메뉴 건너뛰기




Volumn 98, Issue 3, 2011, Pages 685-700

Conditional Akaike information under generalized linear and proportional hazards mixed models

Author keywords

Akaike information; Conditional likelihood; Effective degrees of freedom

Indexed keywords


EID: 80052294085     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asr023     Document Type: Article
Times cited : (68)

References (52)
  • 1
    • 0000888026 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • New York: Springer
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Breakthroughs in Statistics (1992), vol. 1. pp. 610-24. New York: Springer.
    • (1973) Breakthroughs in Statistics , vol.1 , pp. 610-624
    • Akaike, H.1
  • 2
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • BRESLOW, N. & CLAYTON, D. (1993). Approximate inference in generalized linear mixed models. J. Am. Statist. Assoc. 88, 9-25.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 9-25
    • Breslow, N.1    Clayton, D.2
  • 4
    • 0031478161 scopus 로고    scopus 로고
    • A bootstrap variant of AIC for state-space model selection
    • CAVANAUGH, J. E. & SHUMWAY, R. H. (1997). A bootstrap variant of AIC for state-space model selection. Statist. Sinica 7, 473-96.
    • (1997) Statist. Sinica , vol.7 , pp. 473-96
    • Cavanaugh, J.E.1    Shumway, R.H.2
  • 5
    • 1142265325 scopus 로고    scopus 로고
    • Focused information criterion (with discussion)
    • CLAESKENS, G. & HJORT, N. L. (2003). Focused information criterion (with discussion). J. Am. Statist. Assoc. 98, 900-45.
    • (2003) J. Am. Statist. Assoc , vol.98 , pp. 900-45
    • Claeskens, G.1    Hjort, N.L.2
  • 7
    • 77949417812 scopus 로고    scopus 로고
    • Partitioning degrees of freedom in hierarchical and other richly-parameterized models
    • CUI, Y., HODGES, J. S., KONG, X. & CARLIN, B. P. (2010). Partitioning degrees of freedom in hierarchical and other richly-parameterized models. Technometrics 52, 124-36.
    • (2010) Technometrics , vol.52 , pp. 124-36
    • Cui, Y.1    Hodges, J.S.2    Kong, X.3    Carlin, B.P.4
  • 8
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • EFRON, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation. J. Am. Statist. Assoc. 78, 316-31.
    • (1983) J. Am. Statist. Assoc , vol.78 , pp. 316-331
    • Efron, B.1
  • 9
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • EFRON, B. (1986). How biased is the apparent error rate of a prediction rule? J. Am. Statist. Assoc. 81, 461-70.
    • (1986) J. Am. Statist. Assoc , vol.81 , pp. 461-70
    • Efron, B.1
  • 10
    • 67949122058 scopus 로고    scopus 로고
    • Laplace's approximation for relative risk frailty models
    • FENG, S., NIE, L. & WOLFE, R. A. (2009). Laplace's approximation for relative risk frailty models. Lifetime Data Anal. 15, 343-56.
    • (2009) Lifetime Data Anal , vol.15 , pp. 343-56
    • Feng, S.1    Nie, L.2    Wolfe, R.A.3
  • 12
    • 70349249575 scopus 로고    scopus 로고
    • Asymptotic properties and empirical evaluation of the npmle in the proportional hazards mixed-effects model
    • GAMST, A., DONOHUE, M. & XU, R. (2009). Asymptotic properties and empirical evaluation of the npmle in the proportional hazards mixed-effects model. Statist. Sinica 19, 997-1011.
    • (2009) Statist. Sinica , vol.19 , pp. 997-1011
    • Gamst, A.1    Donohue, M.2    R, X.U.3
  • 13
    • 21844519341 scopus 로고
    • Tests for variation over groups in survival data
    • GRAY, R. (1995). Tests for variation over groups in survival data. J. Am. Statist. Assoc. 90, 198-203.
