메뉴 건너뛰기




Volumn 529, Issue , 2015, Pages 1788-1797

Neural network river forecasting through baseflow separation and binary-coded swarm optimization

Author keywords

Baseflow separation; Extreme Learning Machine; Modular neural network; Multi objective optimization; Particle swarm optimization; Rainfall runoff

Indexed keywords

BINS; DIGITAL FILTERS; FORECASTING; GAGING; KNOWLEDGE ACQUISITION; MULTIOBJECTIVE OPTIMIZATION; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); RIVERS; STREAM FLOW;

EID: 84945129724     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.08.008     Document Type: Article
Times cited : (209)

References (51)
  • 2
    • 84906777236 scopus 로고    scopus 로고
    • Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
    • Acharya N., Shrivastava N.A., Panigrahi B.K., Mohanty U.C. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dyn. 2013, 43:1303-1310. 10.1007/s00382-013-1942-2.
    • (2013) Clim. Dyn. , vol.43 , pp. 1303-1310
    • Acharya, N.1    Shrivastava, N.A.2    Panigrahi, B.K.3    Mohanty, U.C.4
  • 3
    • 79953317087 scopus 로고    scopus 로고
    • Nonlinear baseflow recession analysis in watersheds with intermittent streamflow
    • Aksoy H., Wittenberg H. Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrol. Sci. J. 2011, 56:226-237. 10.1080/02626667.2011.553614.
    • (2011) Hydrol. Sci. J. , vol.56 , pp. 226-237
    • Aksoy, H.1    Wittenberg, H.2
  • 4
    • 84929144928 scopus 로고    scopus 로고
    • Improved particle swarm optimization - based artificial neural network for rainfall-runoff modeling
    • Asadnia M., Chua L.H.C., Qin X.S., Asce A.M., Talei A. Improved particle swarm optimization - based artificial neural network for rainfall-runoff modeling. J. Hydrol. Eng. 2014, 19:1320-1329. 10.1061/(ASCE)HE.1943-5584.0000927.
    • (2014) J. Hydrol. Eng. , vol.19 , pp. 1320-1329
    • Asadnia, M.1    Chua, L.H.C.2    Qin, X.S.3    Asce, A.M.4    Talei, A.5
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Application of artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Application of artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5:115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
  • 6
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329:363-367. 10.1016/j.jhydrol.2006.02.025.
    • (2006) J. Hydrol. , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 7
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau K.W. A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 2007, 346:131-135. 10.1016/j.jhydrol.2007.09.004.
    • (2007) J. Hydrol. , vol.346 , pp. 131-135
    • Chau, K.W.1
  • 8
    • 34249885607 scopus 로고    scopus 로고
    • Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting
    • Corzo G., Solomatine D. Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting. Neural Networks 2007, 20:528-536. 10.1016/j.neunet.2007.04.019.
    • (2007) Neural Networks , vol.20 , pp. 528-536
    • Corzo, G.1    Solomatine, D.2
  • 9
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural network modelling in flow forecasting
    • Corzo G., Solomatine D. Baseflow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrol. Sci. J. 2007, 52:491-507. 10.1623/hysj.52.3.491.
    • (2007) Hydrol. Sci. J. , vol.52 , pp. 491-507
    • Corzo, G.1    Solomatine, D.2
  • 11
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson C.W., Abrahart R.J., See L.M. HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22:1034-1052. 10.1016/j.envsoft.2006.06.008.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 12
    • 77957751049 scopus 로고    scopus 로고
    • HydroTest: further development of a web resource for the standardised assessment of hydrological models
    • Dawson C.W., Abrahart R.J., See L.M. HydroTest: further development of a web resource for the standardised assessment of hydrological models. Environ. Model. Softw. 2010, 25:1481-1482. 10.1016/j.envsoft.2009.01.001.
    • (2010) Environ. Model. Softw. , vol.25 , pp. 1481-1482
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 13
    • 53849113979 scopus 로고    scopus 로고
    • Multiobjective training of artificial neural networks for rainfall-runoff modeling
    • De Vos N.J., Rientjes T.H.M. Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour. Res. 2008, 44. 10.1029/2007WR006734.
    • (2008) Water Resour. Res. , vol.44
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 16
    • 84908611342 scopus 로고    scopus 로고
    • Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
    • Deo R.C., Şahin M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153:512-525. 10.1016/j.atmosres.2014.10.016.
    • (2015) Atmos. Res. , vol.153 , pp. 512-525
    • Deo, R.C.1    Şahin, M.2
  • 17
    • 13244299362 scopus 로고    scopus 로고
    • How to construct recursive digital filters for baseflow separation
    • Eckhardt K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19:507-515. 10.1002/hyp.5675.
    • (2005) Hydrol. Process. , vol.19 , pp. 507-515
    • Eckhardt, K.1
  • 18
    • 40649093741 scopus 로고    scopus 로고
    • A comparison of baseflow indices, which were calculated with seven different baseflow separation methods
    • Eckhardt K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352:168-173. 10.1016/j.jhydrol.2008.01.005.
    • (2008) J. Hydrol. , vol.352 , pp. 168-173
    • Eckhardt, K.1
  • 19
    • 84856854970 scopus 로고    scopus 로고
    • Technical note: analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter
    • Eckhardt K. Technical note: analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter. Hydrol. Earth Syst. Sci. 2012, 16:451-455. 10.5194/hess-16-451-2012.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , pp. 451-455
    • Eckhardt, K.1
  • 21
    • 33748060863 scopus 로고    scopus 로고
    • Multiobjective particle swarm optimization for parameter estimation in hydrology
    • Gill M.K., Kaheil Y.H., Khalil A., McKee M., Bastidas L. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res. 2006, 42:W07417. 10.1029/2005WR004528.
    • (2006) Water Resour. Res. , vol.42 , pp. W07417
    • Gill, M.K.1    Kaheil, Y.H.2    Khalil, A.3    McKee, M.4    Bastidas, L.5
  • 25
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501. 10.1016/j.neucom.2005.12.126.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 26
    • 69249158084 scopus 로고    scopus 로고
    • Dissection of trained neural network hydrologic models for knowledge extraction
    • Jain A., Kumar S. Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour. Res. 2009, 45:W07420. 10.1029/2008WR007194.
    • (2009) Water Resour. Res. , vol.45 , pp. W07420
    • Jain, A.1    Kumar, S.2
  • 27
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain A., Srinivasulu S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 2006, 317:291-306. 10.1016/j.jhydrol.2005.05.022.
    • (2006) J. Hydrol. , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 28
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process. 2004, 18:571-581. 10.1002/hyp.5502.
    • (2004) Hydrol. Process. , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 29
    • 84862673732 scopus 로고    scopus 로고
    • Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data
    • Jothiprakash V., Magar R.B. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. J. Hydrol. 2012, 450-451:293-307. 10.1016/j.jhydrol.2012.04.045.
    • (2012) J. Hydrol. , pp. 293-307
    • Jothiprakash, V.1    Magar, R.B.2
  • 30
    • 84899047533 scopus 로고    scopus 로고
    • Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance
    • (Cat. No. 99TH8406) 1931-1938.
    • Kennedy, J., 1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proc. 1999 Congr. Evol. Comput. (Cat. No. 99TH8406) 1931-1938. doi:10.1109/CEC.1999.785509.
    • (1999) Proc. 1999 Congr. Evol. Comput
    • Kennedy, J.1
  • 32
    • 84901464055 scopus 로고    scopus 로고
    • Population structure and particle swarm performance
    • Kennedy, J., Mendes, R., 2002. Population structure and particle swarm performance. In: Proc. 2002 Congr. Evol. Comput. CEC'02. 2, 1671-1676. doi:10.1109/CEC.2002.1004493.
    • (2002) Proc. 2002 Congr. Evol. Comput. CEC'02. 2 , pp. 1671-1676
    • Kennedy, J.1    Mendes, R.2
  • 33
    • 84892451933 scopus 로고    scopus 로고
    • Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs
    • Li L., Maier H.R., Partington D., Lambert M.F., Simmons C.T. Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environ. Model. Softw. 2014, 54:39-52. 10.1016/j.envsoft.2013.12.011.
    • (2014) Environ. Model. Softw. , vol.54 , pp. 39-52
    • Li, L.1    Maier, H.R.2    Partington, D.3    Lambert, M.F.4    Simmons, C.T.5
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 2000, 15:101-124. 10.1016/S1364-8152(99)00007-9.
    • (2000) Environ. Model. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 2010, 25:891-909. 10.1016/j.envsoft.2010.02.003.
