메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-257

Joint models for longitudinal and time-to-event data: With applications in R

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85020457303     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b12208     Document Type: Book
Times cited : (719)

References (225)
  • 1
    • 0002930398 scopus 로고
    • Nonparametric inference in connection with multiple decrement models
    • Aalen, O. (1976). Nonparametric inference in connection with multiple decrement models. Scandinavian Journal of Statistics 3, 15-27.
    • (1976) Scandinavian Journal of Statistics , vol.3 , pp. 15-27
    • Aalen, O.1
  • 4
    • 4944247358 scopus 로고    scopus 로고
    • Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies
    • Agresti, A., Caffo, B., and Ohman-Strickland, P. (2004). Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Computational Statistics & Data Analysis 47, 639-653.
    • (2004) Computational Statistics & Data Analysis , vol.47 , pp. 639-653
    • Agresti, A.1    Caffo, B.2    Ohman-Strickland, P.3
  • 5
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 6
    • 0033858416 scopus 로고    scopus 로고
    • Modeling repeated count data subject to informative dropout
    • Albert, P. and Follmann, D. (2000). Modeling repeated count data subject to informative dropout. Biometrics 56, 667-677.
    • (2000) Biometrics , vol.56 , pp. 667-677
    • Albert, P.1    Follmann, D.2
  • 7
    • 0036712328 scopus 로고    scopus 로고
    • A latent autoregressive model for longitudinal binary data subject to informative missingness
    • Albert, P., Follmann, D., Wang, S., and Suh, E. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58, 631-642.
    • (2002) Biometrics , vol.58 , pp. 631-642
    • Albert, P.1    Follmann, D.2    Wang, S.3    Suh, E.4
  • 9
    • 0009894907 scopus 로고
    • Theory for the measurement of competing risks in animal experiments
    • Altschuler, B. (1970). Theory for the measurement of competing risks in animal experiments. Mathematical Biosciences 6, 1-11.
    • (1970) Mathematical Biosciences , vol.6 , pp. 1-11
    • Altschuler, B.1
  • 11
    • 0001646484 scopus 로고
    • Cox’s regression model for counting processes: A large sample study
    • Andersen, P. and Gill, R. (1982). Cox’s regression model for counting processes: A large sample study. Annals of Statistics 10, 1100-1120.
    • (1982) Annals of Statistics , vol.10 , pp. 1100-1120
    • Andersen, P.1    Gill, R.2
  • 12
    • 30944433977 scopus 로고    scopus 로고
    • A time-dependent discrimination index for survival data
    • Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index for survival data. Statistics in Medicine 24, 3927-3944.
    • (2005) Statistics in Medicine , vol.24 , pp. 3927-3944
    • Antolini, L.1    Boracchi, P.2    Biganzoli, E.3
  • 13
    • 0002274551 scopus 로고
    • Residuals for relative risk regression
    • Barlow, W. and Prentice, R. (1988). Residuals for relative risk regression. Biometrika 75, 65-74.
    • (1988) Biometrika , vol.75 , pp. 65-74
    • Barlow, W.1    Prentice, R.2
  • 15
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth, J. and Hobert, J. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 61, 265-285.
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 265-285
    • Booth, J.1    Hobert, J.2
  • 16
    • 0000336135 scopus 로고
    • Discussion of paper ‘Regression models and life-tables’ by D. Cox
    • Breslow, N. (1972). Discussion of paper ‘Regression models and life-tables’ by D. Cox. Journal of the Royal Statistical Society, Series B 34, 216-217.
    • (1972) Journal of the Royal Statistical Society, Series B , vol.34 , pp. 216-217
    • Breslow, N.1
  • 19
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • Brown, E. and Ibrahim, J. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59, 221-228.
    • (2003) Biometrics , vol.59 , pp. 221-228
    • Brown, E.1    Ibrahim, J.2
  • 20
    • 15044356987 scopus 로고    scopus 로고
    • A flexible B-spline model for multiple longitudinal biomarkers and survival
    • Brown, E., Ibrahim, J., and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61, 64-73.
    • (2005) Biometrics , vol.61 , pp. 64-73
    • Brown, E.1    Ibrahim, J.2    DeGruttola, V.3
  • 21
    • 0026625101 scopus 로고
    • Effects of smoking on survival and morbidity in patients randomized to medical or surgical therapy in the Coronary Artery Surgery Study (CASS): 10-year follow-up
    • Cavender, J., Rogers, W., Fisher, L., Gersh, B., Coggin, J., and Myers, W. (1992). Effects of smoking on survival and morbidity in patients randomized to medical or surgical therapy in the Coronary Artery Surgery Study (CASS): 10-year follow-up. Journal of the American College of Cardiology 20, 145-157.
    • (1992) Journal of the American College of Cardiology , vol.20 , pp. 145-157
    • Cavender, J.1    Rogers, W.2    Fisher, L.3    Gersh, B.4    Coggin, J.5    Myers, W.6
  • 22
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • Chi, Y.-Y. and Ibrahim, J. (2006). Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62, 432-445.
    • (2006) Biometrics , vol.62 , pp. 432-445
    • Chi, Y.-Y.1    Ibrahim, J.2
  • 28
  • 29
    • 0032433456 scopus 로고    scopus 로고
    • Evaluating surrogate markers of clinical outcome measured with error
    • Dafni, U. and Tsiatis, A. (1998). Evaluating surrogate markers of clinical outcome measured with error. Biometrics 54, 1445-1462.
    • (1998) Biometrics , vol.54 , pp. 1445-1462
    • Dafni, U.1    Tsiatis, A.2
  • 32
    • 0028627762 scopus 로고
    • Modeling progression of CD-4 lymphocyte count and its relationship to survival time
    • DeGruttola, V. and Tu, X. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival time. Biometrics 50, 1003-1014.