    • (1995) J. Am. Statist. Assoc , vol.90 , pp. 198-203
    • Gray, R.1
  • 15
    • 0030980644 scopus 로고    scopus 로고
    • Large hierarchical bayesian analysis of multivariate survival data
    • DOI 10.2307/2533110
    • GUSTAFSON, P. (1997). Large hierarchical Bayesian analysis of multivariate survival data. Biometrics 53, 230-42. (Pubitemid 27131897)
    • (1997) Biometrics , vol.53 , Issue.1 , pp. 230-242
    • Gustafson, P.1
  • 16
    • 0141742204 scopus 로고    scopus 로고
    • Estimating Frailty Models via Poisson Hierarchical Generalized Linear Models
    • DOI 10.1198/1061860032256
    • HA, I. D. & LEE, Y. (2003). Estimating frailty models via Poisson hierarchical generalized linear models. J. C o m p. Graph. Statist. 12, 663-81. (Pubitemid 37239922)
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , Issue.3 , pp. 663-681
    • Ha, I.D.1    Lee, Y.2
  • 17
    • 35348949341 scopus 로고    scopus 로고
    • Model selection for multi-component frailty models
    • DOI 10.1002/sim.2879
    • HA, I. D., LEE, Y. & MACKENZIE, G. (2007). Model selection for multi-component frailty models. Statist. Med. 26, 4790-807. (Pubitemid 350020388)
    • (2007) Statistics in Medicine , vol.26 , Issue.26 , pp. 4790-4807
    • Ha, I.D.1    Lee, Y.2    MacKenzie, G.3
  • 19
    • 33846098896 scopus 로고    scopus 로고
    • Focused information criterion and model averaging for the Cox hazard regression model
    • HJORT, N. L. & CLAESKENS, G. (2006). Focused information criterion and model averaging for the Cox hazard regression model. J. Am. Statist. Assoc. 101, 1449-64.
    • (2006) J. Am. Statist. Assoc , vol.101 , pp. 1449-64
    • Hjort, N.L.1    Claeskens, G.2
  • 20
    • 0011691958 scopus 로고    scopus 로고
    • Counting degrees of freedom in hierarchical and other richly-parameterised models
    • HODGES, J. & SARGENT, D. (2001). Counting degrees of freedom in hierarchical and other richly-parameterised models. Biometrika 88, 367-79. (Pubitemid 33770991)
    • (2001) Biometrika , vol.88 , Issue.2 , pp. 367-379
    • Hodges, J.S.1    Sargent, D.J.2
  • 22
    • 0035635648 scopus 로고    scopus 로고
    • Maximum posterior estimation of random effects in generalized linear mixed models
    • JIANG, J. (2001). Maximum posterior estimation of random effects in generalized linear mixed models. Statist. Sinica 11, 97-120.
    • (2001) Statist. Sinica , vol.11 , pp. 97-120
    • Jiang, J.1
  • 24
    • 38149073194 scopus 로고    scopus 로고
    • Stacked Laplace-EM algorithm for duration models with time-varying and random effects
    • KAUERMANN, G., XU, R. & VAIDA, F. (2008). Stacked Laplace-EM algorithm for duration models with time-varying and random effects. Comp. Statist. Data Anal. 52, 2514-28.
    • (2008) Comp. Statist. Data Anal , vol.52 , pp. 2514-28
    • Kauermann, G.1    R, X.U.2    Vaida, F.3
  • 26
    • 85199986075 scopus 로고    scopus 로고
    • Hierarchical generalized linear models (with discussion)
    • LEE, Y. & NELDER, J. A. (1996). Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B 58, 619-78.
    • (1996) J. R. Statist. Soc B , vol.58 , pp. 619-678
    • Lee, Y.1    Nelder, J.A.2
  • 27
    • 50949086329 scopus 로고    scopus 로고
    • A note on conditional AIC for linear mixed-effects models
    • LIANG, H., WU, H. L. & ZOU, G. H. (2008). A note on conditional AIC for linear mixed-effects models. Biometrika 95, 773-8.
    • (2008) Biometrika , vol.95 , pp. 773-8
    • Liang, H.1    L, W.U.H.2    Zou, G.H.3
  • 29
