메뉴 건너뛰기




Volumn 17, Issue 1, 2015, Pages 99-113

Neural network river forecasting with multi-objective fully informed particle swarm optimization

Author keywords

FIPS; Multi objective; Neural network river forecasting; NNRF; Particle swarm optimization; PSO

Indexed keywords


EID: 84924153739     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2014.116     Document Type: Article
Times cited : (105)

References (44)
  • 2
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407 (1-4), 28-40.
    • (2011) J. Hydrol. , vol.407 , Issue.1-4 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 3
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: Evaluation of different ANN learning algorithms
    • Adamowski, J. & Karapataki, C. 2010 Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. J. Hydrol. Eng. 15 (10), 729-743.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 4
    • 79551472362 scopus 로고    scopus 로고
    • Artificial neural network model as a potential alternative for groundwater salinity forecasting
    • Banerjee, P., and Singh., V. S., Chatttopadhyay, K., Chandra, P. C. & Singh, B. 2011 Artificial neural network model as a potential alternative for groundwater salinity forecasting. J. Hydrol. 398 (3-4), 212-220.
    • (2011) J. Hydrol. , vol.398 , Issue.3-4 , pp. 212-220
    • Banerjee, P.1    Singh, V.S.2    Chatttopadhyay, K.3    Chandra, P.C.4    Singh, B.5
  • 5
    • 84954358683 scopus 로고    scopus 로고
    • Jordan recurrent neural network versus IHACRES in modelling daily streamflows
    • Carcano, E. C, Bartolini, P., Muselli, M. & Piroddi, L. 2008 Jordan recurrent neural network versus IHACRES in modelling daily streamflows. J. Hydrol. 362 (3-4), 291-307.
    • (2008) J. Hydrol. , vol.362 , Issue.3-4 , pp. 291-307
    • Carcano, E.C.1    Bartolini, P.2    Muselli, M.3    Piroddi, L.4
  • 6
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of shing mun river
    • Chau, K. W. 2006 Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 329 (3-4), 363-367.
    • (2006) J. Hydrol. , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 7
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau, K. W. 2007 A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 346 (3-4), 131-135.
    • (2007) J. Hydrol. , vol.346 , Issue.3-4 , pp. 131-135
    • Chau, K.W.1
  • 8
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen, Y. & Chang, F. 2009 Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 367 (1-2), 125-137.
    • (2009) J. Hydrol. , vol.367 , Issue.1-2 , pp. 125-137
    • Chen, Y.1    Chang, F.2
  • 9
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    • Clerc, M. & Kennedy, J. 2002 The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6 (1), 58-73.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 10
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., Anctil, F. & Bobée, B. 2000 Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 230 (3-4), 244-257.
    • (2000) J. Hydrol. , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 11
    • 53849113979 scopus 로고    scopus 로고
    • Multiobjective training of artificial neural networks for rainfall-runoff modeling
    • De Vos, N. J. & Rientjes, T. H. M. 2008 Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour. Res. 44 (8), doi: 10.1029/2007WR006734.
    • (2008) Water Resour. Res. , vol.44 , Issue.8
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 13
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T 2002 A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 182-197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 14
    • 0029517385 scopus 로고
    • A new optimizer using particle swarm theory. Micro machine and human science, 1995. MHS '95
    • Eberhart, R & Kennedy, J. 1995 A new optimizer using particle swarm theory. Micro Machine and Human Science, 1995. MHS '95. In: Proceedings of the Sixth International Symposium, pp. 39-43.
    • (1995) Proceedings of the Sixth International Symposium , pp. 39-43
    • Eberhart, R.1    Kennedy, J.2
  • 15
    • 33748060863 scopus 로고    scopus 로고
    • Multiobjective particle swarm optimization for parameter estimation in hydrology
    • Gill, M. K, Kaheil, Y H., Khalil, A., McKee, M. & Bastidas, L. 2006 Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res. 42 (7), doi: 10.1029/2005WR004528.
    • (2006) Water Resour. Res. , vol.42 , Issue.7
    • Gill, M.K.1    Kaheil, Y.H.2    Khalil, A.3    McKee, M.4    Bastidas, L.5
  • 16
    • 84863395952 scopus 로고    scopus 로고
    • Bilevel model for multi-reservoir operating policy in inter-basin water transfer-supply project