    • (1994) Biometrics , vol.50 , pp. 1003-1014
    • DeGruttola, V.1    Tu, X.2
  • 37
    • 34848824770 scopus 로고    scopus 로고
    • Analysis of longitudinal data with drop-out: Objectives, assumptions and a proposal (with discussion)
    • Diggle, P., Farewell, D., and Henderson, R. (2007). Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal (with discussion). Journal of the Royal Statistical Society, Series C 56, 499-550.
    • (2007) Journal of the Royal Statistical Society, Series C , vol.56 , pp. 499-550
    • Diggle, P.1    Farewell, D.2    Henderson, R.3
  • 40
    • 43749089133 scopus 로고    scopus 로고
    • Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data
    • Ding, J. and Wang, J.-L. (2008). Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64, 546-556.
    • (2008) Biometrics , vol.64 , pp. 546-556
    • Ding, J.1    Wang, J.-L.2
  • 41
    • 0347363890 scopus 로고    scopus 로고
    • Diagnostics for joint longitudinal and dropout time modeling
    • Dobson, A. and Henderson, R. (2003). Diagnostics for joint longitudinal and dropout time modeling. Biometrics 59, 741-751.
    • (2003) Biometrics , vol.59 , pp. 741-751
    • Dobson, A.1    Henderson, R.2
  • 44
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff, R., Li, G., and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64, 762-771.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.1    Li, G.2    Li, N.3
  • 45
    • 0033060035 scopus 로고    scopus 로고
    • Incorporating the time dimension in receiver operating operating characteristic curve
    • Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). Incorporating the time dimension in receiver operating operating characteristic curve. Medical Decision Making 19, 242-251.
    • (1999) Medical Decision Making , vol.19 , pp. 242-251
    • Etzioni, R.1    Pepe, M.2    Longton, G.3    Hu, C.4    Goodman, G.5
  • 46
    • 0032369670 scopus 로고    scopus 로고
    • Analysis of censored survival data with intermittently observed time-dependent binary covariates
    • Faucett, C., Schenker, N., and Elashoff, R. (1998). Analysis of censored survival data with intermittently observed time-dependent binary covariates. Journal of the American Statistical Association 93, 427-437.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 427-437
    • Faucett, C.1    Schenker, N.2    Elashoff, R.3
  • 47
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach
    • Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685.
    • (1996) Statistics in Medicine , vol.15 , pp. 1663-1685
    • Faucett, C.1    Thomas, D.2
  • 48
    • 45849092498 scopus 로고    scopus 로고
    • Predicting renal graft failure using multivariate longitudinal profiles
    • Fieuws, S., Verbeke, G., Maes, B., and Vanrenterghem, Y. (2008). Predicting renal graft failure using multivariate longitudinal profiles. Biostatistics 9, 419-431.
    • (2008) Biostatistics , vol.9 , pp. 419-431
    • Fieuws, S.1    Verbeke, G.2    Maes, B.3    Vanrenterghem, Y.4
  • 49
    • 0033046689 scopus 로고    scopus 로고
    • Time-dependent covariates in the Cox proportional-hazards regression model
    • Fisher, L. and Lin, D. (1999). Time-dependent covariates in the Cox proportional-hazards regression model. Annual Review of Public Health 20, 145-157.
    • (1999) Annual Review of Public Health , vol.20 , pp. 145-157
    • Fisher, L.1    Lin, D.2
  • 53
    • 0029028456 scopus 로고
    • An approximate generalized linear model with random effects for informative missing data
    • Follmann, D. and Wu, M. (1995). An approximate generalized linear model with random effects for informative missing data. Biometrics 51, 151-168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follmann, D.1    Wu, M.2
  • 54
    • 0002245296 scopus 로고
    • Seminonparametric maximum likelihood estimation
    • Gallant, A. and Nychka, D. (1987). Seminonparametric maximum likelihood estimation. Econometrica 55, 363-390.
    • (1987) Econometrica , vol.55 , pp. 363-390
    • Gallant, A.1    Nychka, D.2
  • 56
    • 0004523408 scopus 로고
    • AT&T Bell Laboratories, Murray Hill, NJ. Computing Science Technical Report
    • Gay, D. (1990). Usage summary for selected optimization routines. AT&T Bell Laboratories, Murray Hill, NJ. Computing Science Technical Report No. 153.
    • (1990) Usage summary for selected optimization routines , Issue.153
    • Gay, D.1
  • 58
    • 15044358532 scopus 로고    scopus 로고
    • Multiple imputation for model checking: Completed-data plots with missing and latent data
    • Gelman, A., Van Mechelen, I., Verbeke, G., Heitjan, D., and Meulders, M. (2005). Multiple imputation for model checking: Completed-data plots with missing and latent data. Biometrics 61, 74-85.
    • (2005) Biometrics , vol.61 , pp. 74-85
    • Gelman, A.1    Van Mechelen, I.2    Verbeke, G.3    Heitjan, D.4    Meulders, M.5
  • 59
    • 33846223169 scopus 로고    scopus 로고
    • Consistent estimation of the expected Brier score in general survival models with right-censored event times
    • Gerds, T. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal 48, 1029-1040.
    • (2006) Biometrical Journal , vol.48 , pp. 1029-1040
    • Gerds, T.1    Schumacher, M.2
  • 61
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18, 2529-2545.
    • (1999) Statistics in Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 65
    • 0020083498 scopus 로고
    • The meaning and the use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. and McNeil, B. (1982). The meaning and the use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 66
    • 78651458676 scopus 로고    scopus 로고
    • Predictive comparison of joint longitudinal-survival modeling: A case study illustrating competing approaches (with discussion)
    • Hanson, T., Branscum, A., and Johnson, W. (2011). Predictive comparison of joint longitudinal-survival modeling: A case study illustrating competing approaches (with discussion). Lifetime Data Analysis 17, 3-28.