    • (2010) Environ. Model. Softw. , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 36
  • 37
    • 3142781923 scopus 로고    scopus 로고
    • The fully informed particle swarm: simpler, maybe better
    • Mendes R., Kennedy J., Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 2004, 8:204-210.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 38
    • 84893386848 scopus 로고    scopus 로고
    • Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data
    • Ortiz-García E.G., Salcedo-Sanz S., Casanova-Mateo C. Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos. Res. 2014, 139:128-136. 10.1016/j.atmosres.2014.01.012.
    • (2014) Atmos. Res. , vol.139 , pp. 128-136
    • Ortiz-García, E.G.1    Salcedo-Sanz, S.2    Casanova-Mateo, C.3
  • 39
    • 33745435792 scopus 로고    scopus 로고
    • Spiking modular neural networks: a neural network modeling approach for hydrological processes
    • Parasuraman K., Elshorbagy A., Carey S.K. Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resour. Res. 2006, 42. 10.1029/2005WR004317.
    • (2006) Water Resour. Res. , vol.42
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 40
    • 45449118697 scopus 로고    scopus 로고
    • Particle swarm optimization
    • Poli R., Kennedy J., Blackwell T. Particle swarm optimization. Swarm Intell. 2007, 1:33-57. 10.1007/s11721-007-0002-0.
    • (2007) Swarm Intell. , vol.1 , pp. 33-57
    • Poli, R.1    Kennedy, J.2    Blackwell, T.3
  • 41
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See L., Openshaw S. Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 1999, 44:763-778. 10.1080/02626669909492272.
    • (1999) Hydrol. Sci. J. , vol.44 , pp. 763-778
    • See, L.1    Openshaw, S.2
  • 43
    • 57949116748 scopus 로고    scopus 로고
    • River flow prediction using an integrated approach
    • Srinivasulu S., Jain A. River flow prediction using an integrated approach. J. Hydrol. Eng. 2009, 14:75-83.
    • (2009) J. Hydrol. Eng. , vol.14 , pp. 75-83
    • Srinivasulu, S.1    Jain, A.2
  • 44
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
    • Taormina R., Chau K., Sethi R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 2012, 25:1670-1676. 10.1016/j.engappai.2012.02.009.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 1670-1676
    • Taormina, R.1    Chau, K.2    Sethi, R.3
  • 45
    • 84924153739 scopus 로고    scopus 로고
    • Neural network river forecasting with multi-objective fully informed particle swarm optimization
    • Taormina R., Chau K. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinf. 2015, 17:99-112. 10.2166/hydro.2014.116.
    • (2015) J. Hydroinf. , vol.17 , pp. 99-112
    • Taormina, R.1    Chau, K.2
  • 46
    • 84945467880 scopus 로고    scopus 로고
    • Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines
    • (under second revision)
    • Taormina R., Chau K.W. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines. J. Hydrol. 2015, (under second revision).
    • (2015) J. Hydrol.
    • Taormina, R.1    Chau, K.W.2
  • 47
    • 72049104241 scopus 로고    scopus 로고
    • Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting
    • Toth E. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 2009, 13:1555-1566.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1555-1566
    • Toth, E.1
  • 48
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby R.L., Abrahart R.J., Dawson C.W. Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 2003, 48:163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 49
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
    • Wu C.L., Chau K.W., Fan C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 2010, 389:146-167. 10.1016/j.jhydrol.2010.05.040.
    • (2010) J. Hydrol. , vol.389 , pp. 146-167
    • Wu, C.L.1    Chau, K.W.2    Fan, C.3
  • 50
    • 84892886293 scopus 로고    scopus 로고
    • Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
    • Wu W., Dandy G.C., Maier H.R. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Model. Softw. 2014, 54:108-127. 10.1016/j.envsoft.2013.12.016.
    • (2014) Environ. Model. Softw. , vol.54 , pp. 108-127
    • Wu, W.1    Dandy, G.C.2    Maier, H.R.3
  • 51
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts networks
    • Zhang B., Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts networks. Water Resour. Res. 2000, 36:753-762.
    • (2000) Water Resour. Res. , vol.36 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.