메뉴 건너뛰기




Volumn 56, Issue 6, 2012, Pages 1545-1551

Modeling the random effects covariance matrix for generalized linear mixed models

Author keywords

Cholesky decomposition; Heterogeneity; Longitudinal data

Indexed keywords

CATEGORICAL DATA; CHOLESKY DECOMPOSITION; COVARIATES; FIXED EFFECTS; GENERALIZED LINEAR MIXED MODELS; HETEROGENEITY; HIGH DIMENSIONALITY; LONGITUDINAL DATA; METABOLIC SYNDROMES; POSITIVE DEFINITE; POSITIVE DEFINITENESS; RANDOM EFFECTS;

EID: 84857646089     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2011.09.011     Document Type: Article
Times cited : (12)

References (21)
  • 2
    • 85011514513 scopus 로고    scopus 로고
    • Monte Carlo and quasi-Monte Carlo methods
    • R. Caflisch Monte Carlo and quasi-Monte Carlo methods Acta Numerica 7 1998 1 49
    • (1998) Acta Numerica , vol.7 , pp. 1-49
    • Caflisch, R.1
  • 3
    • 0038025664 scopus 로고    scopus 로고
    • Modelling the random effects covariance matrix in longitudinal data
    • J.M. Daniels, and Y.D. Zhao Modelling the random effects covariance matrix in longitudinal data Statistics in Medicine 22 2003 1631 1647
    • (2003) Statistics in Medicine , vol.22 , pp. 1631-1647
    • Daniels, J.M.1    Zhao, Y.D.2
  • 4
    • 0038600714 scopus 로고    scopus 로고
    • Bayesian analysis of covariance matrices and dynamic models for longitudinal data
    • J.M. Daniels, and M. Pourahmadi Bayesian analysis of covariance matrices and dynamic models for longitudinal data Biometrika 89 2002 553 566
    • (2002) Biometrika , vol.89 , pp. 553-566
    • Daniels, J.M.1    Pourahmadi, M.2
  • 5
    • 0037116641 scopus 로고    scopus 로고
    • Prevalence of metabolic syndrome among US adults: Findings from the third national health and nutrition examination survey
    • E.S. Ford, W.H. Giles, and W.H. Dietz Prevalence of metabolic syndrome among US adults: findings from the third national health and nutrition examination survey JAMA 287 2002 356 359
    • (2002) JAMA , vol.287 , pp. 356-359
    • Ford, E.S.1    Giles, W.H.2    Dietz, W.H.3
  • 7
    • 0032887209 scopus 로고    scopus 로고
    • Marginally specified logistic-normal models for longitudinal binary data
    • P.J. Heagerty Marginally specified logistic-normal models for longitudinal binary data Biometrics 55 1999 688 698
    • (1999) Biometrics , vol.55 , pp. 688-698
    • Heagerty, P.J.1
  • 8
    • 0000024102 scopus 로고    scopus 로고
    • Misspecified maximum likelihood estimates and generalised linear mixed models
    • P.J. Heagerty, and B.F. Kurland Misspecified maximum likelihood estimates and generalised linear mixed models Biometrika 88 2001 973 985
    • (2001) Biometrika , vol.88 , pp. 973-985
    • Heagerty, P.J.1    Kurland, B.F.2
  • 10
    • 50849089293 scopus 로고    scopus 로고
    • Marginalized models for longitudinal ordinal data with application to quality of life studies
    • K. Lee, and M. Daniels Marginalized models for longitudinal ordinal data with application to quality of life studies Statistics in Medicine 27 2008 4359 4380
    • (2008) Statistics in Medicine , vol.27 , pp. 4359-4380
    • Lee, K.1    Daniels, M.2
  • 12
    • 65649151036 scopus 로고    scopus 로고
    • Marginalized random effects models for multivariate longitudinal binary data
    • K. Lee, Y. João, J.K. Yoo, and J. Lee Marginalized random effects models for multivariate longitudinal binary data Statistics in Medicine 28 2009 1284 1300
    • (2009) Statistics in Medicine , vol.28 , pp. 1284-1300
    • Lee, K.1    João, Y.2    Yoo, J.K.3    Lee, J.4
  • 13
    • 79958851862 scopus 로고    scopus 로고
    • Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models
    • K. Lee, S. Kang, X. Liu, and D. Seo Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models Journal of Applied Statistics 17 2011 1577 1590
    • (2011) Journal of Applied Statistics , vol.17 , pp. 1577-1590
    • Lee, K.1    Kang, S.2    Liu, X.3    Seo, D.4
  • 15
    • 3843133868 scopus 로고    scopus 로고
    • On modelling mean- covariance structures in longitudinal studies
    • J. Pan, and G. Mackenzie On modelling mean- covariance structures in longitudinal studies Biometrika 90 2003 239 244
    • (2003) Biometrika , vol.90 , pp. 239-244
    • Pan, J.1    MacKenzie, G.2
  • 16
    • 33645764215 scopus 로고    scopus 로고
    • Regression models for covariance structures in longitudinal studies
    • J. Pan, and G. Mackenzie Regression models for covariance structures in longitudinal studies Statistical Modelling 6 2006 43 57
    • (2006) Statistical Modelling , vol.6 , pp. 43-57
    • Pan, J.1    MacKenzie, G.2
  • 17
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation
    • M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation Biometrika 86 1999 677 690
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 18
    • 0001304198 scopus 로고    scopus 로고
    • Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix
    • M. Pourahmadi Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix Biometrika 87 2000 425 435
    • (2000) Biometrika , vol.87 , pp. 425-435
    • Pourahmadi, M.1
  • 19
    • 0036192069 scopus 로고    scopus 로고
    • Dynamic conditionally linear mixed models for longitudinal data
    • M. Pourahmadi, and M.J. Daniels Dynamic conditionally linear mixed models for longitudinal data Biometrics 58 2002 225 231
    • (2002) Biometrics , vol.58 , pp. 225-231
    • Pourahmadi, M.1    Daniels, M.J.2
  • 20
    • 84857653557 scopus 로고    scopus 로고
    • FOptions: Financial software collection-fOptions
    • Wuertz, D.; 2005. fOptions: financial software collection-fOptions. R package version 220.10063, http://www.rmetrics.org.
    • (2005) R Package Version 220.10063
    • Wuertz, D.1
  • 21
    • 70249117805 scopus 로고    scopus 로고
    • Modeling covariance matrices via partial autocorrelations
    • M.J. Daniels, and M. Pourahmadi Modeling covariance matrices via partial autocorrelations Journal of Multivariate Analysis 100 2009 2352 2363
    • (2009) Journal of Multivariate Analysis , vol.100 , pp. 2352-2363
    • Daniels, M.J.1    Pourahmadi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.