메뉴 건너뛰기




Volumn 22, Issue 1, 2012, Pages 121-139

Estimation in nonlinear mixed-effects models using heavy-tailed distributions

Author keywords

Mixed effects model; Outliers; Random effects; SAEM algorithm; Scale mixtures of normal distributions

Indexed keywords


EID: 81955165471     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9212-1     Document Type: Article
Times cited : (63)

References (71)
  • 3
    • 0035178888 scopus 로고    scopus 로고
    • A general class of multivariate skew-elliptical distributions
    • Branco, M. D., Dey, D. K.: A general class of multivariate skew-elliptical distributions. J. Multivar. Anal. 79, 99-113 (2001).
    • (2001) J. Multivar. Anal. , vol.79 , pp. 99-113
    • Branco, M.D.1    Dey, D.K.2
  • 4
    • 77950076362 scopus 로고    scopus 로고
    • High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm
    • Cai, L.: High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika 75, 33-57 (2010).
    • (2010) Psychometrika , vol.75 , pp. 33-57
    • Cai, L.1
  • 5
    • 0347493359 scopus 로고    scopus 로고
    • Hierarchical models with scale mixtures of normal distributions
    • Choy, S. T. B., Smith, A. F. M.: Hierarchical models with scale mixtures of normal distributions. Test 6, 205-221 (1997).
    • (1997) Test , vol.6 , pp. 205-221
    • Choy, S.T.B.1    Smith, A.F.M.2
  • 6
    • 0001490588 scopus 로고
    • Assessment of local influence (with discussion)
    • Cook, R. D.: Assessment of local influence (with discussion). J. R. Stat. Soc. Ser. B 48, 133-169 (1986).
    • (1986) J. R. Stat. Soc. Ser. B , vol.48 , pp. 133-169
    • Cook, R.D.1
  • 7
    • 0347763819 scopus 로고    scopus 로고
    • Local Influence
    • S. Kotz, C. B. Read, and D. L. Banks (Eds.), New York: Wiley
    • Cook, R. D.: Local Influence. In: Kotz, S., Read, C. B., Banks, D. L. (eds.) Encyclopedia of Statistical Sciences, Update, vol. 1, pp. 380-385. Wiley, New York (1997).
    • (1997) Encyclopedia of Statistical Sciences, Update , vol.1 , pp. 380-385
    • Cook, R.D.1
  • 9
    • 33645499361 scopus 로고    scopus 로고
    • High breakdown inference in the mixed linear model
    • Copt, S., Victoria-Feser, M.: High breakdown inference in the mixed linear model. J. Am. Stat. Assoc. 101, 292-300 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 292-300
    • Copt, S.1    Victoria-Feser, M.2
  • 11
    • 5444232913 scopus 로고    scopus 로고
    • Nonlinear models for repeated measurements: An overview and update
    • Davidian, M., Giltinan, D. M.: Nonlinear models for repeated measurements: An overview and update. J. Agric. Biol. Environ. Stat. 8, 387-419 (2003).
    • (2003) J. Agric. Biol. Environ. Stat. , vol.8 , pp. 387-419
    • Davidian, M.1    Giltinan, D.M.2
  • 12
    • 55749105104 scopus 로고    scopus 로고
    • Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles
    • De la Cruz, R.: Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles. Comput. Stat. Data Anal. 53, 436-229 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.53 , pp. 229-436
    • de la Cruz, R.1
  • 13
    • 70350707424 scopus 로고    scopus 로고
    • Bayesian analysis for nonlinear regression model under skewed errors, with application in growth curves
    • 588609
    • De la Cruz, R., Branco, M. D.: Bayesian analysis for nonlinear regression model under skewed errors, with application in growth curves. Biometric. J. 51(4), 588609 (2009).
    • (2009) Biometric. J. , vol.51 , Issue.4
    • de la Cruz, R.1    Branco, M.D.2
  • 15
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon, B., Lavielle, M., Moulines, E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94-128 (1999).
    • (1999) Ann. Stat. , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 16
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 39, 1-38 (1977).
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 17
    • 33746447668 scopus 로고    scopus 로고
    • Multivariate Student-t regression models: pitfalls and inference
    • Fernández, C., Steel, M. F. J.: Multivariate Student-t regression models: pitfalls and inference. Biometrika 86, 153-167 (1999).