    • (2011) Lifetime Data Analysis , vol.17 , pp. 3-28
    • Hanson, T.1    Branscum, A.2    Johnson, W.3
  • 69
    • 85041975654 scopus 로고
    • Bayesian inference for variance components using only error contrasts
    • Harville, D. (1974). Bayesian inference for variance components using only error contrasts. Biometrika 61, 383-385.
    • (1974) Biometrika , vol.61 , pp. 383-385
    • Harville, D.1
  • 70
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville, D. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 72, 320-340.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 320-340
    • Harville, D.1
  • 71
    • 0033639080 scopus 로고    scopus 로고
    • Analysis of exposure-time-response relationships using a spline weight function
    • Hauptmann, M., Wellmann, J., Lubin, J., Rosenberg, P., and Kreienbrock, L. (2000). Analysis of exposure-time-response relationships using a spline weight function. Biometrics 56, 1105-1108.
    • (2000) Biometrics , vol.56 , pp. 1105-1108
    • Hauptmann, M.1    Wellmann, J.2    Lubin, J.3    Rosenberg, P.4    Kreienbrock, L.5
  • 72
    • 0000024102 scopus 로고    scopus 로고
    • Misspecified maximum likelihood estimates and generalized linear mixed models
    • Heagerty, P. and Kurland, B. (2001). Misspecified maximum likelihood estimates and generalized linear mixed models. Biometrika 88, 973-985.
    • (2001) Biometrika , vol.88 , pp. 973-985
    • Heagerty, P.1    Kurland, B.2
  • 73
    • 0033936550 scopus 로고    scopus 로고
    • Time-dependent ROC curves for censored survival data and a diagnostic marker
    • Heagerty, P., Lumley, T., and Pepe, M. (2000). Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56, 337-344.
    • (2000) Biometrics , vol.56 , pp. 337-344
    • Heagerty, P.1    Lumley, T.2    Pepe, M.3
  • 74
    • 15044357936 scopus 로고    scopus 로고
    • Survival model predictive accuracy and ROC curves
    • Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105.
    • (2005) Biometrics , vol.61 , pp. 92-105
    • Heagerty, P.1    Zheng, Y.2
  • 75
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models
    • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 5, 475-492.
    • (1976) Annals of Economic and Social Measurement , vol.5 , pp. 475-492
    • Heckman, J.1
  • 77
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 78
    • 0344097453 scopus 로고    scopus 로고
    • Identification and efficacy of longitudinal markers for survival
    • Henderson, R., Diggle, P., and Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. Biostatistics 3, 33-50.
    • (2002) Biostatistics , vol.3 , pp. 33-50
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 80
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan, J. and Laird, N. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-258.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-258
    • Hogan, J.1    Laird, N.2
  • 81
    • 0031802268 scopus 로고    scopus 로고
    • Increasing efficiency from censored survival data by using random effects to model longitudinal covariates
    • Hogan, J. and Laird, N. (1998). Increasing efficiency from censored survival data by using random effects to model longitudinal covariates. Statistical Methods in Medical Research 7, 28-48.
    • (1998) Statistical Methods in Medical Research , vol.7 , pp. 28-48
    • Hogan, J.1    Laird, N.2
  • 83
    • 33845482505 scopus 로고    scopus 로고
    • Joint modeling of survival and longitudinal data: Likelihood approach revisited
    • Hsieh, F., Tseng, Y.-K., and Wang, J.-L. (2006). Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics 62, 1037-1043.
    • (2006) Biometrics , vol.62 , pp. 1037-1043
    • Hsieh, F.1    Tseng, Y.-K.2    Wang, J.-L.3
  • 84
    • 67649945929 scopus 로고    scopus 로고
    • A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data
    • Hu, W., Li, G., and Li, N. (2009). A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 28, 1601-1619.
    • (2009) Statistics in Medicine , vol.28 , pp. 1601-1619
    • Hu, W.1    Li, G.2    Li, N.3
  • 85
    • 78651422985 scopus 로고    scopus 로고
    • A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects
    • Huang, X., Li, G., Elashoff, R., and Pan, J. (2011). A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Analysis 17, 80-100.
    • (2011) Lifetime Data Analysis , vol.17 , pp. 80-100
    • Huang, X.1    Li, G.2    Elashoff, R.3    Pan, J.4
  • 86
    • 70349235858 scopus 로고    scopus 로고
    • Latent-model robustness in joint models for a primary endpoint and a longitudinal process
    • Huang, X., Stefanski, L., and Davidian, M. (2009). Latent-model robustness in joint models for a primary endpoint and a longitudinal process. Biometrics 64, 719-727.
    • (2009) Biometrics , vol.64 , pp. 719-727
    • Huang, X.1    Stefanski, L.2    Davidian, M.3
  • 88
    • 60749123292 scopus 로고    scopus 로고
    • Missing data methods in longitudinal studies: A review
    • Ibrahim, J. and Molenberghs, G. (2009). Missing data methods in longitudinal studies: A review. Test 18, 1-43.
    • (2009) Test , vol.18 , pp. 1-43
    • Ibrahim, J.1    Molenberghs, G.2
  • 94
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity
    • Kenward, M. (1998). Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity. Statistics in Medicine 17, 2723-2732.
    • (1998) Statistics in Medicine , vol.17 , pp. 2723-2732
    • Kenward, M.1
  • 95
    • 0345734935 scopus 로고    scopus 로고
    • Likelihood based frequentist inference when data are missing at random
    • Kenward, M. and Molenberghs, G. (1998). Likelihood based frequentist inference when data are missing at random. Statistical Science 13, 236-247.
    • (1998) Statistical Science , vol.13 , pp. 236-247
    • Kenward, M.1    Molenberghs, G.2
  • 97
    • 0346463190 scopus 로고    scopus 로고
    • Reconsidering the odds ratio as a measure of 2 × 2 association in a population
    • Kraemer, H. (2004). Reconsidering the odds ratio as a measure of 2 × 2 association in a population. Statistics in Medicine 23, 257-270.
