메뉴 건너뛰기




Volumn 17, Issue 1, 2011, Pages 80-100

A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects

Author keywords

Bayesian analysis; Cause specific hazard; Cholesky decomposition; MCMC; Mixed effects model; Modeling covariance matrices

Indexed keywords

ARTICLE; BAYES THEOREM; COMPARATIVE STUDY; HUMAN; LONGITUDINAL STUDY; METHODOLOGY; MONTE CARLO METHOD; PROBABILITY; PROPORTIONAL HAZARDS MODEL; SENSITIVITY AND SPECIFICITY; STATISTICAL MODEL; SURVIVAL;

EID: 78651422985     PISSN: 13807870     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10985-010-9169-6     Document Type: Article
Times cited : (51)

References (43)
  • 1
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • Brown ER, Ibrahim JG (2003) A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59: 221-228.
    • (2003) Biometrics , vol.59 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 3
    • 78651422163 scopus 로고    scopus 로고
    • Comments on article by celeux et al
    • Chen MH (2006) Comments on article by celeux et al. Bayesian Anal. 4: 677-680.
    • (2006) Bayesian Anal. , vol.4 , pp. 677-680
    • Chen, M.H.1
  • 4
    • 32344446687 scopus 로고
    • Understanding the metropolis-hastings algorithm
    • Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. Am Stat 49: 327-335.
    • (1995) Am Stat , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 6
    • 0038600714 scopus 로고    scopus 로고
    • Bayesian analysis of covariance matrices and dynamic models for longitudinal data
    • Daniels MJ, Pourahmadi M (2002) Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 89: 553-566.
    • (2002) Biometrika , vol.89 , pp. 553-566
    • Daniels, M.J.1    Pourahmadi, M.2
  • 7
    • 0038025664 scopus 로고    scopus 로고
    • Modelling the random effects covariance matrix in longitudinal data
    • Daniels MJ, Zhao YD (2003) Modelling the random effects covariance matrix in longitudinal data. Stat Med 22: 1631-1647.
    • (2003) Stat Med , vol.22 , pp. 1631-1647
    • Daniels, M.J.1    Zhao, Y.D.2
  • 9
    • 0028627762 scopus 로고
    • Modeling progression of CD4-lymphocyte count and its relationship to survival time
    • De Gruttola V, Tu XM (1994) Modeling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50: 1003-1014.
    • (1994) Biometrics , vol.50 , pp. 1003-1014
    • de Gruttola, V.1    Tu, X.M.2
  • 11
    • 34249899104 scopus 로고    scopus 로고
    • An approach to joint analysis of longitudinal measurements and competing risks failure time data
    • Elashoff R, Li G, Li N (2007) An approach to joint analysis of longitudinal measurements and competing risks failure time data. Stat Med 26: 2813-2835.
    • (2007) Stat Med , vol.26 , pp. 2813-2835
    • Elashoff, R.1    Li, G.2    Li, N.3
  • 12
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff R, Li G, Li N (2008) A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64: 762-771.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.1    Li, G.2    Li, N.3
  • 13
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously modeling of censored survival data and repeated measured covariates: a gibbs sampling approach
    • Faucett CL, Thomas DC (1996) Simultaneously modeling of censored survival data and repeated measured covariates: a gibbs sampling approach. Stat Med 16: 1663-1685.
    • (1996) Stat Med , vol.16 , pp. 1663-1685
    • Faucett, C.L.1    Thomas, D.C.2
  • 14
    • 0032369670 scopus 로고    scopus 로고
    • Analysis of censored survival data with intermittently observed time-dependent binary covariates
    • Faucett CL, Schenker N, Elashoff RM (1998) Analysis of censored survival data with intermittently observed time-dependent binary covariates. J Am Stat Assoc 93: 427-437.
    • (1998) J Am Stat Assoc , vol.93 , pp. 427-437
    • Faucett, C.L.1    Schenker, N.2    Elashoff, R.M.3
  • 15
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in generalized linear mixed models
    • Gamerman D (1997) Sampling from the posterior distribution in generalized linear mixed models. Stat Comput 7: 57-68.
    • (1997) Stat Comput , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 16
