메뉴 건너뛰기




Volumn 37, Issue 1, 2010, Pages 67-90

Stochastic differential mixed-effects models

Author keywords

Biomedical applications; Brownian motion with drift; CIR process; Closed form transition density expansion; Gaussian quadrature; Geometric Brownian motion; Maximum likelihood estimation; Ornstein Uhlenbeck process; Random parameters; Stochastic differential equations

Indexed keywords


EID: 77949528435     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2009.00665.x     Document Type: Article
Times cited : (69)

References (59)
  • 1
    • 33646713092 scopus 로고    scopus 로고
    • Comment on 'Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes' by G. Durham and A. Gallant
    • Aït-Sahalia Y. Comment on 'Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes' by G. Durham and A. Gallant. J. Bus. Econom. Statist. 2002a, 20:317-321.
    • (2002) J. Bus. Econom. Statist. , vol.20 , pp. 317-321
    • Aït-Sahalia, Y.1
  • 2
    • 0036216388 scopus 로고    scopus 로고
    • Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach
    • Aït-Sahalia Y. Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 2002b, 70:223-262.
    • (2002) Econometrica , vol.70 , pp. 223-262
    • Aït-Sahalia, Y.1
  • 3
    • 45749126907 scopus 로고    scopus 로고
    • Closed-form likelihood expansion for multivariate diffusions
    • Aït-Sahalia Y. Closed-form likelihood expansion for multivariate diffusions. Ann. Statist. 2008, 36:906-937.
    • (2008) Ann. Statist. , vol.36 , pp. 906-937
    • Aït-Sahalia, Y.1
  • 4
    • 23244434826 scopus 로고    scopus 로고
    • A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis
    • Andersen K, Højbjerre M. A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis. Stat. Med. 2005, 24:2381-2400.
    • (2005) Stat. Med. , vol.24 , pp. 2381-2400
    • Andersen, K.1    Højbjerre, M.2
  • 5
    • 55749088942 scopus 로고    scopus 로고
    • Multiple precision toolbox for matlab
    • Barrowes B. Multiple precision toolbox for matlab. 2007, http://www.mathworks.com/matlabcentral/fileexchange/6446
    • (2007)
    • Barrowes, B.1
  • 6
    • 0003747347 scopus 로고    scopus 로고
    • Division of Pharmacology, University of California, San Francisco
    • Beal S, Sheiner L, Boeckmann A. NONMEM user's guide 1999, Division of Pharmacology, University of California, San Francisco
    • (1999) NONMEM user's guide
    • Beal, S.1    Sheiner, L.2    Boeckmann, A.3
  • 7
    • 33646690994 scopus 로고    scopus 로고
    • Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes
    • Beskos A, Papaspiliopoulos O, Roberts G, Fearnhead P. Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. Roy. Statist. Soc. Ser. B 2006, 68:333-382.
    • (2006) J. Roy. Statist. Soc. Ser. B , vol.68 , pp. 333-382
    • Beskos, A.1    Papaspiliopoulos, O.2    Roberts, G.3    Fearnhead, P.4
  • 8
    • 0036149169 scopus 로고    scopus 로고
    • Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets
    • Brandt M, Santa-Clara P. Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. J. Financial Econom 2002, 63:161-210.
    • (2002) J. Financial Econom , vol.63 , pp. 161-210
    • Brandt, M.1    Santa-Clara, P.2
  • 9
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow N, Clayton D. Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 1993, 88:9-25.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.1    Clayton, D.2
  • 10
    • 0036894085 scopus 로고    scopus 로고
    • Advances in multidimensional integration
    • Cools R. Advances in multidimensional integration. J. Comput. Appl. Math. 2002, 149:1-12.
    • (2002) J. Comput. Appl. Math. , vol.149 , pp. 1-12
    • Cools, R.1
  • 11
    • 0001205798 scopus 로고
    • A theory of the term structure of interest rate
    • Cox J, Ingersoll J, Ross S. A theory of the term structure of interest rate. Econometrica 1985, 53:385-407.
    • (1985) Econometrica , vol.53 , pp. 385-407
    • Cox, J.1    Ingersoll, J.2    Ross, S.3
  • 12
    • 0001700428 scopus 로고
    • Estimation of the coefficients of a diffusion from discrete observations
    • Dacunha-Castelle D, Florens-Zmirou D. Estimation of the coefficients of a diffusion from discrete observations. Stochastics 1986, 19:263-284.
    • (1986) Stochastics , vol.19 , pp. 263-284