    • (2004) Statistics in Medicine , vol.23 , pp. 257-270
    • Kraemer, H.1
  • 99
    • 22144491220 scopus 로고    scopus 로고
    • Directly parameterized regression conditioning on being alive: Analysis of longitudinal data truncated by deaths
    • Kurland, B. and Heagerty, P. (2005). Directly parameterized regression conditioning on being alive: Analysis of longitudinal data truncated by deaths. Biostatistics 6, 241-258.
    • (2005) Biostatistics , vol.6 , pp. 241-258
    • Kurland, B.1    Heagerty, P.2
  • 100
    • 77951247088 scopus 로고    scopus 로고
    • Longitudinal data with follow-up truncated by death: Match the analysis method to research aims
    • Kurland, B., Johnson, L., Egleston, B., and Diehr, P. (2009). Longitudinal data with follow-up truncated by death: Match the analysis method to research aims. Statistical Science 24, 211-222
    • (2009) Statistical Science , vol.24 , pp. 211-222
    • Kurland, B.1    Johnson, L.2    Egleston, B.3    Diehr, P.4
  • 101
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.1    Ware, J.2
  • 102
    • 1342322973 scopus 로고    scopus 로고
    • Springer-Verlag, New York
    • Lange, K. (2004). Optimization. Springer-Verlag, New York.
    • (2004) Optimization
    • Lange, K.1
  • 104
    • 0035648391 scopus 로고    scopus 로고
    • On the effect of the number of quadrature points in a logistic random-effects model: An example
    • Lesaffre, E. and Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: An example. Journal of the Royal Statistical Society, Series C 50, 325-335.
    • (2001) Journal of the Royal Statistical Society, Series C , vol.50 , pp. 325-335
    • Lesaffre, E.1    Spiessens, B.2
  • 105
    • 76749116117 scopus 로고    scopus 로고
    • Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial
    • Li, N., Elashoff, R., Li, G., and Saver, J. (2010). Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial. Statistics in Medicine 29, 546-557.
    • (2010) Statistics in Medicine , vol.29 , pp. 546-557
    • Li, N.1    Elashoff, R.2    Li, G.3    Saver, J.4
  • 106
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K.-Y. and Zeger, S. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.2
  • 107
    • 0037199763 scopus 로고    scopus 로고
    • Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables
    • Lin, H., McCulloch, C., and Mayne, S. (2002). Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Statistics in Medicine 21, 2369-2382.
    • (2002) Statistics in Medicine , vol.21 , pp. 2369-2382
    • Lin, H.1    McCulloch, C.2    Mayne, S.3
  • 108
    • 2942677478 scopus 로고    scopus 로고
    • Latent pattern mixture models for informative intermittent missing data in longitudinal studies
    • Lin, H., McCulloch, C., and Rosenheck, R. (2004). Latent pattern mixture models for informative intermittent missing data in longitudinal studies. Biometrics 60, 295-305.
    • (2004) Biometrics , vol.60 , pp. 295-305
    • Lin, H.1    McCulloch, C.2    Rosenheck, R.3
  • 109
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin, H., Turnbull, B., McCulloch, C., and Slate, E. (2002). Latent class models for joint analysis of longitudinal biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association 97, 53-65.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 53-65
    • Lin, H.1    Turnbull, B.2    McCulloch, C.3    Slate, E.4
  • 110
    • 84950419603 scopus 로고
    • Newton-Raphson and EM algorithms for linear mixed-effects models for repeated measures data
    • Lindstrom, M. and Bates, D. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated measures data. Journal of the American Statistical Association 83, 1014-1022.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1014-1022
    • Lindstrom, M.1    Bates, D.2
  • 111
    • 0036712232 scopus 로고    scopus 로고
    • Parameter estimation in longitudinal studies with outcome-dependent follow-up
    • Lipsitz, S., Fitzmaurice, G., Ibrahim, J., Gelber, R., and Lipshultz, S. (2002). Parameter estimation in longitudinal studies with outcome-dependent follow-up. Biometrics 58, 621-630.
    • (2002) Biometrics , vol.58 , pp. 621-630
    • Lipsitz, S.1    Fitzmaurice, G.2    Ibrahim, J.3    Gelber, R.4    Lipshultz, S.5
  • 112
    • 36749002202 scopus 로고    scopus 로고
    • Type I and type II error under random-effects misspecification in generalized linear mixed models
    • Litière, S., Alonso, A., and Molenberghs, G. (2007). Type I and type II error under random-effects misspecification in generalized linear mixed models. Biometrics 63, 1038-1044.
    • (2007) Biometrics , vol.63 , pp. 1038-1044
    • Litière, S.1    Alonso, A.2    Molenberghs, G.3
  • 113
    • 42749091873 scopus 로고    scopus 로고
    • The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models
    • Litière, S., Alonso, A., and Molenberghs, G. (2008). The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Statistics in Medicine 27, 3125-3144.
    • (2008) Statistics in Medicine , vol.27 , pp. 3125-3144
    • Litière, S.1    Alonso, A.2    Molenberghs, G.3
  • 114
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 125-134
    • Little, R.1
  • 115
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little, R. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika 81, 471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.1
  • 116
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112-1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.1
  • 118
    • 58149163015 scopus 로고    scopus 로고
    • Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome
    • Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. Journal of the Royal Statistical Society, Series C 58, 65-81.
    • (2009) Journal of the Royal Statistical Society, Series C , vol.58 , pp. 65-81
    • Liu, L.1    Huang, X.2
  • 119
    • 49749152044 scopus 로고    scopus 로고
    • Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data
    • Liu, L., Huang, X., and O’Quigley, J. (2008). Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data. Biometrics 64, 950-958.
