메뉴 건너뛰기




Volumn 389, Issue 1-2, 2010, Pages 146-167

Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques

Author keywords

Fuzzy C means clustering; Modular artificial neural network; Moving average; Principal component analysis; Rainfall prediction; Singular spectral analysis

Indexed keywords

FUZZY C MEANS CLUSTERING; MODULAR ARTIFICIAL NEURAL NETWORKS; MOVING AVERAGE; MOVING AVERAGES; RAINFALL PREDICTION; SPECTRAL ANALYSIS;

EID: 77954384622     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2010.05.040     Document Type: Article
Times cited : (319)

References (74)
  • 1
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments
    • Abrahart R.J., See L.M. Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrology and Earth System Sciences 2002, 6(4):655-670.
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 655-670
    • Abrahart, R.J.1    See, L.M.2
  • 2
    • 0242585368 scopus 로고    scopus 로고
    • Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting
    • Baratta D., Cicioni G., Masulli F., Studer L. Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting. Neural Networks 2003, 16:375-387.
    • (2003) Neural Networks , vol.16 , pp. 375-387
    • Baratta, D.1    Cicioni, G.2    Masulli, F.3    Studer, L.4
  • 4
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parametric methods for improving realtime flood forecasting through conceptual hydrological models
    • Brath A., Montanari A., Toth E. Neural networks and non-parametric methods for improving realtime flood forecasting through conceptual hydrological models. Hydrology and Earth System Sciences 2002, 6(4):627-640.
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 627-640
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 5
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the river Arno
    • Campolo M., Andreussi P., Soldati A. Artificial neural network approach to flood forecasting in the river Arno. Hydrological Sciences Journal 2003, 48(3):381-398.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 6
    • 77954383614 scopus 로고    scopus 로고
    • Neural Network Models to Forecast Hydrological Risk. IEEE IJCNN, 2002
    • Cannas, B., Fanni, A., Pintus, M., Sechi, G.M., 2002. Neural Network Models to Forecast Hydrological Risk. IEEE IJCNN, 2002.
    • (2002)
    • Cannas, B.1    Fanni, A.2    Pintus, M.3    Sechi, G.M.4
  • 7
    • 0032778783 scopus 로고    scopus 로고
    • Prediction of the summer monsoon rainfall over South China
    • Chan J.C.L., Shi J.E. Prediction of the summer monsoon rainfall over South China. International Journal of Climatology 1999, 19(11):1255-1265.
    • (1999) International Journal of Climatology , vol.19 , Issue.11 , pp. 1255-1265
    • Chan, J.C.L.1    Shi, J.E.2
  • 8
    • 41649089759 scopus 로고    scopus 로고
    • Identification of the best hidden layer size for three-layered neural net in predicting monsoon rainfall in India
    • Chattopadhyay S., Chattopadhyay G. Identification of the best hidden layer size for three-layered neural net in predicting monsoon rainfall in India. Journal of Hydroinformatics 2007, 10(2):181-188.
    • (2007) Journal of Hydroinformatics , vol.10 , Issue.2 , pp. 181-188
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 9
    • 84972539015 scopus 로고
    • Titterington neural networks: a review from a statistical perspective
    • Cheng B., Titterington D.M. Titterington neural networks: a review from a statistical perspective. Statistical Science 1994, 9(1):2-54.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 10
    • 0028582477 scopus 로고
    • Long-range prediction of Hawaiian winter rainfall using canonical correlation-analysis)
    • Chu P.S., He Y.X. Long-range prediction of Hawaiian winter rainfall using canonical correlation-analysis). International Journal of Climatology 1994, 14(6):659-669.
    • (1994) International Journal of Climatology , vol.14 , Issue.6 , pp. 659-669
    • Chu, P.S.1    He, Y.X.2
  • 11
    • 34249775808 scopus 로고    scopus 로고
    • Base flow separation techniques for modular artificial neural network modelling in flow forecasting
    • Corzo G., Solomatine D. Base flow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrological Sciences Journal - des Sciences Hydrologiques 2007, 52(3):491-507.
    • (2007) Hydrological Sciences Journal - des Sciences Hydrologiques , vol.52 , Issue.3 , pp. 491-507
    • Corzo, G.1    Solomatine, D.2
  • 13
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modeling using artificial neural networks. Progress in Physical Geography 2001, 25(1):80-108.
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modeling: trade-offs in hydrological state representation and model evaluation
    • de Vos N.J., Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modeling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences 2005, 9:111-126.