    • Guo, X., Hu, T, Zhang, T & Lv, Y. 2012 Bilevel model for multi-reservoir operating policy in inter-basin water transfer-supply project. J. Hydrol. 424-425 (6), 252-263.
    • (2012) J. Hydrol. , vol.424-425 , Issue.6 , pp. 252-263
    • Guo, X.1    Hu, T.2    Zhang, T.3    Lv, Y.4
  • 17
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • Hamed, M. M., Khalafallah, M. G & Hassanien, E. A 2004 Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model. Softw. 19 (10), 919-928.
    • (2004) Environ. Model. Softw. , vol.19 , Issue.10 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 18
    • 78149450797 scopus 로고    scopus 로고
    • Improving flood forecasting in Bangladesh using an artificial neural network
    • Islam, A. 2010 Improving flood forecasting in Bangladesh using an artificial neural network. J. Hydroinf. 12 (3), 351-364.
    • (2010) J. Hydroinf. , vol.12 , Issue.3 , pp. 351-364
    • Islam, A.1
  • 19
    • 69249158084 scopus 로고    scopus 로고
    • Dissection of trained neural network hydrologic models for knowledge extraction
    • Jain, A. & Kumar, S. 2009 Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour. Res. 45 (7), doi: 10.1029/2008WR007194.
    • (2009) Water Resour. Res. , vol.45 , Issue.7
    • Jain, A.1    Kumar, S.2
  • 20
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., Sudheer, K & Srinivasulu, S. 2004 Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process. 18 (3), 571-581.
    • (2004) Hydrol. Process. , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.2    Srinivasulu, S.3
  • 21
    • 84899047533 scopus 로고    scopus 로고
    • Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. Evolutionary computation, 1999. CEC 99
    • Kennedy, J. 1999 Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress 3, 1931-1938.
    • (1999) Proceedings of the 1999 Congress , vol.3 , pp. 1931-1938
    • Kennedy, J.1
  • 23
    • 84901464055 scopus 로고    scopus 로고
    • Population structure and particle swarm performance
    • Proceedings of the 2002 Congress 2
    • Kennedy, J. & Mendes, R 2002 Population structure and particle swarm performance. Evolutionary Computation, 2002. CEC'02 Proceedings of the 2002 Congress 2, 1671-1676.
    • (2002) Evolutionary Computation, 2002. CEC'02 , pp. 1671-1676
    • Kennedy, J.1    Mendes, R.2
  • 24
    • 84901404865 scopus 로고    scopus 로고
    • The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation
    • Proceedings of the 1999 Congress
    • Knowles, J. & Corne, D. 1999 The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress 1, 5 pp.
    • (1999) Evolutionary Computation, 1999. CEC 99 , vol.1
    • Knowles, J.1    Corne, D.2
  • 25
    • 69349084510 scopus 로고    scopus 로고
    • A hybrid neural network model for typhoon-rainfall forecasting
    • Lin, G & Wu, M. 2009 A hybrid neural network model for typhoon-rainfall forecasting. J. Hydrol. 375 (3-4), 450-458.
    • (2009) J. Hydrol. , vol.375 , Issue.3-4 , pp. 450-458
    • Lin, G.1    Wu, M.2
  • 26
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 15 (1), 101-124.
    • (2000) Environ. Model. Softw. , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 27
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier, H. R., Jain, A., Dandy, G. C. & Sudheer, K. P. 2010 Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 25 (8), 891-909.
    • (2010) Environ. Model. Softw. , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 28
    • 84942113543 scopus 로고    scopus 로고
    • Watch thy neighbor or how the swarm can learn from its environment
    • Proceedings of the 2003 IEEE
    • Mendes, R, Kennedy, J. & Neves, J. 2003 Watch thy neighbor or how the swarm can learn from its environment. Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE 1, 88-94.
    • (2003) Swarm Intelligence Symposium, 2003. SIS'03 , vol.1 , pp. 88-94
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 29
    • 3142781923 scopus 로고    scopus 로고
    • The fully informed particle swarm: Simpler, maybe better
    • Mendes, R, Kennedy, J. & Neves, J. 2004 The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8 (3), 204-210
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 30
    • 79951679101 scopus 로고    scopus 로고
    • Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems
    • Montalvo, I., Izquierdo, J., Pérez-García, R & Herrera, M. 2010 Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems. Eng. Appl. Artif. Intell. 23 (5), 727-735.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.5 , pp. 727-735
    • Montalvo, I.1    Izquierdo, J.2    Pérez-García, R.3    Herrera, M.4
  • 31
    • 84877830096 scopus 로고    scopus 로고
    • Rainfall runoff modelling using conceptual, data driven and wavelet based computing approach