    • (2008) Biometrics , vol.64 , pp. 950-958
    • Liu, L.1    Huang, X.2    O’Quigley, J.3
  • 120
    • 21844459497 scopus 로고    scopus 로고
    • An index of local sensitivity to non ignorable drop-out in longitudinal modelling
    • Ma, G., Troxel, A., and Heitjan, F. (2004). An index of local sensitivity to non ignorable drop-out in longitudinal modelling. Statistics in Medicine 24, 2129-2150.
    • (2004) Statistics in Medicine , vol.24 , pp. 2129-2150
    • Ma, G.1    Troxel, A.2    Heitjan, F.3
  • 122
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch, C. (1997). Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association 92, 162-170.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.1
  • 127
    • 33846889740 scopus 로고    scopus 로고
    • Likelihood ratio, score, and Wald tests in a constrained parameter space
    • Molenberghs, G. and Verbeke, G. (2007). Likelihood ratio, score, and Wald tests in a constrained parameter space. The American Statistician 61, 22-27.
    • (2007) The American Statistician , vol.61 , pp. 22-27
    • Molenberghs, G.1    Verbeke, G.2
  • 128
    • 0028339925 scopus 로고
    • Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits
    • Murtaugh, P., Dickson, E., Van Dam, G., Malincho, M., Grambsch, P., Langworthy, A., and Gips, C. (1994). Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology 20, 126-134.
    • (1994) Hepatology , vol.20 , pp. 126-134
    • Murtaugh, P.1    Dickson, E.2    Van Dam, G.3    Malincho, M.4    Grambsch, P.5    Langworthy, A.6    Gips, C.7
  • 130
    • 84952143251 scopus 로고
    • Theory and applications of hazard plotting for censored failure data
    • Nelson, W. (1972). Theory and applications of hazard plotting for censored failure data. Technometrics 14, 945-965.
    • (1972) Technometrics , vol.14 , pp. 945-965
    • Nelson, W.1
  • 131
    • 0000162978 scopus 로고
    • The effects of mixture distribution misspecification when fitting mixed-effects logistic models
    • Neuhaus, J., Hauck, W., and Kalbfleisch, J. (1992). The effects of mixture distribution misspecification when fitting mixed-effects logistic models. Biometrika 79, 755-762.
    • (1992) Biometrika , vol.79 , pp. 755-762
    • Neuhaus, J.1    Hauck, W.2    Kalbfleisch, J.3
  • 132
    • 84988090499 scopus 로고
    • Conditions for consistent estimation in mixed-effects models for binary matched-pairs data
    • Neuhaus, J., Kalbfleisch, J., and Hauck, W. (1994). Conditions for consistent estimation in mixed-effects models for binary matched-pairs data. Canadian Journal of Statistics 22, 139-148.
    • (1994) Canadian Journal of Statistics , vol.22 , pp. 139-148
    • Neuhaus, J.1    Kalbfleisch, J.2    Hauck, W.3
  • 133
    • 79959364857 scopus 로고    scopus 로고
    • A note on type II error under random effects misspecification in generalized linear mixed models
    • Neuhaus, J., McCulloch, C., and Boylan, R. (2011). A note on type II error under random effects misspecification in generalized linear mixed models. Biometrics 67, 654-656.
    • (2011) Biometrics , vol.67 , pp. 654-656
    • Neuhaus, J.1    McCulloch, C.2    Boylan, R.3
  • 134
    • 38049181505 scopus 로고    scopus 로고
    • Residuals analysis for linear mixed models
    • Nobre, J. and Singer, J. (2007). Residuals analysis for linear mixed models. Biometrical Journal 6, 863-875.
    • (2007) Biometrical Journal , vol.6 , pp. 863-875
    • Nobre, J.1    Singer, J.2
  • 135
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • Pencina, M., D’Agostino, Sr, R., D’Agostino, Jr, R., and Vasan, R. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Statistics in Medicine 27, 157-172.
    • (2008) Statistics in Medicine , vol.27 , pp. 157-172
    • Pencina, M.1    D’Agostino, S.R.R.2    D’Agostino, R.3    Vasan, R.4
  • 136
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro, J. and Bates, D. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics 4, 12-35.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , pp. 12-35
    • Pinheiro, J.1    Bates, D.2
  • 139
    • 33645565987 scopus 로고    scopus 로고
    • Efficient laplacian and adaptive gaussian quadrature algorithms for multilevel generalized linear mixed models
    • Pinheiro, J. and Chao, E. (2006). Efficient laplacian and adaptive gaussian quadrature algorithms for multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics 15, 58-81.
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , pp. 58-81
    • Pinheiro, J.1    Chao, E.2
  • 140
    • 77749317069 scopus 로고
    • Covariate measurement errors and parameter estimates in a failure time regression model
    • Prentice, R. (1982). Covariate measurement errors and parameter estimates in a failure time regression model. Biometrika 69, 331-342.
    • (1982) Biometrika , vol.69 , pp. 331-342
    • Prentice, R.1
  • 141
    • 0024520844 scopus 로고
    • Surrogate endpoints in clinical trials: Definition and operation criteria
    • Prentice, R. (1989). Surrogate endpoints in clinical trials: Definition and operation criteria. Statistics in Medicine 8, 431-440.
    • (1989) Statistics in Medicine , vol.8 , pp. 431-440
    • Prentice, R.1
  • 144
    • 58749099434 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach
    • Proust-Lima, C., Joly, P., Dartigues, J., and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. Computational Statistics & Data Analysis 53, 1142-1154.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Dartigues, J.3    Jacqmin-Gadda, H.4
  • 145
    • 70149108170 scopus 로고    scopus 로고
    • Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach
    • Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 10, 535-549.
