메뉴 건너뛰기




Volumn 53, Issue 4, 2009, Pages 1350-1360

Estimation in the probit normal model for binary outcomes using the SAEM algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION ALGORITHMS; APPROXIMATION THEORY; BAYESIAN NETWORKS; CONVERGENCE OF NUMERICAL METHODS; INFERENCE ENGINES; MAXIMUM LIKELIHOOD; SYNTHETIC APERTURE SONAR;

EID: 58549090692     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.11.024     Document Type: Article
Times cited : (11)

References (37)
  • 2
    • 0014841634 scopus 로고
    • Multivariate probit analysis
    • Ashford J., and Sowden R. Multivariate probit analysis. Biometrics 26 (1970) 535-546
    • (1970) Biometrics , vol.26 , pp. 535-546
    • Ashford, J.1    Sowden, R.2
  • 3
    • 0002464001 scopus 로고    scopus 로고
    • Integrated likelihood methods for eliminating nuisance parameters
    • Berger J.O., Liseo B., and Wolpert R.L. Integrated likelihood methods for eliminating nuisance parameters. Statistical Science 14 (1999) 1-28
    • (1999) Statistical Science , vol.14 , pp. 1-28
    • Berger, J.O.1    Liseo, B.2    Wolpert, R.L.3
  • 4
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth J.G., and Hobert J.P. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 61 (1999) 265-285
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 5
    • 0003020981 scopus 로고
    • Bias correction in generalised linear mixed models with a single component of dispersion
    • Breslow N.E., and Lin X. Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika 82 (1995) 81-91
    • (1995) Biometrika , vol.82 , pp. 81-91
    • Breslow, N.E.1    Lin, X.2
  • 8
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon B., Lavielle M., and Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Annals of Statistics 27 (1999) 94-128
    • (1999) Annals of Statistics , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 9
    • 0010290414 scopus 로고
    • Prediction of genetic merit from data on categorical and quantitative variates with an application to calving difficulty, birth weight and pelvic opening
    • Foulley J.L., Gianola D., and Thompson R. Prediction of genetic merit from data on categorical and quantitative variates with an application to calving difficulty, birth weight and pelvic opening. Genetics Selection Evolution 15 (1983) 401-424
    • (1983) Genetics Selection Evolution , vol.15 , pp. 401-424
    • Foulley, J.L.1    Gianola, D.2    Thompson, R.3
  • 10
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1 (2006) 515-533
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 11
    • 0442327764 scopus 로고    scopus 로고
    • A correlated probit model for joint modeling of clustered binary and continuous responses
    • Gueorguieva R.V., and Agresti A. A correlated probit model for joint modeling of clustered binary and continuous responses. Journal of the American Statistical Association 96 (2001) 1102-1112
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1102-1112
    • Gueorguieva, R.V.1    Agresti, A.2
  • 12
    • 85041975654 scopus 로고
    • Bayesian inference for variance components using only error contrasts
    • Harville D.A. Bayesian inference for variance components using only error contrasts. Biometrika 61 (1974) 383-385
    • (1974) Biometrika , vol.61 , pp. 383-385
    • Harville, D.A.1
  • 13
    • 0001025439 scopus 로고
    • A conditional probit model for qualitative choice: Discrete decisions recognizing interdependence and heterogenous preferences
    • Hausman J., and Wise D. A conditional probit model for qualitative choice: Discrete decisions recognizing interdependence and heterogenous preferences. Econometrica 46 (1978) 403-426
    • (1978) Econometrica , vol.46 , pp. 403-426
    • Hausman, J.1    Wise, D.2
  • 14
    • 0002224606 scopus 로고    scopus 로고
    • MIXNO: A computer program for mixed-effects nominal logistic regression
    • Hedeker D. MIXNO: A computer program for mixed-effects nominal logistic regression. Journal of Statistical Software 4 5 (1999) 1-92
    • (1999) Journal of Statistical Software , vol.4 , Issue.5 , pp. 1-92
    • Hedeker, D.1
  • 15
    • 0030110906 scopus 로고    scopus 로고
    • MIXOR: A computer program for mixed-effects ordinal regression analysis
    • Hedeker D., and Gibbons R.D. MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine 49 (1999) 157-176
    • (1999) Computer Methods and Programs in Biomedicine , vol.49 , pp. 157-176
    • Hedeker, D.1    Gibbons, R.D.2
  • 16
    • 33846182940 scopus 로고    scopus 로고
    • Implementing and diagnosing the stochastic approximation EM algorithm
    • Jank W. Implementing and diagnosing the stochastic approximation EM algorithm. Journal of Computational & Graphical Statistics 15 (2006) 803-829
    • (2006) Journal of Computational & Graphical Statistics , vol.15 , pp. 803-829
    • Jank, W.1
  • 18
    • 13444249563 scopus 로고    scopus 로고
    • Coupling a stochastic approximation version of EM with a MCMC procedure
    • Kuhn E., and Lavielle M. Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM: Probability and Statistics 8 (2004) 115-131
    • (2004) ESAIM: Probability and Statistics , vol.8 , pp. 115-131
    • Kuhn, E.1    Lavielle, M.2
  • 19
    • 34249707233 scopus 로고    scopus 로고
    • A Parameter expansion version of the SAEM algorithm
    • Lavielle M., and Meza C. A Parameter expansion version of the SAEM algorithm. Statistics and Computing 17 2 (2007) 121-130