    • 34249277377 scopus 로고    scopus 로고
    • Measuring the complexity of generalized linear hierarchical models
    • LU, H., HODGES, J. S. & CARLIN, B. P. (2007). Measuring the complexity of generalized linear hierarchical models. Can. J. Statist. 35, 69-87.
    • (2007) Can. J. Statist , vol.35 , pp. 69-87
    • H, L.U.1    Hodges, J.S.2    Carlin, B.P.3
  • 30
    • 0142081912 scopus 로고    scopus 로고
    • Random effects Cox models: A Poisson modelling approach
    • DOI 10.1093/biomet/90.1.157
    • MA, R., KREWSKI, D. & BURNETT, R. T. (2003). Random effects Cox model: a Poisson modelling approach. Biometrika 90, 157-69. (Pubitemid 39047188)
    • (2003) Biometrika , vol.90 , Issue.1 , pp. 157-169
    • Ma, R.1    Krewski, D.2    Burnett, R.T.3
  • 32
    • 33846339755 scopus 로고    scopus 로고
    • Convergence rate of mle in generalized linear and nonlinear mixed-effects models: Theory and applications
    • NIE, L. (2007). Convergence rate of mle in generalized linear and nonlinear mixed-effects models: Theory and applications. J. Statist. Plan. Infer. 137, 1787-804.
    • (2007) J. Statist. Plan. Infer , vol.137 , pp. 1787-804
    • Nie, L.1
  • 33
    • 0033268835 scopus 로고    scopus 로고
    • Bootstrapping likelihood for model selection with small samples
    • PAN, W. (1999). Bootstrapping likelihood for model selection with small samples. J. Comp. Graph. Statist. 8, 687-98.
    • (1999) J. Comp. Graph. Statist , vol.8 , pp. 687-98
    • Pan, W.1
  • 34
    • 0036884552 scopus 로고    scopus 로고
    • Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo em algorithm
    • RIPATTI, S., LARSEN, K. & PALMGREN, J. (2002). Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. Lifetime Data Anal. 8, 349-60.
    • (2002) Lifetime Data Anal , vol.8 , pp. 349-60
    • Ripatti, S.1    Larsen, K.2    Palmgren, J.3
  • 35
    • 0033635611 scopus 로고    scopus 로고
    • Estimation of multivariate frailty models using penalized partial likelihood
    • RIPATTI, S. & PALMGREN, J. (2000). Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56, 1016-22.
    • (2000) Biometrics , vol.56 , pp. 1016-22
    • Ripatti, S.1    Palmgren, J.2
  • 37
    • 0032442347 scopus 로고    scopus 로고
    • A general framework for random effects survival analysis in the cox proportional hazards setting
    • DOI 10.2307/2533673
    • SARGENT, D. J. (1998). A general framework for random effects survival analysis in the Cox proportional hazards setting. Biometrics 54, 1486-97. (Pubitemid 29018630)
    • (1998) Biometrics , vol.54 , Issue.4 , pp. 1486-1497
    • Sargent, D.J.1
  • 38
    • 35748970206 scopus 로고    scopus 로고
    • Bootstrap variants of the Akaike information criterion for mixed model selection
    • DOI 10.1016/j.csda.2007.06.019, PII S0167947307002587
    • SHANG, J. & CAVANAUGH, J. E. (2008). Bootstrap variants of the Akaike information criterion for mixed model selection. Comp. Statist. Data Anal. 52, 2004-21. (Pubitemid 350051443)
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.4 , pp. 2004-2021
    • Shang, J.1    Cavanaugh, J.E.2
  • 39
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • SHAO, J. (1997). An asymptotic theory for linear model selection. Statist. Sinica 7, 221-64. (Pubitemid 127473663)
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 221-264
    • Shao, J.1
  • 40
    • 0031480481 scopus 로고    scopus 로고
    • Bootstrap estimate of Kullback-Leibler information for model selection
    • SHIBATA, R. (1997). Bootstrap estimate of Kullback-Leibler information for model selection. Statist. Sinica 7, 375-94.
