-
1
-
-
84863764389
-
Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
-
Abrahart R.J., Anctil F., Coulibaly P., Dawson C.W., Mount N.J., See L.M., Shamseldin A.Y., Solomatine D.P., Toth E., Wilby R.L. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog. Phys. Geogr. 2012, 36:480-513. 10.1177/0309133312444943.
-
(2012)
Prog. Phys. Geogr.
, vol.36
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, A.Y.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
2
-
-
84906777236
-
Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
-
Acharya N., Shrivastava N.A., Panigrahi B.K., Mohanty U.C. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dyn. 2013, 43:1303-1310. 10.1007/s00382-013-1942-2.
-
(2013)
Clim. Dyn.
, vol.43
, pp. 1303-1310
-
-
Acharya, N.1
Shrivastava, N.A.2
Panigrahi, B.K.3
Mohanty, U.C.4
-
3
-
-
79953317087
-
Nonlinear baseflow recession analysis in watersheds with intermittent streamflow
-
Aksoy H., Wittenberg H. Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrol. Sci. J. 2011, 56:226-237. 10.1080/02626667.2011.553614.
-
(2011)
Hydrol. Sci. J.
, vol.56
, pp. 226-237
-
-
Aksoy, H.1
Wittenberg, H.2
-
4
-
-
84929144928
-
Improved particle swarm optimization - based artificial neural network for rainfall-runoff modeling
-
Asadnia M., Chua L.H.C., Qin X.S., Asce A.M., Talei A. Improved particle swarm optimization - based artificial neural network for rainfall-runoff modeling. J. Hydrol. Eng. 2014, 19:1320-1329. 10.1061/(ASCE)HE.1943-5584.0000927.
-
(2014)
J. Hydrol. Eng.
, vol.19
, pp. 1320-1329
-
-
Asadnia, M.1
Chua, L.H.C.2
Qin, X.S.3
Asce, A.M.4
Talei, A.5
-
5
-
-
0034174280
-
Application of artificial neural networks in hydrology. I: Preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Application of artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5:115-123.
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 115-123
-
-
-
6
-
-
33748929857
-
Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
-
Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329:363-367. 10.1016/j.jhydrol.2006.02.025.
-
(2006)
J. Hydrol.
, vol.329
, pp. 363-367
-
-
Chau, K.W.1
-
7
-
-
35349010023
-
A split-step particle swarm optimization algorithm in river stage forecasting
-
Chau K.W. A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 2007, 346:131-135. 10.1016/j.jhydrol.2007.09.004.
-
(2007)
J. Hydrol.
, vol.346
, pp. 131-135
-
-
Chau, K.W.1
-
8
-
-
34249885607
-
Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting
-
Corzo G., Solomatine D. Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting. Neural Networks 2007, 20:528-536. 10.1016/j.neunet.2007.04.019.
-
(2007)
Neural Networks
, vol.20
, pp. 528-536
-
-
Corzo, G.1
Solomatine, D.2
-
9
-
-
34249775808
-
Baseflow separation techniques for modular artificial neural network modelling in flow forecasting
-
Corzo G., Solomatine D. Baseflow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrol. Sci. J. 2007, 52:491-507. 10.1623/hysj.52.3.491.
-
(2007)
Hydrol. Sci. J.
, vol.52
, pp. 491-507
-
-
Corzo, G.1
Solomatine, D.2
-
11
-
-
33846798345
-
HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
-
Dawson C.W., Abrahart R.J., See L.M. HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22:1034-1052. 10.1016/j.envsoft.2006.06.008.
-
(2007)
Environ. Model. Softw.
, vol.22
, pp. 1034-1052
-
-
Dawson, C.W.1
Abrahart, R.J.2
See, L.M.3
-
12
-
-
77957751049
-
HydroTest: further development of a web resource for the standardised assessment of hydrological models
-
Dawson C.W., Abrahart R.J., See L.M. HydroTest: further development of a web resource for the standardised assessment of hydrological models. Environ. Model. Softw. 2010, 25:1481-1482. 10.1016/j.envsoft.2009.01.001.
-
(2010)
Environ. Model. Softw.
, vol.25
, pp. 1481-1482
-
-
Dawson, C.W.1
Abrahart, R.J.2
See, L.M.3
-
13
-
-
53849113979
-
Multiobjective training of artificial neural networks for rainfall-runoff modeling
-
De Vos N.J., Rientjes T.H.M. Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour. Res. 2008, 44. 10.1029/2007WR006734.
-
(2008)
Water Resour. Res.
, vol.44
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
15
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm
-
Deb K., Member A., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm. IEEE Trans. Evol. Comput. 2002, 6:182-197.
-
(2002)
IEEE Trans. Evol. Comput.
, vol.6
, pp. 182-197
-
-
Deb, K.1
Member, A.2
Pratap, A.3
Agarwal, S.4
Meyarivan, T.5
-
16
-
-
84908611342
-
Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
-
Deo R.C., Şahin M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153:512-525. 10.1016/j.atmosres.2014.10.016.
-
(2015)
Atmos. Res.
