메뉴 건너뛰기




Volumn 36, Issue 1, 2009, Pages 1-22

Approximate bayesian inference in spatial generalized linear mixed models

Author keywords

Approximate Bayesian inference; Circulant covariance matrix; Geostatistics; Outlier detection; Spatial design; Spatial GLM

Indexed keywords


EID: 60249097990     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2008.00621.x     Document Type: Article
Times cited : (32)

References (38)
  • 1
  • 3
    • 0033475053 scopus 로고    scopus 로고
    • Maximising generalised linear mixed model likelihoods with an automated Monte Carlo em algorithm
    • Booth, J. G. Hobart, J. P. (1999). Maximising generalised linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. Roy. Statist. Soc. Ser. B Statist. Methodol. 61, 265 285.
    • (1999) J. Roy. Statist. Soc. Ser. B Statist. Methodol. , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobart, J.P.2
  • 4
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow, N. E. Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88, 9 25.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 5
    • 0031340667 scopus 로고    scopus 로고
    • An algorithm for simulating stationary Gaussian random fields
    • Chan, G. Wood, A. T. A. (1997). An algorithm for simulating stationary Gaussian random fields. Appl. Statist. 46, 171 181.
    • (1997) Appl. Statist. , vol.46 , pp. 171-181
    • Chan, G.1    Wood, A.T.A.2
  • 6
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • Chib, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90, 1313 1321.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 7
    • 4344657015 scopus 로고    scopus 로고
    • Monte Carlo maximum likelihood in model-based geostatistics
    • Christensen, O. F. (2004). Monte Carlo maximum likelihood in model-based geostatistics. J. Comput. Graph. Statist. 13, 702 718.
    • (2004) J. Comput. Graph. Statist. , vol.13 , pp. 702-718
    • Christensen, O.F.1
  • 11
  • 14
    • 6944234049 scopus 로고    scopus 로고
    • Generalized additive models for cancer mapping with incomplete covariates
    • French, J. L. Wand, M. P. (2004). Generalized additive models for cancer mapping with incomplete covariates. Biostatistics 5, 177 191.
    • (2004) Biostatistics , vol.5 , pp. 177-191
    • French, J.L.1    Wand, M.P.2
  • 15
    • 4944237404 scopus 로고    scopus 로고
    • Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation method
    • Gel, Y., Raftery, A. E. Gneiting, T. (2004). Calibrated probabilistic mesoscale weather field forecasting: the geostatistical output perturbation method. J. Amer. Statist. Assoc. 99, 575 583.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 575-583
    • Gel, Y.1    Raftery, A.E.2    Gneiting, T.3
  • 16
    • 84868872518 scopus 로고    scopus 로고
    • Bayesian marginal inference via candidate's formula
    • available from
    • Gray, R. M. (2006). Toeplitz and circulant matrices: a review. Free book, available from http://ee.stanford.edu/∼gray Chang, C. W. (2004). Bayesian marginal inference via candidate's formula. Statist. Comput. 14, 59 66.
    • (2004) Statist. Comput. , vol.14 , pp. 59-66
    • Gray, R.M.1    Chang, C.W.2
  • 18
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayesian factors via posterior simulation with the Laplace-Metropolis estimator
    • Lewis, S. M. Raftery, A. E. (1997). Estimating Bayesian factors via posterior simulation with the Laplace-Metropolis estimator. J. Amer. Statist. Assoc. 92, 648 655.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 648-655
    • Lewis, S.M.1    Raftery, A.E.2
  • 20
    • 33645757341 scopus 로고    scopus 로고
    • Estimation in generalised linear mixed models with binary outcomes by simulated maximum likelihood
    • Ng, E. S. W., Carpenter, J. R., Goldstein, H. Rasbash, J. (2006). Estimation in generalised linear mixed models with binary outcomes by simulated maximum likelihood. Statist. Model. 6, 23 41.
    • (2006) Statist. Model. , vol.6 , pp. 23-41
    • Ng, E.S.W.1    Carpenter, J.R.2    Goldstein, H.3    Rasbash, J.4
  • 21
    • 11144313312 scopus 로고    scopus 로고
    • HSSS model criticism
    • In. eds. P. J. Green, N. L. Hjort. S. Richardson. Oxford University Press, New York.