    • (1997) Statist. Sinica , vol.7 , pp. 375-94
    • Shibata, R.1
  • 43
    • 21644476631 scopus 로고    scopus 로고
    • Conditional Akaike information for mixed-effects models
    • DOI 10.1093/biomet/92.2.351
    • VAIDA, F. & BLANCHARD, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika 92, 351-70. (Pubitemid 40937640)
    • (2005) Biometrika , vol.92 , Issue.2 , pp. 351-370
    • Vaida, F.1    Blanchard, S.2
  • 44
    • 0034736561 scopus 로고    scopus 로고
    • Proportional hazards model with random effects
    • DOI 10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9
    • VAIDA, F. & XU, R. (2000). Proportional hazards model with random effects. Statist. Med. 19, 3309-24. (Pubitemid 32056686)
    • (2000) Statistics in Medicine , vol.19 , Issue.24 , pp. 3309-3324
    • Vaida, F.1    Xu, R.2
  • 45
    • 0000474486 scopus 로고    scopus 로고
    • A note on the use of Laplace's approximation for nonlinear mixed-effects models
    • VONESH, E. F. (1996). A note on the use of Laplace's approximation for nonlinear mixed-effects models. Biometrika 83, 447-52.
    • (1996) Biometrika , vol.83 , pp. 447-52
    • Vonesh, E.F.1
  • 46
    • 34250794605 scopus 로고    scopus 로고
    • Model selection for penalized spline smoothing using Akaike information criteria
    • WAGER, C., VAIDA, F. & KAUERMANN, G. (2007). Model selection for penalized spline smoothing using Akaike information criteria. Aust. New Zeal. J. Statist. 49, 173-90.
    • (2007) Aust. New Zeal. J. Statist , vol.49 , pp. 173-90
    • Wager, C.1    Vaida, F.2    Kauermann, G.3
  • 47
    • 0000320904 scopus 로고
    • Fitting Cox's regression model to survival data using GLIM
    • WHITEHEAD, J. (1980). Fitting Cox's regression model to survival data using GLIM. J. R. Statist. Soc. C 29, 268-75.
    • (1980) J. R. Statist. Soc C , vol.29 , pp. 268-75
    • Whitehead, J.1
  • 48
    • 0001684437 scopus 로고
    • Laplace's approximation for nonlinear mixed models
    • WOLFINGER, R. (1993). Laplace's approximation for nonlinear mixed models. Biometrika 80, 791-5.
    • (1993) Biometrika , vol.80 , pp. 791-5
    • Wolfinger, R.1
  • 50
    • 68149131707 scopus 로고    scopus 로고
    • Using profile likelihood for semiparametric model selection with application to proportional hazards mixed models
    • XU, R., VAIDA, F. & HARRINGTON, D. (2009). Using profile likelihood for semiparametric model selection with application to proportional hazards mixed models. Statist. Sinica 19, 819-42.
    • (2009) Statist. Sinica , vol.19 , pp. 819-42
    • R, X.U.1    Vaida, F.2    Harrington, D.3
  • 51
    • 27844473228 scopus 로고    scopus 로고
    • Extended information criterion (EIC) approach for linear mixed effects models under restricted maximum likelihood (REML) estimation
    • DOI 10.1002/sim.2191
    • YAFUNE, A., FUNATOGAWA, T. & ISHIGURO, M. (2005). Extended information criterion approach for linear mixed effects models under restricted maximum likelihood estimation. Statist. Med. 24, 3417-29. (Pubitemid 41645383)
    • (2005) Statistics in Medicine , vol.24 , Issue.22 , pp. 3417-3429
    • Yafune, A.1    Funatogawa, T.2    Ishiguro, M.3
  • 52
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • YE, J. (1998). On measuring and correcting the effects of data mining and model selection. J. Am. Statist. Assoc. 93, 120-31.
    • (1998) J. Am. Statist. Assoc , vol.93 , pp. 120-31
    • J, Y.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.