DeGruttola A flexible B-spline model for multiple longitudinal biomarkers and survival Biometrics 61 2005 64 73 (Pubitemid 40380965)
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 64-73
    • Brown, E.R.1    Ibrahim, J.G.2    DeGruttola, V.3
  • 8
    • 43749089133 scopus 로고    scopus 로고
    • Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data
    • DOI 10.1111/j.1541-0420.2007.00896.x
    • J. Ding, and J.-L. Wang Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data Biometrics 64 2008 546 556 (Pubitemid 351691919)
    • (2008) Biometrics , vol.64 , Issue.2 , pp. 546-556
    • Ding, J.1    Wang, J.-L.2
  • 9
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • R. Elashoff, G. Li, and N. Li A joint model for longitudinal measurements and survival data in the presence of multiple failure types Biometrics 64 2008 762 771
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.1    Li, G.2    Li, N.3
  • 10
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach
    • DOI 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0. CO;2-1
    • C. Faucett, and D. Thomas Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach Statistics in Medicine 15 1996 1663 1685 (Pubitemid 26261589)
    • (1996) Statistics in Medicine , vol.15 , Issue.15 , pp. 1663-1685
    • Faucett, C.L.1    Thomas, D.C.2
  • 12
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • DOI 10.1093/biostatistics/1.4.465
    • R. Henderson, P. Diggle, and A. Dobson Joint modelling of longitudinal measurements and event time data Biostatistics 1 2000 465 480 (Pubitemid 33213549)
    • (2000) Biostatistics Oxford , vol.1 , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 13
    • 33845482505 scopus 로고    scopus 로고
    • Joint modeling of survival and longitudinal data: Likelihood approach revisited
    • F. Hsieh, Y.-K. Tseng, and J.-L. Wang Joint modeling of survival and longitudinal data: likelihood approach revisited Biometrics 62 2006 1037 1043
    • (2006) Biometrics , vol.62 , pp. 1037-1043
    • Hsieh, F.1    Tseng, Y.-K.2    Wang, J.-L.3
  • 14
    • 78651422985 scopus 로고    scopus 로고
    • A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects
    • X. Huang, G. Li, R. Elashoff, and J. Pan A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects Lifetime Data Analysis 17 2011 80 100
    • (2011) Lifetime Data Analysis , vol.17 , pp. 80-100
    • Huang, X.1    Li, G.2    Elashoff, R.3    Pan, J.4
  • 16
    • 1342322973 scopus 로고    scopus 로고
    • Springer-Verlag New York
    • K. Lange Optimization 2004 Springer-Verlag New York
    • (2004) Optimization
    • Lange, K.1
  • 18
    • 0036712232 scopus 로고    scopus 로고
    • Parameter estimation in longitudinal studies with outcome-dependent follow-up
    • S. Lipsitz, G. Fitzmaurice, J. Ibrahim, R. Gelber, and S. Lipshultz Parameter estimation in longitudinal studies with outcome-dependent follow-up Biometrics 58 2002 621 630 (Pubitemid 35001480)
    • (2002) Biometrics , vol.58 , Issue.3 , pp. 621-630
    • Lipsitz, S.R.1    Fitzmaurice, G.M.2    Ibrahim, J.G.3    Gelber, R.4    Lipshultz, S.5
  • 19
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • C. McCulloch Maximum likelihood algorithms for generalized linear mixed models Journal of the American Statistical Association 92 1997 162 170
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.1
  • 20
    • 0028339925 scopus 로고
    • Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits
    • DOI 10.1016/0270-9139(94)90144-9
    • P. Murtaugh, E. Dickson, G. Van Dam, M. Malincho, P. Grambsch, A. Langworthy, and C. Gips Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits Hepatology 20 1994 126 134 (Pubitemid 24196501)
    • (1994) Hepatology , vol.20 , Issue.1 , pp. 126-134
    • Murtaugh, P.A.1    Dickson, E.R.2    Van Dam, G.M.3    Malinchoc, M.4    Grambsch, P.M.5    Langworthy, A.L.6    Gips, C.H.7
  • 21
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • J. Pinheiro, and D. Bates Approximations to the log-likelihood function in the nonlinear mixed-effects model Journal of Computational and Graphical Statistics 4 1995 12 35
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , pp. 12-35
    • Pinheiro, J.1    Bates, D.2
  • 22
    • 33645565987 scopus 로고    scopus 로고
    • Efficient laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models
    • DOI 10.1198/106186006X96962
    • J. Pinheiro, and E. Chao Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models Journal of Computational and Graphical Statistics 15 2006 58 81 (Pubitemid 43514411)
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , Issue.1 , pp. 58-81