    • Dacunha-Castelle, D.1    Florens-Zmirou, D.2
  • 14
    • 5444232913 scopus 로고    scopus 로고
    • Nonlinear models for repeated measurements: an overview and update
    • Davidian M, Giltinan D. Nonlinear models for repeated measurements: an overview and update. J. Agric. Biol. Environ. Stat. 2003, 8:387-419.
    • (2003) J. Agric. Biol. Environ. Stat. , vol.8 , pp. 387-419
    • Davidian, M.1    Giltinan, D.2
  • 16
    • 45749127284 scopus 로고    scopus 로고
    • Mixed effects in stochastic differential equations models
    • Ditlevsen S, De Gaetano A. Mixed effects in stochastic differential equations models. REVSTAT 2005a, 3:137-153.
    • (2005) REVSTAT , vol.3 , pp. 137-153
    • Ditlevsen, S.1    De Gaetano, A.2
  • 17
    • 16344383735 scopus 로고    scopus 로고
    • Stochastic vs. deterministic uptake of dodecanedioic acid by isolated rat livers
    • Ditlevsen S, De Gaetano A. Stochastic vs. deterministic uptake of dodecanedioic acid by isolated rat livers. Bull. Math. Biol. 2005b, 67:547-561.
    • (2005) Bull. Math. Biol. , vol.67 , pp. 547-561
    • Ditlevsen, S.1    De Gaetano, A.2
  • 18
    • 33745189627 scopus 로고    scopus 로고
    • Estimation of the input parameters in the Feller neuronal model
    • art. no. 061910
    • Ditlevsen S, Lansky P. Estimation of the input parameters in the Feller neuronal model. Phys. Rev. E 2006, 73. art. no. 061910
    • (2006) Phys. Rev. E , vol.73
    • Ditlevsen, S.1    Lansky, P.2
  • 19
    • 33846869992 scopus 로고    scopus 로고
    • Parameter estimation of the feedback gain in a stochastic model of renal hemodynamics: differences between spontaneously hypertensive rats and Sprague-Dawley rats
    • Ditlevsen S, Yip K-P, Marsh D, Holstein-Rathlou N-H. Parameter estimation of the feedback gain in a stochastic model of renal hemodynamics: differences between spontaneously hypertensive rats and Sprague-Dawley rats. Amer. J. Physiol. - Renal Physiol 2007, 292:607-616.
    • (2007) Amer. J. Physiol. - Renal Physiol , vol.292 , pp. 607-616
    • Ditlevsen, S.1    Yip, K.-P.2    Marsh, D.3    Holstein-Rathlou, N.-H.4
  • 20
    • 55749092754 scopus 로고    scopus 로고
    • Parametric inference for mixed models defined by stochastic differential equations
    • Donnet S, Samson A. Parametric inference for mixed models defined by stochastic differential equations. ESAIM Probab. Statist. 2008, 12:196-218.
    • (2008) ESAIM Probab. Statist. , vol.12 , pp. 196-218
    • Donnet, S.1    Samson, A.2
  • 21
    • 0036339461 scopus 로고    scopus 로고
    • Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes
    • Durham G, Gallant A. Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econom. Statist. 2002, 20:297-316.
    • (2002) J. Bus. Econom. Statist. , vol.20 , pp. 297-316
    • Durham, G.1    Gallant, A.2
  • 22
    • 0347985219 scopus 로고    scopus 로고
    • Maximum likelihood estimation of time-inhomogeneous diffusions
    • Egorov A, Li H, Xu Y. Maximum likelihood estimation of time-inhomogeneous diffusions. J. Econometrics 2003, 114:107-139.
    • (2003) J. Econometrics , vol.114 , pp. 107-139
    • Egorov, A.1    Li, H.2    Xu, Y.3
  • 24
    • 52949091947 scopus 로고    scopus 로고
    • Gaussian quadrature formulae for arbitrary positive measures
    • Fernandes A, Atchley W. Gaussian quadrature formulae for arbitrary positive measures. Evol. Bioinform. Online 2006, 2:261-269.
    • (2006) Evol. Bioinform. Online , vol.2 , pp. 261-269
    • Fernandes, A.1    Atchley, W.2
  • 26
    • 0000223746 scopus 로고
    • Calculation of Gauss quadrature rules
    • Golub G, Welsch J. Calculation of Gauss quadrature rules. Math. Comp. 1969, 23:221-230.
    • (1969) Math. Comp. , vol.23 , pp. 221-230
    • Golub, G.1    Welsch, J.2
  • 27
    • 35648934561 scopus 로고    scopus 로고
    • Maximum likelihood estimation in dynamical models of HIV
    • Guedj J, Thiébaut R, Commenges D. Maximum likelihood estimation in dynamical models of HIV. Biometrics 2007, 63:1198-1206.
    • (2007) Biometrics , vol.63 , pp. 1198-1206
    • Guedj, J.1    Thiébaut, R.2    Commenges, D.3
  • 28
    • 0141976786 scopus 로고    scopus 로고
    • On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential equations