    • (1999) Biometrika , vol.86 , pp. 153-167
    • Fernández, C.1    Steel, M.F.J.2
  • 18
    • 13144294075 scopus 로고    scopus 로고
    • A stochastic approximation algorithm with Markov chain Monte-Carlo method for incomplete data estimation problems
    • Gu, M. G., Kong, F. H.: A stochastic approximation algorithm with Markov chain Monte-Carlo method for incomplete data estimation problems. Proc. Natl. Acad. Sci. USA 95, 7270-7274 (1998).
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 7270-7274
    • Gu, M.G.1    Kong, F.H.2
  • 19
    • 33846182940 scopus 로고    scopus 로고
    • Implementing and diagnosing the stochastic approximation EM algorithm
    • Jank, W.: Implementing and diagnosing the stochastic approximation EM algorithm. J. Comput. Graph. Stat. 15, 803-829 (2006).
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 803-829
    • Jank, W.1
  • 20
    • 4544335851 scopus 로고    scopus 로고
    • Adaptive robust regression by using a nonlinear regression program
    • Jamshidian, M.: Adaptive robust regression by using a nonlinear regression program. J. Stat. Softw. http://www.jstatsoft.org/v04/i06 (1999).
    • (1999) J. Stat. Softw
    • Jamshidian, M.1
  • 21
    • 46549086432 scopus 로고    scopus 로고
    • Linear mixed models with skew-elliptical distributions: A Bayesian approach
    • Jara, A., Quintana, F., San Martin, E.: Linear mixed models with skew-elliptical distributions: A Bayesian approach. Comput. Stat. Data Anal. 52, 5033-5045 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 5033-5045
    • Jara, A.1    Quintana, F.2    San Martin, E.3
  • 23
    • 0008596328 scopus 로고
    • A curious likelihood identity for the multivariate t distribution
    • Kent, J. T., Tyler, D. E., Vardi, Y.: A curious likelihood identity for the multivariate t distribution. Commun. Stat. Simul. C. 23, 441-453 (1994).
    • (1994) Commun. Stat. Simul. C. , vol.23 , pp. 441-453
    • Kent, J.T.1    Tyler, D.E.2    Vardi, Y.3
  • 24
    • 13444249563 scopus 로고    scopus 로고
    • Coupling a stochastic approximation version of EM with a MCMC procedure
    • Kuhn, E., Lavielle, M.: Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM P& S 8, 115-131 (2004).
    • (2004) ESAIM P&S , vol.8 , pp. 115-131
    • Kuhn, E.1    Lavielle, M.2
  • 25
    • 19044400906 scopus 로고    scopus 로고
    • Maximum likelihood estimation in nonlinear mixed effects models
    • Kuhn, E., Lavielle, M.: Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 49, 1020-1038 (2005).
    • (2005) Comput. Stat. Data Anal. , vol.49 , pp. 1020-1038
    • Kuhn, E.1    Lavielle, M.2
  • 26
    • 0000217030 scopus 로고
    • Normal/independent distributions and their applications in robust regression
    • Lange, K., Sinsheimer, J.: Normal/independent distributions and their applications in robust regression. J. Comput. Graph. Stat. 2, 175-198 (1993).
    • (1993) J. Comput. Graph. Stat. , vol.2 , pp. 175-198
    • Lange, K.1    Sinsheimer, J.2
  • 27
    • 84950441032 scopus 로고
    • Robust statistical modeling using the t distribution
    • Lange, K. L., Little, R. J. A., Taylor, J. M. G.: Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 84, 881-896 (1989).
    • (1989) J. Am. Stat. Assoc. , vol.84 , pp. 881-896
    • Lange, K.L.1    Little, R.J.A.2    Taylor, J.M.G.3
  • 29
    • 34249707233 scopus 로고    scopus 로고
    • A parameter expansion version of the SAEM algorithm
    • Lavielle, M., Meza, C.: A parameter expansion version of the SAEM algorithm. Stat. Comput. 17, 121-130 (2007).
    • (2007) Stat. Comput. , vol.17 , pp. 121-130
    • Lavielle, M.1    Meza, C.2
  • 30
    • 1142306161 scopus 로고    scopus 로고
    • Influence analyses of nonlinear mixed-effects models
    • Lee, S., Xu, L.: Influence analyses of nonlinear mixed-effects models. Comput. Stat. Data Anal. 45, 321-341 (2004).
    • (2004) Comput. Stat. Data Anal. , vol.45 , pp. 321-341
    • Lee, S.1    Xu, L.2
  • 31
    • 77249087273 scopus 로고    scopus 로고
    • Longitudinal data analysis using t linear mixed models with autoregressive dependence structures
    • Lin, T. I.: Longitudinal data analysis using t linear mixed models with autoregressive dependence structures. J. Data Sci. 6, 333-355 (2008).