    • (2009) Biostatistics , vol.10 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.2
  • 146
    • 0032372042 scopus 로고    scopus 로고
    • Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication
    • Pulkstenis, E., Ten Have, T., and Landis, R. (1998). Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication. Journal of the American Statistical Association 93, 438-450.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 438-450
    • Pulkstenis, E.1    Ten Have, T.2    Landis, R.3
  • 147
    • 34248397713 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Competing risks and multi-state models
    • Putter, H., Fiocco, M., and Geskus, R. (2007). Tutorial in biostatistics: Competing risks and multi-state models. Statistics in Medicine 26, 2389-2430.
    • (2007) Statistics in Medicine , vol.26 , pp. 2389-2430
    • Putter, H.1    Fiocco, M.2    Geskus, R.3
  • 149
    • 77950035264 scopus 로고    scopus 로고
    • Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximations
    • Raudenbush, S., Yang, M., and Yosef, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximations. Journal of Computational and Graphical Statistics 9, 141-157.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 141-157
    • Raudenbush, S.1    Yang, M.2    Yosef, M.3
  • 150
    • 84863304598 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.r-project.org/.
    • (2012) R: A Language and Environment for Statistical Computing
  • 151
    • 77955157844 scopus 로고    scopus 로고
    • JM: An R package for the joint modelling of longitudinal and time-to-event data
    • Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35 (9), 1-33.
    • (2010) Journal of Statistical Software , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 152
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 67, 819-829.
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 153
    • 80455176985 scopus 로고    scopus 로고
    • Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule
    • Rizopoulos, D. (2012a). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. Computational Statistics & Data Analysis 56, 491-501.
    • (2012) Computational Statistics & Data Analysis , vol.56 , pp. 491-501
    • Rizopoulos, D.1
  • 155
    • 79955847737 scopus 로고    scopus 로고
    • A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 30, 1366-1380.
    • (2011) Statistics in Medicine , vol.30 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 156
    • 84892599917 scopus 로고    scopus 로고
    • Introduction to the special issue on joint modelling techniques
    • Rizopoulos, D. and Lesaffre, E. (2012). Introduction to the special issue on joint modelling techniques. Statistical Methods in Medical Research 00, 00-00, doi: 10.1177/0962280212445800.
    • (2012) Statistical Methods in Medical Research
    • Rizopoulos, D.1    Lesaffre, E.2
  • 157
    • 43749118704 scopus 로고    scopus 로고
    • A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros
    • Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2008). A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. Biometrics 64, 611-619.
    • (2008) Biometrics , vol.64 , pp. 611-619
    • Rizopoulos, D.1    Verbeke, G.2    Lesaffre, E.3
  • 158
    • 66849099701 scopus 로고    scopus 로고
    • Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
    • Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2009). Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society, Series B 71, 637-654.
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 637-654
    • Rizopoulos, D.1    Verbeke, G.2    Lesaffre, E.3
  • 159
    • 40249113335 scopus 로고    scopus 로고
    • Shared parameter models under random effects misspecification
    • Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika 95, 63-74.
    • (2008) Biometrika , vol.95 , pp. 63-74
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 160
    • 77949750057 scopus 로고    scopus 로고
    • Multipleimputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes
    • Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2010). Multipleimputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics 66, 20-29.
    • (2010) Biometrics , vol.66 , pp. 20-29
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 161
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins, J., Hernan, M., and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550-560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.1    Hernan, M.2    Brumback, B.3
  • 162
    • 0002121637 scopus 로고    scopus 로고
    • Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models
    • Halloran, M. and Berry, D., editors, Springer-Verlag, New York
    • Robins, J., Scharfstein, D., and Rotnitzky, A. (1999). Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In Halloran, M. and Berry, D., editors, Statistical Models in Epidemiology: The Environment and Clinical Trials. Springer-Verlag, New York.
    • (1999) Statistical Models in Epidemiology: The Environment and Clinical Trials
    • Robins, J.1    Scharfstein, D.2    Rotnitzky, A.3
  • 163
    • 0029118491 scopus 로고
    • Hazard function estimation using B-splines
    • Rosenberg, P. (1995). Hazard function estimation using B-splines. Biometrics 51, 874-887.
    • (1995) Biometrics , vol.51 , pp. 874-887
    • Rosenberg, P.1
  • 164
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. (1976). Inference and missing data. Biometrika 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.1
  • 166
    • 0030625005 scopus 로고    scopus 로고
    • A Weibull regression model with gamma frailties for multivariate survival data
    • Sahu, S., Dey, D., Aslanidou, H., and Sinha, D. (1997). A Weibull regression model with gamma frailties for multivariate survival data. Lifetime Data Analysis 3, 123-137.
    • (1997) Lifetime Data Analysis , vol.3 , pp. 123-137
    • Sahu, S.1    Dey, D.2    Aslanidou, H.3    Sinha, D.4
  • 168
    • 0034024003 scopus 로고    scopus 로고
    • Predictive accuracy and explained variation in Cox regression
    • Schemper, M. and Henderson, R. (2000). Predictive accuracy and explained variation in Cox regression. Biometrics 56, 249-255.
    • (2000) Biometrics , vol.56 , pp. 249-255
    • Schemper, M.1    Henderson, R.2
  • 169
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 171
    • 84907319426 scopus 로고
    • Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
    • Self, S. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82, 605-610.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 605-610
    • Self, S.1    Liang, K.-Y.2
  • 172
    • 0442310599 scopus 로고
    • Modeling a marker of disease progression and onset of disease
    • Jewell, N., Dietz, K., and Farewell, V., editors, Birkhaüser, Boston
    • Self, S. and Pawitan, Y. (1992). Modeling a marker of disease progression and onset of disease. In Jewell, N., Dietz, K., and Farewell, V., editors, AIDS Epidemiology: Methodological Issues. Birkhaüser, Boston.
    • (1992) AIDS Epidemiology: Methodological Issues
    • Self, S.1    Pawitan, Y.2
  • 174
    • 0034728376 scopus 로고    scopus 로고
    • Statistical models for longitudinal biomarkers of disease onset
    • Slate, E. and Turnbull, B. (2000). Statistical models for longitudinal biomarkers of disease onset. Statistics in Medicine 19, 617-637.