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences (with discussion). Stat Sci 7: 457-511.
    • (1992) Stat Sci , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 17
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41: 337-348.
    • (1992) Appl Stat , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 19
    • 0000024102 scopus 로고    scopus 로고
    • Misspecified maximum likelihood estimate and generalised linear mixed models
    • Heagerty PJ, Kurland BF (2001) Misspecified maximum likelihood estimate and generalised linear mixed models. Biometrika 88: 973-986.
    • (2001) Biometrika , vol.88 , pp. 973-986
    • Heagerty, P.J.1    Kurland, B.F.2
  • 20
    • 0000710136 scopus 로고    scopus 로고
    • Joint modeling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A (2000) Joint modeling of longitudinal measurements and event time data. Biostatistics 4: 465-480.
    • (2000) Biostatistics , vol.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 21
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • Hogan JW, Laird NM (1997) Model-based approaches to analysing incomplete longitudinal and failure time data. Stat Med 16: 259-272.
    • (1997) Stat Med , vol.16 , pp. 259-272
    • Hogan, J.W.1    Laird, N.M.2
  • 22
    • 67649945929 scopus 로고    scopus 로고
    • A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data
    • Hu WH, Li G, Li N (2009) A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Stat Med 29: 1601-1619.
    • (2009) Stat Med , vol.29 , pp. 1601-1619
    • Hu, W.H.1    Li, G.2    Li, N.3
  • 23
    • 33644865974 scopus 로고    scopus 로고
    • The Cox proportional hazards model with a continuous latent variable measured by binary indicators
    • Larsen K (2005) The Cox proportional hazards model with a continuous latent variable measured by binary indicators. Biometrics 61: 1049-1055.
    • (2005) Biometrics , vol.61 , pp. 1049-1055
    • Larsen, K.1
  • 24
    • 0030865701 scopus 로고    scopus 로고
    • Linear mixed models with heterogeneous within-cluster variances
    • Lin X, Raz J, Harlow SD (1997) Linear mixed models with heterogeneous within-cluster variances. Biometrics 53: 910-923.
    • (1997) Biometrics , vol.53 , pp. 910-923
    • Lin, X.1    Raz, J.2    Harlow, S.D.3
  • 25
    • 84950452119 scopus 로고
    • Modeling the drop out mechanism in repeated measures studies
    • Little RJA (1995) Modeling the drop out mechanism in repeated measures studies. J Am Stat Assoc 90: 1112-1121.
    • (1995) J Am Stat Assoc , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 26
    • 58749093251 scopus 로고    scopus 로고
    • Joint analysis of multi-level repeated measures data and survival: an application to the end stage renal disease (ESRD) data
    • Liu L, Ma JZ, O'Quigley J (2008) Joint analysis of multi-level repeated measures data and survival: an application to the end stage renal disease (ESRD) data. Stat Med 27: 5679-5691.
    • (2008) Stat Med , vol.27 , pp. 5679-5691
    • Liu, L.1    Ma, J.Z.2    O'Quigley, J.3
  • 27
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with nonrandom drop-out
    • Molenberghs G, Kenward MG, Lesaffre E (1997) The analysis of longitudinal ordinal data with nonrandom drop-out. Biometrika 84: 33-44.
    • (1997) Biometrika , vol.84 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 28
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization
    • Pourahmadi M (1999) Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika 86: 677-690.
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 29
    • 37549012210 scopus 로고    scopus 로고
    • Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance-correlation parameters
    • Pourahmadi M (2007) Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance-correlation parameters. Biometrika 94: 1006-1013.
    • (2007) Biometrika , vol.94 , pp. 1006-1013
    • Pourahmadi, M.1
  • 30
    • 0036192069 scopus 로고    scopus 로고
    • Dynamic conditional linear mixed models for longitudinal data