    • (2007) Statistics and Computing , vol.17 , Issue.2 , pp. 121-130
    • Lavielle, M.1    Meza, C.2
  • 20
    • 33644629431 scopus 로고    scopus 로고
    • Double hierarchical generalized linear models
    • Lee Y., and Nelder J.A. Double hierarchical generalized linear models. Applied Statistics 55 2 (2006) 139-185
    • (2006) Applied Statistics , vol.55 , Issue.2 , pp. 139-185
    • Lee, Y.1    Nelder, J.A.2
  • 21
    • 0141643810 scopus 로고    scopus 로고
    • A type of restricted maximum likelihood estimator of variance components in generalised linear mixed models
    • Liao J.G., and Lipsitz S.R. A type of restricted maximum likelihood estimator of variance components in generalised linear mixed models. Biometrika 89 (2002) 401-409
    • (2002) Biometrika , vol.89 , pp. 401-409
    • Liao, J.G.1    Lipsitz, S.R.2
  • 23
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis T.A. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society Serie B 44 (1982) 226-233
    • (1982) Journal of the Royal Statistical Society Serie B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 24
    • 0000883977 scopus 로고
    • A method of simulated moments for estimation of discrete response models without numerical integration
    • McFadden D. A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57 (1989) 995-1026
    • (1989) Econometrica , vol.57 , pp. 995-1026
    • McFadden, D.1
  • 25
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch C.E. Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association 92 (1997) 162-170
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 26
    • 38049121396 scopus 로고    scopus 로고
    • REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm
    • Meza C., Jaffrézic F., and Foulley J.L. REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm. Biometrical Journal 49 (2007) 876-888
    • (2007) Biometrical Journal , vol.49 , pp. 876-888
    • Meza, C.1    Jaffrézic, F.2    Foulley, J.L.3
  • 28
    • 0002770525 scopus 로고    scopus 로고
    • An assessment of approximate maximum likelihood estimators in generalized linear models
    • Modelling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions, Gregoire, T. G., Springer, New York
    • Neuhaus J.M., and Segal M.R. An assessment of approximate maximum likelihood estimators in generalized linear models. Modelling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions. Lecture notes in Statistics vol. 122 (1997), Gregoire, T. G., Springer, New York
    • (1997) Lecture notes in Statistics , vol.122
    • Neuhaus, J.M.1    Segal, M.R.2
  • 29
    • 33645757341 scopus 로고    scopus 로고
    • Estimation in generalised linear mixed models with binary outcomes by simulated maximum likelihood
    • Ng E.S.W., Carpenter J.R., Goldstein H., and Rasbash J. Estimation in generalised linear mixed models with binary outcomes by simulated maximum likelihood. Statistical Modelling 6 (2006) 23-42
    • (2006) Statistical Modelling , vol.6 , pp. 23-42
    • Ng, E.S.W.1    Carpenter, J.R.2    Goldstein, H.3    Rasbash, J.4
  • 30
    • 33947127673 scopus 로고    scopus 로고
    • REML estimation for binary data in GLMMs
    • Noh M., and Lee Y. REML estimation for binary data in GLMMs. Journal of Multivariate Analysis 98 (2007) 896-915
    • (2007) Journal of Multivariate Analysis , vol.98 , pp. 896-915
    • Noh, M.1    Lee, Y.2
  • 31
    • 77950035264 scopus 로고    scopus 로고
    • Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation
    • Raudenbush S.W., Yang M.-L., and Yosef M. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational & Graphical Statistics 9 (2000) 141-157
    • (2000) Journal of Computational & Graphical Statistics , vol.9 , pp. 141-157
    • Raudenbush, S.W.1    Yang, M.-L.2    Yosef, M.3
  • 32
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • Robert C.P. Simulation of truncated normal variables. Statistics and Computing 5 (1995) 121-125
    • (1995) Statistics and Computing , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 34
    • 4243757425 scopus 로고
    • An assessment of estimation procedures for multilevel models whith binary responses
    • Rodríguez G., and Goldman N. An assessment of estimation procedures for multilevel models whith binary responses. Journal of the Royal Statistical Society Serie A 158 (1995) 73-89
    • (1995) Journal of the Royal Statistical Society Serie A , vol.158 , pp. 73-89
    • Rodríguez, G.1    Goldman, N.2
  • 35
    • 77956888303 scopus 로고
    • Estimation in generalized linear models with random effects
    • Schall R. Estimation in generalized linear models with random effects. Biometrika 78 (1991) 719-727
    • (1991) Biometrika , vol.78 , pp. 719-727
    • Schall, R.1
  • 36
    • 0001684437 scopus 로고
    • Laplace's approximation for nonlinear mixed models
    • Wolfinger R. Laplace's approximation for nonlinear mixed models. Biometrika 80 (1992) 791-795
    • (1992) Biometrika , vol.80 , pp. 791-795
    • Wolfinger, R.1
  • 37
    • 42149087923 scopus 로고    scopus 로고
    • The Monte Carlo EM method for estimating multinomial probit latent variable models
    • Zhou X., and Liu X. The Monte Carlo EM method for estimating multinomial probit latent variable models. Computational Statistics 23 (2008) 277-289
    • (2008) Computational Statistics , vol.23 , pp. 277-289
    • Zhou, X.1    Liu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.