    • Pinheiro, J.C.1    Chao, E.C.2
  • 24
    • 58749099434 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach
    • C. Proust-Lima, P. Joly, J. Dartigues, and H. Jacqmin-Gadda Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach Computational Statistics & Data Analysis 53 2009 1142 1154
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Dartigues, J.3    Jacqmin-Gadda, H.4
  • 25
    • 70149108170 scopus 로고    scopus 로고
    • Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach
    • C. Proust-Lima, and J. Taylor Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach Biostatistics 10 2009 535 549
    • (2009) Biostatistics , vol.10 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.2
  • 27
    • 77955157844 scopus 로고    scopus 로고
    • JM: An R package for the joint modelling of longitudinal and time-to-event data
    • URL
    • D. Rizopoulos JM: an R package for the joint modelling of longitudinal and time-to-event data Journal of Statistical Software 35 9 2010 1 33 URL: http://www.jstatsoft.org/v35/i09/
    • (2010) Journal of Statistical Software , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 28
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • D. Rizopoulos Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data Biometrics 67 2011 819 829
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 29
    • 79955847737 scopus 로고    scopus 로고
    • A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • D. Rizopoulos, and P. Ghosh A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event Statistics in Medicine 30 2011 1366 1380
    • (2011) Statistics in Medicine , vol.30 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 30
    • 66849099701 scopus 로고    scopus 로고
    • Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
    • D. Rizopoulos, G. Verbeke, and E. Lesaffre Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data Journal of the Royal Statistical Society, Series B 71 2009 637 654
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 637-654
    • Rizopoulos, D.1    Verbeke, G.2    Lesaffre, E.3
  • 31
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • X. Song, M. Davidian, and A. Tsiatis A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data Biometrics 58 2002 742 753 (Pubitemid 36133752)
    • (2002) Biometrics , vol.58 , Issue.4 , pp. 742-753
    • Song, X.1    Davidian, M.2    Tsiatis, A.A.3
  • 33
    • 0001659147 scopus 로고    scopus 로고
    • A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error
    • A. Tsiatis, and M. Davidian A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error Biometrika 88 2001 447 458 (Pubitemid 33770998)
    • (2001) Biometrika , vol.88 , Issue.2 , pp. 447-458
    • Tsiatis, A.A.1    Davidian, M.2
  • 34
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: An overview
    • A. Tsiatis, and M. Davidian Joint modeling of longitudinal and time-to-event data: an overview Statistica Sinica 14 2004 809 834 (Pubitemid 39499214)
    • (2004) Statistica Sinica , vol.14 , Issue.3 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 35
    • 0442327792 scopus 로고    scopus 로고
    • Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
    • Y. Wang, and J. Taylor Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome Journal of the American Statistical Association 96 2001 895 905
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 895-905
    • Wang, Y.1    Taylor, J.2
  • 36
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • DOI 10.2307/2533118
    • M. Wulfsohn, and A. Tsiatis A joint model for survival and longitudinal data measured with error Biometrics 53 1997 330 339 (Pubitemid 27131905)
    • (1997) Biometrics , vol.53 , Issue.1 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 38
    • 80052786844 scopus 로고    scopus 로고
    • A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data
    • W. Ye, X. Lin, and J. Taylor A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data Statistics and its Interface 1 2008 33 45
    • (2008) Statistics and Its Interface , vol.1 , pp. 33-45
    • Ye, W.1    Lin, X.2    Taylor, J.3
  • 39
    • 8644269772 scopus 로고    scopus 로고
    • Joint longitudinal-survival-cure models and their application to prostate cancer
    • M. Yu, N. Law, J. Taylor, and H. Sandler Joint longitudinal-survival-cure models and their application to prostate cancer Statistica Sinica 14 2004 835 862 (Pubitemid 39499215)
    • (2004) Statistica Sinica , vol.14 , Issue.3 , pp. 835-862
    • Yu, M.1    Law, N.J.2    Taylor, J.M.G.3    Sandler, H.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.