    • (2005) Hydrology and Earth System Sciences , vol.9 , pp. 111-126
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 15
    • 0037116346 scopus 로고    scopus 로고
    • Linear prediction of Indian monsoon rainfall
    • DelSole T., Shukla J. Linear prediction of Indian monsoon rainfall. Journal of Climate 2002, 15(24):3645-3658.
    • (2002) Journal of Climate , vol.15 , Issue.24 , pp. 3645-3658
    • DelSole, T.1    Shukla, J.2
  • 18
    • 0001573780 scopus 로고    scopus 로고
    • Comment on 'the use of artificial neural networks for the prediction of water quality parameters' by H.R. Maier and G.C. Dandy
    • Fortin V., Ouarda T.B.M.J., Bobée B. Comment on 'the use of artificial neural networks for the prediction of water quality parameters' by H.R. Maier and G.C. Dandy. Water Resources Research 1997, 33(10):2423-2424.
    • (1997) Water Resources Research , vol.33 , Issue.10 , pp. 2423-2424
    • Fortin, V.1    Ouarda, T.B.M.J.2    Bobé e, B.3
  • 19
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information. Physical Review A 1986, 33(2):1134-1140.
    • (1986) Physical Review A , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 20
    • 0842313028 scopus 로고    scopus 로고
    • Distributed quantitative precipitation forecasting (DQPF) using information from radar and numerical weather prediction models
    • Ganguly A.R., Bras R.L. Distributed quantitative precipitation forecasting (DQPF) using information from radar and numerical weather prediction models. Journal of Hydrometeorology 2003, 4(6):1168-1180.
    • (2003) Journal of Hydrometeorology , vol.4 , Issue.6 , pp. 1168-1180
    • Ganguly, A.R.1    Bras, R.L.2
  • 21
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • Giustolisi O., Savic D.A. A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics 2006, 8(3):207-222.
    • (2006) Journal of Hydroinformatics , vol.8 , Issue.3 , pp. 207-222
    • Giustolisi, O.1    Savic, D.A.2
  • 23
    • 52349104817 scopus 로고    scopus 로고
    • Long lead monsoon rainfall prediction for meteorological sub-divisions of India using deterministic artificial neural network model
    • Guhathakurta P. Long lead monsoon rainfall prediction for meteorological sub-divisions of India using deterministic artificial neural network model. Meteorology and Atmospheric Physics 2008, 101(1-2):93-108.
    • (2008) Meteorology and Atmospheric Physics , vol.101 , Issue.1-2 , pp. 93-108
    • Guhathakurta, P.1
  • 24
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 1933, 24:417-441.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 25
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • doi:10.1029/2001WR000795
    • Hsu K.L., Gupta H.V., Gao X.G., Sorooshian S., Imam B. Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research 2002, 38(12):1302. doi:10.1029/2001WR000795.
    • (2002) Water Resources Research , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.L.1    Gupta, H.V.2    Gao, X.G.3    Sorooshian, S.4    Imam, B.5
  • 26
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu T.S., Lam K.C., Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrological Science Journal 2001, 46(5):729-745.
    • (2001) Hydrological Science Journal , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 27
    • 34547265730 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using principal component analysis and neural network
    • Hu T.S., Wu F.Y., Zhang X. Rainfall-runoff modeling using principal component analysis and neural network. Nordic Hydrology 2007, 38(3):235-248.
    • (2007) Nordic Hydrology , vol.38 , Issue.3 , pp. 235-248
    • Hu, T.S.1    Wu, F.Y.2    Zhang, X.3
  • 28
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain A., Srinivasulu S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. Journal of Hydrology 2006, 317:291-306.
    • (2006) Journal of Hydrology , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 29
    • 0028199319 scopus 로고
    • Analysis and prediction of chaos in rainfall and stream flow time series
    • Jayawardena A.W., Lai F. Analysis and prediction of chaos in rainfall and stream flow time series. Journal of hydrology 1994, 153:23-52.
    • (1994) Journal of hydrology , vol.153 , pp. 23-52
    • Jayawardena, A.W.1    Lai, F.2
  • 30
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase space reconstruction using geometrical construction
    • Kennel M.B., Brown R., Abarbanel H.D.I. Determining embedding dimension for phase space reconstruction using geometrical construction. Physical Review A 1992, 45(6):3403-3411.
    • (1992) Physical Review A , vol.45 , Issue.6 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.I.3
  • 31
    • 33745068015 scopus 로고    scopus 로고
    • Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms
    • Kim T., Heo J.H., Jeong C.S. Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms. Hydrological Processes 2006, 20(9):2057-2075.
    • (2006) Hydrological Processes , vol.20 , Issue.9 , pp. 2057-2075
    • Kim, T.1    Heo, J.H.2    Jeong, C.S.3
  • 32
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model, 2, applications and results
    • Kitanidis P.K., Bras R.L. Real-time forecasting with a conceptual hydrologic model, 2, applications and results. Water Resources Research 1980, 16(6):1034-1044.
    • (1980) Water Resources Research , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 34
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research 1999, 35(1):233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 35
    • 43749101532 scopus 로고    scopus 로고
    • Statistical prediction of East Asian summer monsoon rainfall based on SST and sea ice concentration
    • Li F., Zeng Q.C. Statistical prediction of East Asian summer monsoon rainfall based on SST and sea ice concentration. Journal of the Meteorological Society of Japan 2008, 86(1):237-243.
    • (2008) Journal of the Meteorological Society of Japan , vol.86 , Issue.1 , pp. 237-243
    • Li, F.1    Zeng, Q.C.2
  • 36
    • 20844462859 scopus 로고    scopus 로고
    • Application of artificial neural network to typhoon rainfall forecasting
    • Lin G.F., Chen L.H. Application of artificial neural network to typhoon rainfall forecasting. Hydrological Processes 2005, 19(9):1825-1837.
    • (2005) Hydrological Processes , vol.19 , Issue.9 , pp. 1825-1837
    • Lin, G.F.1    Chen, L.H.2
  • 37
    • 69349084510 scopus 로고    scopus 로고
    • A hybrid neural network model for typhoon-rainfall forecasting
    • Lin G.F., Wu M.C. A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology 2009, 375(3-4):450-458.
    • (2009) Journal of Hydrology , vol.375 , Issue.3-4 , pp. 450-458
    • Lin, G.F.1    Wu, M.C.2
  • 38
    • 70349774410 scopus 로고    scopus 로고
    • Effective forecasting of hourly typhoon rainfall using support vector machines
    • Lin G.F., Chen G.R., Wu M.C., Chou Y.C. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research 2009, 45:W08440. 10.1029/2009WR007911.
    • (2009) Water Resources Research , vol.45
    • Lin, G.F.1    Chen, G.R.2    Wu, M.C.3    Chou, Y.C.4
  • 39
    • 0012625918 scopus 로고
    • Combining singular-spectrum analysis and neural networks for time series forecasting
    • Lisi F., Nicolis O., Sandri M. Combining singular-spectrum analysis and neural networks for time series forecasting. Neural Processing Letters 1995, 2(4):6-10.
    • (1995) Neural Processing Letters , vol.2 , Issue.4 , pp. 6-10
    • Lisi, F.1    Nicolis, O.2    Sandri, M.3
  • 41
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May R.J., Maier H.R., Dandy G.C., Fernando T.M.K. Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modeling & Software 2008, 23:1312-1328.
    • (2008) Environmental Modeling & Software , vol.23 , pp. 1312-1328
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.K.4
  • 42
  • 43
    • 33847659618 scopus 로고    scopus 로고
    • Long range prediction of Indian summer monsoon rainfall
    • Munot A.A., Kumar K.K. Long range prediction of Indian summer monsoon rainfall. Journal of Earth System Science 2007, 116(1):73-79.
    • (2007) Journal of Earth System Science , vol.116 , Issue.1 , pp. 73-79
    • Munot, A.A.1    Kumar, K.K.2
  • 44
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I - a discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models part I - a discussion of principles. Journal of Hydrology 1970, 10(3):282-290.
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 45
    • 44449141896 scopus 로고    scopus 로고
    • An empirical model for the seasonal prediction of southwest monsoon rainfall over Kerala, a meteorological subdivision of India
    • Nayagam L.R., Janardanan R., Mohan H.S.R. An empirical model for the seasonal prediction of southwest monsoon rainfall over Kerala, a meteorological subdivision of India. International Journal of Climatology 2008, 28(6):823-831.
    • (2008) International Journal of Climatology , vol.28 , Issue.6 , pp. 823-831
    • Nayagam, L.R.1    Janardanan, R.2    Mohan, H.S.R.3
  • 47
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kişi Ö. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology 2007, 342(2):199-212.
    • (2007) Journal of Hydrology , vol.342 , Issue.2 , pp. 199-212
    • Partal, T.1    Kişi, Ö.2
  • 48
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 1901, 2:559-572.
    • (1901) Philosophical Magazine , vol.2 , pp. 559-572
    • Pearson, K.1
  • 51
    • 0003604539 scopus 로고
    • Water Resources Publications, Littleton, Colorado, J.D. Salas, J.W. Delleur, V. Yevjevich, W.L. Lane (Eds.)