, vol.153
, pp. 512-525
-
-
Deo, R.C.1
Şahin, M.2
-
17
-
-
13244299362
-
How to construct recursive digital filters for baseflow separation
-
Eckhardt K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19:507-515. 10.1002/hyp.5675.
-
(2005)
Hydrol. Process.
, vol.19
, pp. 507-515
-
-
Eckhardt, K.1
-
18
-
-
40649093741
-
A comparison of baseflow indices, which were calculated with seven different baseflow separation methods
-
Eckhardt K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352:168-173. 10.1016/j.jhydrol.2008.01.005.
-
(2008)
J. Hydrol.
, vol.352
, pp. 168-173
-
-
Eckhardt, K.1
-
19
-
-
84856854970
-
Technical note: analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter
-
Eckhardt K. Technical note: analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter. Hydrol. Earth Syst. Sci. 2012, 16:451-455. 10.5194/hess-16-451-2012.
-
(2012)
Hydrol. Earth Syst. Sci.
, vol.16
, pp. 451-455
-
-
Eckhardt, K.1
-
21
-
-
33748060863
-
Multiobjective particle swarm optimization for parameter estimation in hydrology
-
Gill M.K., Kaheil Y.H., Khalil A., McKee M., Bastidas L. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res. 2006, 42:W07417. 10.1029/2005WR004528.
-
(2006)
Water Resour. Res.
, vol.42
, pp. W07417
-
-
Gill, M.K.1
Kaheil, Y.H.2
Khalil, A.3
McKee, M.4
Bastidas, L.5
-
23
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Huang G.-B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B, Cybern. 2012, 42:513-529.
-
(2012)
IEEE Trans. Syst. Man Cybern. Part B, Cybern.
, vol.42
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
24
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE Proceedings of International Joint Conference on Neural Networks, 2004, vol. 2. pp. 985-990. doi:10.1109/IJCNN.2004.1380068.
-
(2004)
IEEE Proceedings of International Joint Conference on Neural Networks 2004
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
25
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501. 10.1016/j.neucom.2005.12.126.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
26
-
-
69249158084
-
Dissection of trained neural network hydrologic models for knowledge extraction
-
Jain A., Kumar S. Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour. Res. 2009, 45:W07420. 10.1029/2008WR007194.
-
(2009)
Water Resour. Res.
, vol.45
, pp. W07420
-
-
Jain, A.1
Kumar, S.2
-
27
-
-
28844473522
-
Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
-
Jain A., Srinivasulu S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 2006, 317:291-306. 10.1016/j.jhydrol.2005.05.022.
-
(2006)
J. Hydrol.
, vol.317
, pp. 291-306
-
-
Jain, A.1
Srinivasulu, S.2
-
28
-
-
1542287371
-
Identification of physical processes inherent in artificial neural network rainfall runoff models
-
Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process. 2004, 18:571-581. 10.1002/hyp.5502.
-
(2004)
Hydrol. Process.
, vol.18
, pp. 571-581
-
-
Jain, A.1
Sudheer, K.P.2
Srinivasulu, S.3
-
29
-
-
84862673732
-
Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data
-
Jothiprakash V., Magar R.B. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. J. Hydrol. 2012, 450-451:293-307. 10.1016/j.jhydrol.2012.04.045.
-
(2012)
J. Hydrol.
, pp. 293-307
-
-
Jothiprakash, V.1
Magar, R.B.2
-
30
-
-
84899047533
-
Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance
-
(Cat. No. 99TH8406) 1931-1938.
-
Kennedy, J., 1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proc. 1999 Congr. Evol. Comput. (Cat. No. 99TH8406) 1931-1938. doi:10.1109/CEC.1999.785509.
-
(1999)
Proc. 1999 Congr. Evol. Comput
-
-
Kennedy, J.1
-
32
-
-
84901464055
-
Population structure and particle swarm performance
-
Kennedy, J., Mendes, R., 2002. Population structure and particle swarm performance. In: Proc. 2002 Congr. Evol. Comput. CEC'02. 2, 1671-1676. doi:10.1109/CEC.2002.1004493.
-
(2002)
Proc. 2002 Congr. Evol. Comput. CEC'02. 2
, pp. 1671-1676
-
-
Kennedy, J.1
Mendes, R.2
-
33
-
-
84892451933
-
Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs
-
Li L., Maier H.R., Partington D., Lambert M.F., Simmons C.T. Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environ. Model. Softw. 2014, 54:39-52. 10.1016/j.envsoft.2013.12.011.
-
(2014)
Environ. Model. Softw.
, vol.54
, pp. 39-52
-
-
Li, L.1
Maier, H.R.2
Partington, D.3
Lambert, M.F.4
Simmons, C.T.5
-
34
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
-
Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 2000, 15:101-124. 10.1016/S1364-8152(99)00007-9.
-
(2000)
Environ. Model. Softw.
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
35
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 2010, 25:891-909. 10.1016/j.envsoft.2010.02.003.
-
(2010)
Environ. Model. Softw.