    • (2008) J. Data Sci. , vol.6 , pp. 333-355
    • Lin, T.I.1
  • 32
    • 33646164643 scopus 로고    scopus 로고
    • A robust approach to t linear mixed models applied to multiple sclerosis data
    • Lin, T. I., Lee, J. C.: A robust approach to t linear mixed models applied to multiple sclerosis data. Stat. Med. 25, 1397-1412 (2006).
    • (2006) Stat. Med. , vol.25 , pp. 1397-1412
    • Lin, T.I.1    Lee, J.C.2
  • 33
    • 42149136843 scopus 로고    scopus 로고
    • Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data
    • Lin, T. I., Lee, J. C.: Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data. Stat. Med. 27, 1490-1507 (2007).
    • (2007) Stat. Med. , vol.27 , pp. 1490-1507
    • Lin, T.I.1    Lee, J.C.2
  • 34
    • 0025170004 scopus 로고
    • Nonlinear mixed-effects models for repeated measures data
    • Lindstrom, M. J., Bates, D. M.: Nonlinear mixed-effects models for repeated measures data. Biometrics 46, 673-787 (1990).
    • (1990) Biometrics , vol.46 , pp. 673-787
    • Lindstrom, M.J.1    Bates, D.M.2
  • 35
    • 0042123139 scopus 로고    scopus 로고
    • Bayesian robust multivariate linear regression with incomplete data
    • Liu, C.: Bayesian robust multivariate linear regression with incomplete data. J. Am. Stat. Assoc. 91, 1219-1227 (1996).
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 1219-1227
    • Liu, C.1
  • 36
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion to accelerate EM: The PX-EM algorithm
    • Liu, C., Rubin, D., Wu, Y.: Parameter expansion to accelerate EM: The PX-EM algorithm. Biometrika 85, 755-770 (1998).
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.1    Rubin, D.2    Wu, Y.3
  • 37
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A.: Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. B 44, 226-233 (1982).
    • (1982) J. R. Stat. Soc. Ser. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 38
    • 0031338071 scopus 로고    scopus 로고
    • Robustness of the Student t based-M-estimator
    • Lucas, A.: Robustness of the Student t based-M-estimator. Commun. Stat. Theor. M 26, 1165-1182 (1997).
    • (1997) Commun. Stat. Theor. M , vol.26 , pp. 1165-1182
    • Lucas, A.1
  • 39
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch, C. E.: Maximum likelihood algorithms for generalized linear mixed models. J. Am. Stat. Assoc. 92, 162-170 (1997).
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 40
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm-an old folk song sung to a fast new tune (with discussion)
    • Meng, X. L., van Dyk, D. A.: The EM algorithm-an old folk song sung to a fast new tune (with discussion). J. R. Stat. Soc. Ser. B 59, 511-567 (1997).
    • (1997) J. R. Stat. Soc. Ser. B , vol.59 , pp. 511-567
    • Meng, X.L.1    van Dyk, D.A.2
  • 41
    • 38049121396 scopus 로고    scopus 로고
    • REML estimation of variance parameters in nonlinear mixed effects models using SAEM algorithm
    • Meza, C., Jaffrézic, F., Foulley, J.-L.: REML estimation of variance parameters in nonlinear mixed effects models using SAEM algorithm. Biometric. J. 49, 876-888 (2007).
    • (2007) Biometric. J. , vol.49 , pp. 876-888
    • Meza, C.1    Jaffrézic, F.2    Foulley, J.-L.3
  • 42
    • 58549090692 scopus 로고    scopus 로고
    • Estimation in the probit normal model for binary outcomes using the SAEM algorithm
    • Meza, C., Jaffrézic, F., Foulley, J.-L.: Estimation in the probit normal model for binary outcomes using the SAEM algorithm. Comput. Stat. Data Anal. 53, 1350-1360 (2009).
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 1350-1360
    • Meza, C.1    Jaffrézic, F.2    Foulley, J.-L.3
  • 43
    • 34147127506 scopus 로고    scopus 로고
    • Assessment of local influence in elliptical linear models with longitudinal structure
    • Osorio, F., Paula, G. A., Galea, M.: Assessment of local influence in elliptical linear models with longitudinal structure. Comput. Stat. Data Anal. 51, 4354-4368 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 4354-4368
    • Osorio, F.1    Paula, G.A.2    Galea, M.3
  • 44
    • 0043232568 scopus 로고    scopus 로고
    • Simulation of right and left truncated gamma distributions by mixtures
    • Philippe, A.: Simulation of right and left truncated gamma distributions by mixtures. Stat. Comput. 7, 173-181 (1997).