    • Hurn A, Lindsay K, Martin V. On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential equations. J. Time Ser. Anal. 2003, 24:45-63.
    • (2003) J. Time Ser. Anal. , vol.24 , pp. 45-63
    • Hurn, A.1    Lindsay, K.2    Martin, V.3
  • 29
    • 0034129696 scopus 로고    scopus 로고
    • Population pharmacokinetics/pharmacodynamics modelling: parametric and nonparametric methods
    • Jelliffe R, Schumitzky A, Guilder M V. Population pharmacokinetics/pharmacodynamics modelling: parametric and nonparametric methods. Ther. Drug Monit 2000, 22:354-365.
    • (2000) Ther. Drug Monit , vol.22 , pp. 354-365
    • Jelliffe, R.1    Schumitzky, A.2    Guilder, M.V.3
  • 30
    • 85016660810 scopus 로고    scopus 로고
    • Transition densities of diffusion processes: numerical comparison of approximation techniques
    • Jensen B, Poulsen R. Transition densities of diffusion processes: numerical comparison of approximation techniques. J. Deriv. 2002, 9:1-15.
    • (2002) J. Deriv. , vol.9 , pp. 1-15
    • Jensen, B.1    Poulsen, R.2
  • 33
    • 19044400906 scopus 로고    scopus 로고
    • Maximum likelihood estimation in nonlinear mixed effects models
    • Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Statist. Data Anal. 2005, 49:1020-1038.
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 1020-1038
    • Kuhn, E.1    Lavielle, M.2
  • 34
    • 8544279600 scopus 로고    scopus 로고
    • A stochastic differential equation model for drug dissolution and its parameters
    • Lansky P, Lanska V, Weiss M. A stochastic differential equation model for drug dissolution and its parameters. J. Control. Release 2004, 100:267-274.
    • (2004) J. Control. Release , vol.100 , pp. 267-274
    • Lansky, P.1    Lanska, V.2    Weiss, M.3
  • 35
    • 33747272940 scopus 로고    scopus 로고
    • The parameters of the stochastic leaky integrate-and-fire neuronal model
    • Lansky P, Sanda P, He J. The parameters of the stochastic leaky integrate-and-fire neuronal model. J. Comput. Neurosci. 2006, 21:211-223.
    • (2006) J. Comput. Neurosci. , vol.21 , pp. 211-223
    • Lansky, P.1    Sanda, P.2    He, J.3
  • 36
    • 77949538190 scopus 로고    scopus 로고
    • MONOLIX
    • The Monolix Group, (MOdèles NOn LInéaires à effets miXtes):
    • Lavielle M, Mesa H. MONOLIX. 2007, http://www.monolix.org, The Monolix Group, (MOdèles NOn LInéaires à effets miXtes):
    • (2007)
    • Lavielle, M.1    Mesa, H.2
  • 37
    • 0025170004 scopus 로고
    • Nonlinear mixed-effects models for repeated measures data
    • Lindstrom M, Bates D. Nonlinear mixed-effects models for repeated measures data. Biometrics 1990, 46:673-687.
    • (1990) Biometrics , vol.46 , pp. 673-687
    • Lindstrom, M.1    Bates, D.2
  • 38
    • 84974325324 scopus 로고
    • Maximum likelihood estimation of generalized Ito processes with discretely-sample data
    • Lo A. Maximum likelihood estimation of generalized Ito processes with discretely-sample data. Econometric Theory 1988, 4:231-247.
    • (1988) Econometric Theory , vol.4 , pp. 231-247
    • Lo, A.1
  • 40
    • 27144472988 scopus 로고    scopus 로고
    • A new technique for simulating the likelihood of stochastic differential equations
    • Nicolau J. A new technique for simulating the likelihood of stochastic differential equations. Econom. J. 2002, 5:91-103.
    • (2002) Econom. J. , vol.5 , pp. 91-103
    • Nicolau, J.1
  • 42
    • 23844551829 scopus 로고    scopus 로고
    • Nonlinear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm
    • Overgaard R, Jonsson N, Tornøe C, Madsen H. Nonlinear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm. J. Pharmacokinet. Pharmacodyn. 2005, 32:85-107.
    • (2005) J. Pharmacokinet. Pharmacodyn. , vol.32 , pp. 85-107
    • Overgaard, R.1    Jonsson, N.2    Tornøe, C.3    Madsen, H.4
  • 43
    • 33846083306 scopus 로고    scopus 로고
    • PKPD model of interleukin-21 effects on thermoregulation in monkeys
    • Overgaard R V, Holford N, Rytved K A, Madsen H. PKPD model of interleukin-21 effects on thermoregulation in monkeys. Pharm. Res. 2007, 24:298-309.
    • (2007) Pharm. Res. , vol.24 , pp. 298-309
    • Overgaard, R.V.1    Holford, N.2    Rytved, K.A.3    Madsen, H.4
  • 44
    • 0002841968 scopus 로고
    • A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations
    • Pedersen A. A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist. 1995, 22:55-71.
    • (1995) Scand. J. Statist. , vol.22 , pp. 55-71
    • Pedersen, A.1
  • 45
    • 33750539308 scopus 로고    scopus 로고
    • Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations
    • Picchini U, Ditlevsen S, De Gaetano A. Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations. J. Math. Biol. 2006, 53:771-796.
    • (2006) J. Math. Biol. , vol.53 , pp. 771-796
    • Picchini, U.1    Ditlevsen, S.2    De Gaetano, A.3
  • 46
    • 45749143180 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics
    • Picchini U, Ditlevsen S, De Gaetano A. Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics. Math. Med. Biol. 2008a, 25:141-155.
    • (2008) Math. Med. Biol. , vol.25 , pp. 141-155
    • Picchini, U.1    Ditlevsen, S.2    De Gaetano, A.3
  • 47
    • 55749107079 scopus 로고    scopus 로고
    • Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal
    • Picchini U, Ditlevsen S, De Gaetano A, Lansky P. Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal. Neural Comput. 2008b, 20:2696-2714.
    • (2008) Neural Comput. , vol.20 , pp. 2696-2714
    • Picchini, U.1    Ditlevsen, S.2    De Gaetano, A.3    Lansky, P.4
  • 48
    • 84946045727 scopus 로고
    • Approximations of the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro J, Bates D. Approximations of the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Statist. 1995, 4:12-35.
    • (1995) J. Comput. Graph. Statist. , vol.4 , pp. 12-35
    • Pinheiro, J.1    Bates, D.2
  • 50
    • 33645565987 scopus 로고    scopus 로고
    • Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models
    • Pinheiro J, Chao E. Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J. Comput. Graph. Statist. 2006, 15:58-81.
    • (2006) J. Comput. Graph. Statist. , vol.15 , pp. 58-81
    • Pinheiro, J.1    Chao, E.2
  • 51
  • 52
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria,
    • R: a language and environment for statistical computing 2007, http://www.R-project.org, R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria,
    • (2007) R: a language and environment for statistical computing
  • 53
    • 0004007880 scopus 로고
    • (paperback edition, 2006), Wiley, New York
    • Ripley B. Stochastic simulation 1987, (paperback edition, 2006), Wiley, New York
    • (1987) Stochastic simulation
    • Ripley, B.1
  • 54
    • 0019289897 scopus 로고
    • Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data
    • Sheiner L, Beal S. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J. Pharmacokinet. Biopharm. 1980, 8:553-571.
    • (1980) J. Pharmacokinet. Biopharm. , vol.8 , pp. 553-571
    • Sheiner, L.1    Beal, S.2
  • 55
    • 0019818766 scopus 로고
    • Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data
    • Sheiner L, Beal S. Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J. Pharmacokinet. Biopharm. 1981, 9:635-651.
    • (1981) J. Pharmacokinet. Biopharm. , vol.9 , pp. 635-651
    • Sheiner, L.1    Beal, S.2
  • 56
    • 35348963754 scopus 로고    scopus 로고
    • On simulated likelihood of discretely observed diffusion processes and comparison to closed-form approximation
    • Stramer O, Yan J. On simulated likelihood of discretely observed diffusion processes and comparison to closed-form approximation. J. Comput. Graph. Statist. 2007, 16:672-691.
    • (2007) J. Comput. Graph. Statist. , vol.16 , pp. 672-691
    • Stramer, O.1    Yan, J.2
  • 57
    • 23844485993 scopus 로고    scopus 로고
    • Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations
    • Tornøe C, Overgaard R, Agersø H, Nielsen H A, Madsen H, Jonsson E N. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations. Pharm. Res. 2005, 22:1247-1258.
    • (2005) Pharm. Res. , vol.22 , pp. 1247-1258
    • Tornøe, C.1    Overgaard, R.2    Agersø, H.3    Nielsen, H.A.4    Madsen, H.5    Jonsson, E.N.6
  • 59
    • 33846594422 scopus 로고    scopus 로고
    • EM algorithms for nonlinear mixed effects models
    • Wang J. EM algorithms for nonlinear mixed effects models. Comput. Statist. Data Anal. 2007, 51:3244-3256.
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 3244-3256
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.