, vol.25
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.P.4
-
36
-
-
84942113543
-
Watch thy neighbor or how the swarm can learn from its environment
-
Mendes, R., Kennedy, J., Neves, J., 2003. Watch thy neighbor or how the swarm can learn from its environment. In: Proc. 2003 IEEE Swarm Intell. Symp. - SIS'03 88-94. doi:10.1109/SIS.2003.1202252.
-
(2003)
Proc. 2003 IEEE Swarm Intell. Symp. - SIS'03
, pp. 88-94
-
-
Mendes, R.1
Kennedy, J.2
Neves, J.3
-
37
-
-
3142781923
-
The fully informed particle swarm: simpler, maybe better
-
Mendes R., Kennedy J., Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 2004, 8:204-210.
-
(2004)
IEEE Trans. Evol. Comput.
, vol.8
, pp. 204-210
-
-
Mendes, R.1
Kennedy, J.2
Neves, J.3
-
38
-
-
84893386848
-
Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data
-
Ortiz-García E.G., Salcedo-Sanz S., Casanova-Mateo C. Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos. Res. 2014, 139:128-136. 10.1016/j.atmosres.2014.01.012.
-
(2014)
Atmos. Res.
, vol.139
, pp. 128-136
-
-
Ortiz-García, E.G.1
Salcedo-Sanz, S.2
Casanova-Mateo, C.3
-
39
-
-
33745435792
-
Spiking modular neural networks: a neural network modeling approach for hydrological processes
-
Parasuraman K., Elshorbagy A., Carey S.K. Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resour. Res. 2006, 42. 10.1029/2005WR004317.
-
(2006)
Water Resour. Res.
, vol.42
-
-
Parasuraman, K.1
Elshorbagy, A.2
Carey, S.K.3
-
41
-
-
0033381989
-
Applying soft computing approaches to river level forecasting
-
See L., Openshaw S. Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 1999, 44:763-778. 10.1080/02626669909492272.
-
(1999)
Hydrol. Sci. J.
, vol.44
, pp. 763-778
-
-
See, L.1
Openshaw, S.2
-
43
-
-
57949116748
-
River flow prediction using an integrated approach
-
Srinivasulu S., Jain A. River flow prediction using an integrated approach. J. Hydrol. Eng. 2009, 14:75-83.
-
(2009)
J. Hydrol. Eng.
, vol.14
, pp. 75-83
-
-
Srinivasulu, S.1
Jain, A.2
-
44
-
-
84868367414
-
Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
-
Taormina R., Chau K., Sethi R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 2012, 25:1670-1676. 10.1016/j.engappai.2012.02.009.
-
(2012)
Eng. Appl. Artif. Intell.
, vol.25
, pp. 1670-1676
-
-
Taormina, R.1
Chau, K.2
Sethi, R.3
-
45
-
-
84924153739
-
Neural network river forecasting with multi-objective fully informed particle swarm optimization
-
Taormina R., Chau K. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinf. 2015, 17:99-112. 10.2166/hydro.2014.116.
-
(2015)
J. Hydroinf.
, vol.17
, pp. 99-112
-
-
Taormina, R.1
Chau, K.2
-
46
-
-
84945467880
-
Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines
-
(under second revision)
-
Taormina R., Chau K.W. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines. J. Hydrol. 2015, (under second revision).
-
(2015)
J. Hydrol.
-
-
Taormina, R.1
Chau, K.W.2
-
47
-
-
72049104241
-
Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting
-
Toth E. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 2009, 13:1555-1566.
-
(2009)
Hydrol. Earth Syst. Sci.
, vol.13
, pp. 1555-1566
-
-
Toth, E.1
-
48
-
-
0037388711
-
Detection of conceptual model rainfall-runoff processes inside an artificial neural network
-
Wilby R.L., Abrahart R.J., Dawson C.W. Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 2003, 48:163-181.
-
(2003)
Hydrol. Sci. J.
, vol.48
, pp. 163-181
-
-
Wilby, R.L.1
Abrahart, R.J.2
Dawson, C.W.3
-
49
-
-
77954384622
-
Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
-
Wu C.L., Chau K.W., Fan C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 2010, 389:146-167. 10.1016/j.jhydrol.2010.05.040.
-
(2010)
J. Hydrol.
, vol.389
, pp. 146-167
-
-
Wu, C.L.1
Chau, K.W.2
Fan, C.3
-
50
-
-
84892886293
-
Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
-
Wu W., Dandy G.C., Maier H.R. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Model. Softw. 2014, 54:108-127. 10.1016/j.envsoft.2013.12.016.
-
(2014)
Environ. Model. Softw.
, vol.54
, pp. 108-127
-
-
Wu, W.1
Dandy, G.C.2
Maier, H.R.3
-
51
-
-
0034100712
-
Prediction of watershed runoff using Bayesian concepts networks
-
Zhang B., Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts networks. Water Resour. Res. 2000, 36:753-762.
-
(2000)
Water Resour. Res.
, vol.36
, pp. 753-762
-
-
Zhang, B.1
Govindaraju, R.S.2
|