    • (1997) Stat. Comput. , vol.7 , pp. 173-181
    • Philippe, A.1
  • 45
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro, J., Bates, D. M.: Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Stat. 4, 12-35 (1995).
    • (1995) J. Comput. Graph. Stat. , vol.4 , pp. 12-35
    • Pinheiro, J.1    Bates, D.M.2
  • 47
    • 0035632583 scopus 로고    scopus 로고
    • Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution
    • Pinheiro, J., Liu, C., Wu, Y.: Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. J. Comput. Graph. Stat. 10, 249-276 (2001).
    • (2001) J. Comput. Graph. Stat. , vol.10 , pp. 249-276
    • Pinheiro, J.1    Liu, C.2    Wu, Y.3
  • 48
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling of various metropolis-hastings algorithms
    • Roberts, G. O., Rosenthal, J. S.: Optimal scaling of various metropolis-hastings algorithms. Stat. Sci. 16, 351-367 (2001).
    • (2001) Stat. Sci. , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 49
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk metropolis algorithm
    • Roberts, G. O., Gelman, A., Gilks, W.: Weak convergence and optimal scaling of random walk metropolis algorithm. Ann. Appl. Prob. 7, 110-120 (1997).
    • (1997) Ann. Appl. Prob. , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.3
  • 50
    • 84995046173 scopus 로고
    • Understanding some long-tailed distributions
    • Rogers, W. H., Tuckey, J. W.: Understanding some long-tailed distributions. Stat. Neerl. 26, 211-226 (1972).
    • (1972) Stat. Neerl. , vol.26 , pp. 211-226
    • Rogers, W.H.1    Tuckey, J.W.2
  • 51
    • 0042570344 scopus 로고    scopus 로고
    • Robust linear mixed models with Normal/Independent distributions and Bayesian MCMC implementation
    • Rosa, G. J. M., Padovani, C. R., Gianola, D.: Robust linear mixed models with Normal/Independent distributions and Bayesian MCMC implementation. Biometric. J. 45, 573-590 (2003).
    • (2003) Biometric. J. , vol.45 , pp. 573-590
    • Rosa, G.J.M.1    Padovani, C.R.2    Gianola, D.3
  • 52
    • 4444229300 scopus 로고    scopus 로고
    • Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC
    • Rosa, G. J. M., Gianola, D., Padovani, C. R.: Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC. J. Appl. Stat. 31, 855-873 (2004).
    • (2004) J. Appl. Stat. , vol.31 , pp. 855-873
    • Rosa, G.J.M.1    Gianola, D.2    Padovani, C.R.3
  • 53
    • 69449085199 scopus 로고    scopus 로고
    • Influence diagnostics in nonlinear mixed-effects elliptical models
    • Russo, C. M., Paula, G. A., Aoki, R.: Influence diagnostics in nonlinear mixed-effects elliptical models. Comput. Stat. Data Anal. 53, 4143-4156 (2009).
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 4143-4156
    • Russo, C.M.1    Paula, G.A.2    Aoki, R.3
  • 54
    • 45049084104 scopus 로고    scopus 로고
    • Detection of outliers in multilevel models
    • Shi, L., Chen, G.: Detection of outliers in multilevel models. J. Stat. Plan. Inference 138, 3189-3199 (2008).
    • (2008) J. Stat. Plan. Inference , vol.138 , pp. 3189-3199
    • Shi, L.1    Chen, G.2
  • 55
    • 62249110846 scopus 로고    scopus 로고
    • Robustness for general design mixed models using the t-distribution
    • Staudenmayer, J., Lake, E. E., Wand, M. P.: Robustness for general design mixed models using the t-distribution. Stat. Model. 9, 235-255 (2009).
    • (2009) Stat. Model. , vol.9 , pp. 235-255
    • Staudenmayer, J.1    Lake, E.E.2    Wand, M.P.3
  • 57
    • 26844582271 scopus 로고    scopus 로고
    • Parameter convergence for EM and MM algorithms
    • Vaida, F.: Parameter convergence for EM and MM algorithms. Stat. Sin. 15, 831-840 (2005).
    • (2005) Stat. Sin. , vol.15 , pp. 831-840
    • Vaida, F.1
  • 58
    • 0000474486 scopus 로고    scopus 로고
    • A note on the use of Laplace's approximation for nonlinear mixed-effects models
    • Vonesh, E. F.: A note on the use of Laplace's approximation for nonlinear mixed-effects models. Biometrika 83, 447-452 (1996).