    • (2000) Statistics in Medicine , vol.19 , pp. 617-637
    • Slate, E.1    Turnbull, B.2
  • 176
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753.
    • (2002) Biometrics , vol.58 , pp. 742-753
    • Song, X.1    Davidian, M.2    Tsiatis, A.3
  • 177
    • 0028641810 scopus 로고
    • Variance components testing in the longitudinal mixed-effects models
    • Stram, D. and Lee, J.-W. (1994). Variance components testing in the longitudinal mixed-effects models. Biometrics 50, 1171-1177.
    • (1994) Biometrics , vol.50 , pp. 1171-1177
    • Stram, D.1    Lee, J.-W.2
  • 179
    • 80052418167 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture
    • Sweeting, M. and Thompson, S. (2011). Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biometrical Journal 53, 750-763.
    • (2011) Biometrical Journal , vol.53 , pp. 750-763
    • Sweeting, M.1    Thompson, S.2
  • 180
    • 70449337834 scopus 로고    scopus 로고
    • Flexible modeling of the cumulative effects of time-dependent exposures on the hazard
    • Sylvestre, M.-P. and Abrahamowicz, M. (2009). Flexible modeling of the cumulative effects of time-dependent exposures on the hazard. Statistics in Medicine 28, 3437-3453.
    • (2009) Statistics in Medicine , vol.28 , pp. 3437-3453
    • Sylvestre, M.-P.1    Abrahamowicz, M.2
  • 185
    • 77956890008 scopus 로고
    • Martingale based residuals for survival models
    • Therneau, T., Grambsch, P., and Fleming, T. (1990). Martingale based residuals for survival models. Biometrika 77, 147-160.
    • (1990) Biometrika , vol.77 , pp. 147-160
    • Therneau, T.1    Grambsch, P.2    Fleming, T.3
  • 187
    • 0024217358 scopus 로고
    • Models for exposure-time-response relationships with applications to cancer epidemiology
    • Thomas, D. (1988). Models for exposure-time-response relationships with applications to cancer epidemiology. Annual Reviews of Public Health 9, 451-482.
    • (1988) Annual Reviews of Public Health , vol.9 , pp. 451-482
    • Thomas, D.1
  • 188
  • 190
    • 0005215991 scopus 로고    scopus 로고
    • Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data
    • Troxel, A., Lipsitz, S., and Harrington, D. (1998). Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data. Biometrika 85, 661-672.
    • (1998) Biometrika , vol.85 , pp. 661-672
    • Troxel, A.1    Lipsitz, S.2    Harrington, D.3
  • 191
    • 12344335515 scopus 로고    scopus 로고
    • An index of local sensitivity to nonignorability
    • Troxel, A., Ma, G., and Heitjan, F. (2004). An index of local sensitivity to nonignorability. Statistica Sinica 14, 1221-1237.
    • (2004) Statistica Sinica , vol.14 , pp. 1221-1237
    • Troxel, A.1    Ma, G.2    Heitjan, F.3
  • 192
    • 24144440046 scopus 로고    scopus 로고
    • Joint modelling of accelerated failure time and longitudinal data
    • Tseng, Y.-K., Hsieh, F., andWang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603.
    • (2005) Biometrika , vol.92 , pp. 587-603
    • Tseng, Y.-K.1    Hsieh, F.2    andWang, J.-L.3
  • 193
    • 0001659147 scopus 로고    scopus 로고
    • A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error
    • Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447-458.
    • (2001) Biometrika , vol.88 , pp. 447-458
    • Tsiatis, A.1    Davidian, M.2
  • 194
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and timeto-event data: An overview
    • Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and timeto-event data: An overview. Statistica Sinica 14, 809-834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.1    Davidian, M.2
  • 195
    • 21844506206 scopus 로고
    • Modeling the relationship of survival to longitudinal data measured with error: Applications to survival and CD4 counts in patients with AIDS
    • Tsiatis, A., DeGruttola, V., and Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data measured with error: Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 90, 27-37.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 27-37
    • Tsiatis, A.1    DeGruttola, V.2    Wulfsohn, M.3
  • 196
    • 77956829028 scopus 로고    scopus 로고
    • Nonignorable models for intermittently missing categorical longitudinal responses
    • Tsonaka, R., Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2010). Nonignorable models for intermittently missing categorical longitudinal responses. Biometrics 66, 834-844.
    • (2010) Biometrics , vol.66 , pp. 834-844
    • Tsonaka, R.1    Rizopoulos, D.2    Verbeke, G.3    Lesaffre, E.4
  • 197
    • 62749191476 scopus 로고    scopus 로고
    • A semi-parametric shared parameter model to handle non-monotone non-ignorable missingness
    • Tsonaka, R., Verbeke, G., and Lesaffre, E. (2009). A semi-parametric shared parameter model to handle non-monotone non-ignorable missingness. Biometrics 65, 81-87.
    • (2009) Biometrics , vol.65 , pp. 81-87
    • Tsonaka, R.1    Verbeke, G.2    Lesaffre, E.3
  • 198
    • 0030889519 scopus 로고    scopus 로고
    • Assessing the effect of intensity when exposure varies over time
    • Vacek, P. (1997). Assessing the effect of intensity when exposure varies over time. Statistics in Medicine 16, 505-513.
    • (1997) Statistics in Medicine , vol.16 , pp. 505-513
    • Vacek, P.1
  • 201
    • 0031555662 scopus 로고    scopus 로고
    • The effect of misspecifying the random effects distribution in linear mixed models for longitudinal data
    • Verbeke, G. and Lesaffre, E. (1997). The effect of misspecifying the random effects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis 23, 541-556.