    • Nayak, P., Venkatesh, B., Krishna, B. & Jain, S. 2013 Rainfall runoff modelling using conceptual, data driven and wavelet based computing approach. J. Hydrol. 493 (17), 57-67.
    • (2013) J. Hydrol. , vol.493 , Issue.17 , pp. 57-67
    • Nayak, P.1    Venkatesh, B.2    Krishna, B.3    Jain, S.4
  • 32
    • 80052028861 scopus 로고    scopus 로고
    • Optimizing neural networks for river flow forecasting - Evolutionary computation methods versus the levenberg-marquardt approach
    • Piotrowski, A. P. & Napiorkowski, J. J. 2011 Optimizing neural networks for river flow forecasting - evolutionary computation methods versus the Levenberg-Marquardt approach. J. Hydrol. 407 (1-4), 12-27.
    • (2011) J. Hydrol. , vol.407 , Issue.1-4 , pp. 12-27
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 34
    • 58649091126 scopus 로고    scopus 로고
    • Performance evaluation of elitist-mutated multi-objective particle swarm optimization for integrated water resources management
    • Reddy, M. J. & Kumar, D. N. 2009 Performance evaluation of elitist-mutated multi-objective particle swarm optimization for integrated water resources management. J. Hydroinf. 11 (1), 78-88.
    • (2009) J. Hydroinf. , vol.11 , Issue.1 , pp. 78-88
    • Reddy, M.J.1    Kumar, D.N.2
  • 35
    • 58149276588 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimizers: A survey of the state-of-The-art
    • Evolutionary Computation Group at CINVESTAV, Seccíon de Computacíon, Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, Mexico
    • Reyes-Sierra, M. & Coello Coello, C. A. 2006 Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. Technical Report EVOCINV-01-2006, Evolutionary Computation Group at CINVESTAV, Seccíon de Computacíon, Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, Mexico.
    • (2006) Technical Report EVOCINV-01-2006
    • Reyes-Sierra, M.1    Coello Coello, C.A.2
  • 36
    • 72149092658 scopus 로고    scopus 로고
    • Calibration of a water and energy balance model: Recursive parameter estimation versus particle swarm optimization
    • Scheerlinck, K, Pauwels, V. R N, Vernieuwe, H. & De Baets, B. 2009 Calibration of a water and energy balance model: Recursive parameter estimation versus particle swarm optimization. Water Resour. Res. 45 (10), doi: 10.1029/2009WR008051.
    • (2009) Water Resour. Res. , vol.45 , Issue.10
    • Scheerlinck, K.1    Pauwels, V.R.N.2    Vernieuwe, H.3    De Baets, B.4
  • 37
    • 75149184952 scopus 로고    scopus 로고
    • Artificial neural network model for river flow forecasting in a developing country
    • Shamseldin, A. 2010 Artificial neural network model for river flow forecasting in a developing country. J. Hydroinform. 12 (1), 22-35.
    • (2010) J. Hydroinform. , vol.12 , Issue.1 , pp. 22-35
    • Shamseldin, A.1
  • 38
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the venice lagoon
    • Taormina, R, Chau, K & Sethi, R 2012 Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 25 (8), 1670-1676.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , Issue.8 , pp. 1670-1676
    • Taormina, R.1    Chau, K.2    Sethi, R.3
  • 39
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar, A. S. & Markus, M. 2000 Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5 (2), 156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 40
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R, Abrahart, R. & Dawson, C. 2003 Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48 (2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.1    Abrahart, R.2    Dawson, C.3
  • 41
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu, C. L. & Chau, K W. 2011 Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 399 (3-4), 394-409.
    • (2011) J. Hydrol. , vol.399 , Issue.3-4 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 42
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
    • Wu, C. L., Chau, K W. & Fan, C. 2010 Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 389 (1-2), 146-167.
    • (2010) J. Hydrol. , vol.389 , Issue.1-2 , pp. 146-167
    • Wu, C.L.1    Chau, K.W.2    Fan, C.3
  • 43
    • 61749101619 scopus 로고    scopus 로고
    • Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model
    • Zhang, X., Srinivasan, R, Zhao, K & Liew, M. V. 2009 Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol. Process. 23 (3), 430-441.
    • (2009) Hydrol. Process. , vol.23 , Issue.3 , pp. 430-441
    • Zhang, X.1    Srinivasan, R.2    Zhao, K.3    Liew, M.V.4
  • 44
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • Zitzler, E. & Thiele, L. 1999 Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3 (4), 257-271.
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.