    • (1996) Biometrika , vol.83 , pp. 447-452
    • Vonesh, E.F.1
  • 60
    • 0029816547 scopus 로고    scopus 로고
    • An EM algorithm for nonlinear random effects models
    • Walker, S.: An EM algorithm for nonlinear random effects models. Biometrics 52, 934-944 (1996).
    • (1996) Biometrics , vol.52 , pp. 934-944
    • Walker, S.1
  • 61
    • 33846594422 scopus 로고    scopus 로고
    • EM algorithms for nonlinear mixed effects models
    • Wang, J.: EM algorithms for nonlinear mixed effects models. Comput. Stat. Data Anal. 51, 3244-3256 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 3244-3256
    • Wang, J.1
  • 62
    • 0040757903 scopus 로고
    • On statistical models for regression diagnostics
    • Wei, B., Shih, J.: On statistical models for regression diagnostics. Ann. Inst. Stat. Math. 46, 267-278 (1994).
    • (1994) Ann. Inst. Stat. Math. , vol.46 , pp. 267-278
    • Wei, B.1    Shih, J.2
  • 63
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G., Tanner, M.: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Stat. Assoc. 85, 699-704 (1990).
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 699-704
    • Wei, G.1    Tanner, M.2
  • 64
    • 0032634822 scopus 로고    scopus 로고
    • The mean-shift outlier model in general weighted regression and its applications
    • Wei, W. H., Fung, W. K.: The mean-shift outlier model in general weighted regression and its applications. Comput. Stat. Data Anal. 30, 429-441 (1999).
    • (1999) Comput. Stat. Data Anal. , vol.30 , pp. 429-441
    • Wei, W.H.1    Fung, W.K.2
  • 65
    • 0011337731 scopus 로고    scopus 로고
    • Approaches to the robust estimation of mixed models
    • G. S. Maddala and C. R. Rao (Eds.), Amsterdam: Elsevier Science
    • Welsh, A. H., Richardson, A. M.: Approaches to the robust estimation of mixed models. In: Maddala, G. S., Rao, C. R. (eds.) Handbook of Statistics, vol. 15, pp. 343-384. Elsevier Science, Amsterdam (1997).
    • (1997) Handbook of Statistics , vol.15 , pp. 343-384
    • Welsh, A.H.1    Richardson, A.M.2
  • 66
    • 0001684437 scopus 로고
    • Laplace's approximation for nonlinear mixed models
    • Wolfinger, R.: Laplace's approximation for nonlinear mixed models. Biometrika 80, 791-795 (1993).
    • (1993) Biometrika , vol.80 , pp. 791-795
    • Wolfinger, R.1
  • 67
    • 0031222254 scopus 로고    scopus 로고
    • Two Taylor-series approximation methods for nonlinear mixed models
    • 465490
    • Wolfinger, R. D., Lin, X.: Two Taylor-series approximation methods for nonlinear mixed models. Comput. Stat. Data Anal. 25, 465490 (1997).
    • (1997) Comput. Stat. Data Anal. , vol.25
    • Wolfinger, R.D.1    Lin, X.2
  • 68
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C.-F. J.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95-103 (1983).
    • (1983) Ann. Stat. , vol.11 , pp. 95-103
    • Wu, C.-F.J.1
  • 69
    • 0035099139 scopus 로고    scopus 로고
    • Robust two-stage estimation in hierarchical nonlinear models
    • Yeap, B. Y., Davidian, M.: Robust two-stage estimation in hierarchical nonlinear models. Biometrics 57, 266-272 (2001).
    • (2001) Biometrics , vol.57 , pp. 266-272
    • Yeap, B.Y.1    Davidian, M.2
  • 70
    • 5444259777 scopus 로고    scopus 로고
    • Robust two stage approach to repeated measurements analysis of chronic ozone exposure in rats
    • Yeap, B. Y., Catalano, P. J., Ryan, L. M., Davidian, M.: Robust two stage approach to repeated measurements analysis of chronic ozone exposure in rats. J. Agric. Biol. Environ. Stat. 8, 438-454 (2003).
    • (2003) J. Agric. Biol. Environ. Stat. , vol.8 , pp. 438-454
    • Yeap, B.Y.1    Catalano, P.J.2    Ryan, L.M.3    Davidian, M.4
  • 71
    • 0141791115 scopus 로고    scopus 로고
    • Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte-Carlo method
    • Zhu, H., Lee, S.: Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte-Carlo method. Stat. Comput. 12, 175-183 (2002).
    • (2002) Stat. Comput. , vol.12 , pp. 175-183
    • Zhu, H.1    Lee, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.