    • O'Hagan, A. (2003). HSSS model criticism. In Highly structured stochastic systems (eds P. J. Green, N. L. Hjort S. Richardson 423 444. Oxford University Press, New York.
    • (2003) Highly Structured Stochastic Systems , pp. 423-444
    • O'Hagan, A.1
  • 22
    • 33947661458 scopus 로고    scopus 로고
    • Computational techniques for spatial logisitc regression with large data sets
    • Paciorek, C. J. (2007). Computational techniques for spatial logisitc regression with large data sets. Comput. Statist. Data Anal. 51, 3631 3653.
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 3631-3653
    • Paciorek, C.J.1
  • 23
    • 0034923471 scopus 로고    scopus 로고
    • The value of information in reserve site selection
    • Polasky, A. Solow, A. R. (2001). The value of information in reserve site selection. Biodivers. Conserv. 10, 1051 1058.
    • (2001) Biodivers. Conserv. , vol.10 , pp. 1051-1058
    • Polasky, A.1    Solow, A.R.2
  • 25
    • 0000297493 scopus 로고    scopus 로고
    • Approximate Bayes factors and accounting for model uncertainty in generalised linear models
    • Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika 83, 251 266.
    • (1996) Biometrika , vol.83 , pp. 251-266
    • Raftery, A.E.1
  • 28
    • 34250219986 scopus 로고    scopus 로고
    • Approximate Bayesian inference for hierarchical Gaussian Markov random fields
    • Rue, H. Martino, S. (2007). Approximate Bayesian inference for hierarchical Gaussian Markov random fields. J. Statist. Plan. Inference 137, 3177 3192.
    • (2007) J. Statist. Plan. Inference , vol.137 , pp. 3177-3192
    • Rue, H.1    Martino, S.2
  • 30
    • 0029094188 scopus 로고
    • Bayesian analysis of two overdispersed Poisson models
    • Scollnik, D. P. M. (1995). Bayesian analysis of two overdispersed Poisson models. Biometrics 51, 1117 1126.
    • (1995) Biometrics , vol.51 , pp. 1117-1126
    • Scollnik, D.P.M.1
  • 31
    • 33747839964 scopus 로고    scopus 로고
    • Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models
    • Skaug, H. J. Fournier, D. A. (2006). Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Comput. Statist. Data Anal. 50, 699 709.
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 699-709
    • Skaug, H.J.1    Fournier, D.A.2
  • 32
    • 34547472546 scopus 로고    scopus 로고
    • Residual-based specification of hidden random field included in a hierarchical spatial model
    • Soubeyrand, S. Chadoeuf, J. (2007). Residual-based specification of hidden random field included in a hierarchical spatial model. Comput. Statist. Data Anal. 51, 6404 6422.
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 6404-6422
    • Soubeyrand, S.1    Chadoeuf, J.2
  • 34
    • 33846572465 scopus 로고    scopus 로고
    • Parallel exact sampling and evaluation of Gaussian Markov random fields
    • Steinsland, I. (2007). Parallel exact sampling and evaluation of Gaussian Markov random fields. Comput. Statist. Data Anal. 51, 2969 2981.
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 2969-2981
    • Steinsland, I.1
  • 35
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney, L. Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81, 82 86.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 36
    • 33746013527 scopus 로고    scopus 로고
    • Response prediction in mixed effects models
    • Vidoni, P. (2006). Response prediction in mixed effects models. J. Statist. Plan. Inference 136, 3948 3966.
    • (2006) J. Statist. Plan. Inference , vol.136 , pp. 3948-3966
    • Vidoni, P.1
  • 37
    • 0036188841 scopus 로고    scopus 로고
    • On estimation and prediction for spatial generalized linear mixed models
    • Zhang, H. (2002). On estimation and prediction for spatial generalized linear mixed models. Biometrics 58, 129 136.
    • (2002) Biometrics , vol.58 , pp. 129-136
    • Zhang, H.1
  • 38
    • 0141907304 scopus 로고    scopus 로고
    • Optimal interpolation and the appropriateness of cross-validating variogram in spatial generalized linear mixed models
    • Zhang, H. (2003). Optimal interpolation and the appropriateness of cross-validating variogram in spatial generalized linear mixed models. J. Comput. Graph. Statist. 12, 698 713.
    • (2003) J. Comput. Graph. Statist. , vol.12 , pp. 698-713
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.