-
1
-
-
0002241694
-
The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational
-
Celeux G. and Diebolt J. 1985. The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational. Statistics Quaterly 2: 73-82.
-
(1985)
Statistics Quaterly
, vol.2
, pp. 73-82
-
-
Celeux, G.1
Diebolt, J.2
-
2
-
-
0037188237
-
A simulated pseudo-maximum likelihood estimator for nonlinear mixed models
-
Concordet D. and Nunez O. 2002. A simulated pseudo-maximum likelihood estimator for nonlinear mixed models. Comput. Statist. Data Anal. 39: 187-201.
-
(2002)
Comput. Statist. Data Anal
, vol.39
, pp. 187-201
-
-
Concordet, D.1
Nunez, O.2
-
3
-
-
0033243858
-
Convergence of a stochastic approximation version of the EM algorithm
-
Delyon B., Lavielle M., and Moulines E. 1999. Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27: 94-128.
-
(1999)
Ann. Statist
, vol.27
, pp. 94-128
-
-
Delyon, B.1
Lavielle, M.2
Moulines, E.3
-
4
-
-
34249725439
-
-
Dempster A., Laird N., and Rubin D. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39: 1-38. With discussion.
-
Dempster A., Laird N., and Rubin D. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39: 1-38. With discussion.
-
-
-
-
5
-
-
0028517016
-
Space-alternating generalized expectation-maximization algorithm
-
Fessler J. and Hero A. 1994. Space-alternating generalized expectation-maximization algorithm. IEE Trans. Sig. Proc. 42: 2664-2677.
-
(1994)
IEE Trans. Sig. Proc
, vol.42
, pp. 2664-2677
-
-
Fessler, J.1
Hero, A.2
-
7
-
-
13444249563
-
Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM P&S
-
Kuhn E. and Lavielle M. 2004. Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM P&S 8: 115-131.
-
(2004)
, vol.8
, pp. 115-131
-
-
Kuhn, E.1
Lavielle, M.2
-
8
-
-
19044400906
-
Maximum likelihood estimation in nonlinear mixed effects models
-
Kuhn E. and Lavielle M. 2005. Maximum likelihood estimation in nonlinear mixed effects models. CSDA 49(4), 20-38.
-
(2005)
CSDA
, vol.49
, Issue.4
, pp. 20-38
-
-
Kuhn, E.1
Lavielle, M.2
-
9
-
-
0000315742
-
The ECME algorithm: A simple extension of em and ecm with faster monotone convergence
-
Liu C. and Rubin D. 1994. The ECME algorithm: a simple extension of em and ecm with faster monotone convergence. Biometrika 81: 633-648.
-
(1994)
Biometrika
, vol.81
, pp. 633-648
-
-
Liu, C.1
Rubin, D.2
-
10
-
-
0001508169
-
Parameter expansion to accelerate EM: The PX-EM algorithm
-
Liu C., Rubin D., and Wu Y. 1998. Parameter expansion to accelerate EM: The PX-EM algorithm. Biometrika 85: 755-770.
-
(1998)
Biometrika
, vol.85
, pp. 755-770
-
-
Liu, C.1
Rubin, D.2
Wu, Y.3
-
12
-
-
0000251971
-
Maximum likelihood estimation via the ECM algorithm: A general framework
-
Meng X.-L. and Rubin D.B. 1993. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80(2): 267-278.
-
(1993)
Biometrika
, vol.80
, Issue.2
, pp. 267-278
-
-
Meng, X.-L.1
Rubin, D.B.2
-
13
-
-
84950432017
-
A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
-
Wei G. and Tanner M. 1990. A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Amer. Statist. Assoc. 85: 699-704.
-
(1990)
J. Amer. Statist. Assoc
, vol.85
, pp. 699-704
-
-
Wei, G.1
Tanner, M.2
-
14
-
-
0002210265
-
On the convergence properties of the EM algorithm
-
Wu C. 1983. On the convergence properties of the EM algorithm. Ann. Statist. 11: 95-103.
-
(1983)
Ann. Statist
, vol.11
, pp. 95-103
-
-
Wu, C.1
-
15
-
-
4944229776
-
Exact and approximate inferences for nonlinear mixed-effects models with missing covariates
-
Wu L. 2004. Exact and approximate inferences for nonlinear mixed-effects models with missing covariates. J. Amer. Statist. Assoc. 99: 700-709.
-
(2004)
J. Amer. Statist. Assoc
, vol.99
, pp. 700-709
-
-
Wu, L.1
|