    • Pourahmadi M, Daniels MJ (2002) Dynamic conditional linear mixed models for longitudinal data. Biometrics 58: 225-231.
    • (2002) Biometrics , vol.58 , pp. 225-231
    • Pourahmadi, M.1    Daniels, M.J.2
  • 31
    • 0017878954 scopus 로고
    • Retrospective studies and failure time models
    • Prentice RL, Breslow NE (1978) Retrospective studies and failure time models. Biometrika 65: 153-158.
    • (1978) Biometrika , vol.65 , pp. 153-158
    • Prentice, R.L.1    Breslow, N.E.2
  • 32
    • 0027092589 scopus 로고
    • Methods for the analysis of informatively censored longitudinal data
    • Schluchter MD (1992) Methods for the analysis of informatively censored longitudinal data. Stat Med 11: 1861-1870.
    • (1992) Stat Med , vol.11 , pp. 1861-1870
    • Schluchter, M.D.1
  • 33
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • Song X, Davidian M, Tsiatis AA (2002) A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58: 742-753.
    • (2002) Biometrics , vol.58 , pp. 742-753
    • Song, X.1    Davidian, M.2    Tsiatis, A.A.3
  • 35
    • 33745227399 scopus 로고    scopus 로고
    • Cyclophosphamide versus placebo in scleroderma lung disease
    • Tashkin DP, Elashoff RM et al (2006) Cyclophosphamide versus placebo in scleroderma lung disease. New Engl J Med 354: 2655-2666.
    • (2006) New Engl J Med , vol.354 , pp. 2655-2666
    • Tashkin, D.P.1    Elashoff, R.M.2
  • 36
    • 24144440046 scopus 로고    scopus 로고
    • Joint modelling of accelerated failure time and longitudinal data
    • Tseng YK, Hsieh F, Wang JL (2005) Joint modelling of accelerated failure time and longitudinal data. Biometrika 92: 587-603.
    • (2005) Biometrika , vol.92 , pp. 587-603
    • Tseng, Y.K.1    Hsieh, F.2    Wang, J.L.3
  • 37
    • 0442327792 scopus 로고    scopus 로고
    • Joint modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
    • Wang Y, Taylor JMG (2001) Joint modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 96: 895-905.
    • (2001) J Am Stat Assoc , vol.96 , pp. 895-905
    • Wang, Y.1    Taylor, J.M.G.2
  • 38
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS, Tsiatis AA (1997) A joint model for survival and longitudinal data measured with error. Biometrics 53: 330-339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 39
    • 0035650134 scopus 로고    scopus 로고
    • Joint analysis of longitudinal data comprising repeated measures and times to events
    • Xu J, Zeger SL (2001) Joint analysis of longitudinal data comprising repeated measures and times to events. Appl Stat 50: 375-387.
    • (2001) Appl Stat , vol.50 , pp. 375-387
    • Xu, J.1    Zeger, S.L.2
  • 40
    • 37249060736 scopus 로고    scopus 로고
    • Functional approach of flexibly modelling generalized longitudinal data and survival time
    • Yao F (2008) Functional approach of flexibly modelling generalized longitudinal data and survival time. J Stat Plan Inference 138: 995-1009.
    • (2008) J Stat Plan Inference , vol.138 , pp. 995-1009
    • Yao, F.1
  • 41
    • 56049124129 scopus 로고    scopus 로고
    • Semiparametric modeling of longitudinal measurements and time-to-event data-a two-stage regression calibration approach
    • Ye W, Lin XH, Taylor JMG (2008) Semiparametric modeling of longitudinal measurements and time-to-event data-a two-stage regression calibration approach. Biometrics 64: 1238-1246.
    • (2008) Biometrics , vol.64 , pp. 1238-1246
    • Ye, W.1    Lin, X.H.2    Taylor, J.M.G.3
  • 42
    • 17444429292 scopus 로고    scopus 로고
    • Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures
    • Zeng D, Cai J (2005) Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures. Lifetime Data Anal 11: 151-174.
    • (2005) Lifetime Data Anal , vol.11 , pp. 151-174
    • Zeng, D.1    Cai, J.2
  • 43
    • 0034344420 scopus 로고    scopus 로고
    • Diagnosing explainable heterogeneity of variance in random effects models
    • Zhang F, Weiss RE (2000) Diagnosing explainable heterogeneity of variance in random effects models. Can J Stat 28: 3-18.
    • (2000) Can J Stat , vol.28 , pp. 3-18
    • Zhang, F.1    Weiss, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.