    • (1997) Computational Statistics & Data Analysis , vol.23 , pp. 541-556
    • Verbeke, G.1    Lesaffre, E.2
  • 203
    • 0037531799 scopus 로고    scopus 로고
    • The use of score tests for inference on variance components
    • Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics 59, 254-262.
    • (2003) Biometrics , vol.59 , pp. 254-262
    • Verbeke, G.1    Molenberghs, G.2
  • 204
    • 50849094901 scopus 로고    scopus 로고
    • Formal and informal model selection with incomplete data
    • Verbeke, G., Molenberghs, G., and Beunckens, C. (2008). Formal and informal model selection with incomplete data. Statistical Science 23, 201-218.
    • (2008) Statistical Science , vol.23 , pp. 201-218
    • Verbeke, G.1    Molenberghs, G.2    Beunckens, C.3
  • 206
    • 31344445432 scopus 로고    scopus 로고
    • Shared parameter models for the joint analysis of longitudinal data and event times
    • Vonesh, E., Greene, T., and Schluchter, M. (2006). Shared parameter models for the joint analysis of longitudinal data and event times. Statistics in Medicine 25, 143-163.
    • (2006) Statistics in Medicine , vol.25 , pp. 143-163
    • Vonesh, E.1    Greene, T.2    Schluchter, M.3
  • 207
    • 0442327792 scopus 로고    scopus 로고
    • Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
    • Wang, Y. and Taylor, J. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association 96, 895-905.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 895-905
    • Wang, Y.1    Taylor, J.2
  • 208
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50, 1-26.
    • (1982) Econometrica , vol.50 , pp. 1-26
    • White, H.1
  • 209
    • 0022771734 scopus 로고
    • Survival estimation using splines
    • Whittemore, A. and Killer, J. (1986). Survival estimation using splines. Biometrics 42, 495-506.
    • (1986) Biometrics , vol.42 , pp. 495-506
    • Whittemore, A.1    Killer, J.2
  • 210
    • 37249026668 scopus 로고    scopus 로고
    • Reshaping data with the reshape package
    • Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical Software 21 (12), 1-20.
    • (2007) Journal of Statistical Software , vol.21 , Issue.12 , pp. 1-20
    • Wickham, H.1
  • 213
    • 78649436592 scopus 로고    scopus 로고
    • Two pitfalls in survival analyses of time-dependent exposure: A case study in a cohort of Oscar nominees
    • Wolkewitz, M., Allignol, A., Schumacher, M., and Beyersmann, J. (2010). Two pitfalls in survival analyses of time-dependent exposure: A case study in a cohort of Oscar nominees. The American Statistician 64, 205-211.
    • (2010) The American Statistician , vol.64 , pp. 205-211
    • Wolkewitz, M.1    Allignol, A.2    Schumacher, M.3    Beyersmann, J.4
  • 214
    • 0023779040 scopus 로고
    • Analysing changes in the presence of informative right censoring caused by death and withdrawal
    • Wu, M. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and withdrawal. Statistics in Medicine 7, 337-346.
    • (1988) Statistics in Medicine , vol.7 , pp. 337-346
    • Wu, M.1    Bailey, K.2
  • 215
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
    • Wu, M. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics 45, 939-955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.1    Bailey, K.2
  • 216
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu, M. and Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.1    Carroll, R.2
  • 217
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330-339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.1    Tsiatis, A.2
  • 218
    • 0035650134 scopus 로고    scopus 로고
    • Joint analysis of longitudinal data comprising repeated measures and times to events
    • Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events. Applied Statistics 50, 375-387.
    • (2001) Applied Statistics , vol.50 , pp. 375-387
    • Xu, J.1    Zeger, S.2
  • 219
    • 37249060736 scopus 로고    scopus 로고
    • Functional approach of flexibly modelling generalized longitudinal data and survival time
    • Yao, F. (2008). Functional approach of flexibly modelling generalized longitudinal data and survival time. Journal of Statistical Planning and Inference 138, 995-1009.
    • (2008) Journal of Statistical Planning and Inference , vol.138 , pp. 995-1009
    • Yao, F.1
  • 220
    • 80052786844 scopus 로고    scopus 로고
    • A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data
    • Ye, W., Lin, X., and Taylor, J. (2008a). A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data. Statistics and Its Interface 1, 33-45.
    • (2008) Statistics and Its Interface , vol.1 , pp. 33-45
    • Ye, W.1    Lin, X.2    Taylor, J.3
  • 221
    • 56049124129 scopus 로고    scopus 로고
    • Semiparametric modeling of longitudinal measurements and time-to-event data-a two stage regression calibration approach
    • Ye, W., Lin, X., and Taylor, J. (2008b). Semiparametric modeling of longitudinal measurements and time-to-event data-a two stage regression calibration approach. Biometrics 64, 1238-1246.
    • (2008) Biometrics , vol.64 , pp. 1238-1246
    • Ye, W.1    Lin, X.2    Taylor, J.3
  • 222
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • Youden, W. (1950). Index for rating diagnostic tests. Cancer 3, 32-35.
    • (1950) Cancer , vol.3 , pp. 32-35
    • Youden, W.1
  • 223
    • 42349110012 scopus 로고    scopus 로고
    • Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model
    • Yu, M., Taylor, J., and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. Journal of the American Statistical Association 103, 178-187.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 178-187
    • Yu, M.1    Taylor, J.2    Sandler, H.3
  • 224
    • 30344479173 scopus 로고    scopus 로고
    • Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time
    • Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. The Annals of Statistics 33, 2132-2163.
    • (2005) The Annals of Statistics , vol.33 , pp. 2132-2163
    • Zeng, D.1    Cai, J.2
  • 225
    • 34547662942 scopus 로고    scopus 로고
    • Prospective accuracy for longitudinal markers
    • Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. Biometrics 63, 332-341.
    • (2007) Biometrics , vol.63 , pp. 332-341
    • Zheng, Y.1    Heagerty, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.