    • Applied Modeling of Hydrologic Time Series 1985, Water Resources Publications, Littleton, Colorado. J.D. Salas, J.W. Delleur, V. Yevjevich, W.L. Lane (Eds.).
    • (1985) Applied Modeling of Hydrologic Time Series
  • 52
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See L., Openshaw S. A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal 2000, 45(4):523-536.
    • (2000) Hydrological Sciences Journal , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 53
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combination method for the outputs of different rainfall-runoff models
    • Shamseldin A.Y., O'Connor K.M. A real-time combination method for the outputs of different rainfall-runoff models. Hydrological Sciences Journal 1999, 44(6):895-912.
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 54
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall runoff models
    • Shamseldin A.Y., O'Connor K.M., Liang G.C. Methods for combining the outputs of different rainfall runoff models. Journal of Hydrology 1997, 197:203-229.
    • (1997) Journal of Hydrology , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 55
    • 33750516270 scopus 로고    scopus 로고
    • Short-range prediction of a heavy precipitation event by assimilating Chinese CINRAD-SA radar reflectivity data using complex cloud analysis
    • Sheng C., Gao S., Xue M. Short-range prediction of a heavy precipitation event by assimilating Chinese CINRAD-SA radar reflectivity data using complex cloud analysis. Meteorology and Atmospheric Physics 2006, 94(1-4):167-183.
    • (2006) Meteorology and Atmospheric Physics , vol.94 , Issue.1-4 , pp. 167-183
    • Sheng, C.1    Gao, S.2    Xue, M.3
  • 56
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Shrestha D.L., Solomatine D.P. Machine learning approaches for estimation of prediction interval for the model output. Neural Networks 2006, 19(2):225-235.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 57
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-range precipitation in California
    • Silverman D., Dracup J.A. Artificial neural networks and long-range precipitation in California. Journal of Applied Meteorology 2000, 31(1):57-66.
    • (2000) Journal of Applied Meteorology , vol.31 , Issue.1 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 58
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam C., Liong S.Y. Flow categorization model for improving forecasting. Nordic Hydrology 2005, 36(1):37-48.
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.Y.2
  • 60
    • 33846453985 scopus 로고    scopus 로고
    • Genetic programming model for forecast of short and noisy data
    • Sivapragasam C., Vincent P., Vasudevan G. Genetic programming model for forecast of short and noisy data. Hydrological Processes 2007, 21:266-272.
    • (2007) Hydrological Processes , vol.21 , pp. 266-272
    • Sivapragasam, C.1    Vincent, P.2    Vasudevan, G.3
  • 61
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: some past experiences and new approaches
    • Solomatine D.P., Ostfeld A. Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics 2008, 10(1):3-22.
    • (2008) Journal of Hydroinformatics , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 62
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine D.P., Xue Y.I. M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrological Engineering 2004, 9(6):491-501.
    • (2004) Journal of Hydrological Engineering , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.I.2
  • 63
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 2002, 16:1325-1330.
    • (2002) Hydrological Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 64
    • 0025199496 scopus 로고
    • Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
    • Sugihara G., May R.M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 1990, 344:734-741.
    • (1990) Nature , vol.344 , pp. 734-741
    • Sugihara, G.1    May, R.M.2
  • 65
    • 0001413326 scopus 로고
    • Spurious dimension from correlation algorithms applied to limited time-series data
    • Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data. Physical Review A 1986, 34(3):2427-2432.
    • (1986) Physical Review A , vol.34 , Issue.3 , pp. 2427-2432
    • Theiler, J.1
  • 66
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E., Brath A., Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 2000, 239:132-147.
    • (2000) Journal of Hydrology , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 69
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu C.L., Chau K.W., Li Y.S. River stage prediction based on a distributed support vector regression. Journal of Hydrology 2008, 358:96-111.
    • (2008) Journal of Hydrology , vol.358 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 70
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu C.L., Chau K.W., Li Y.S. Methods to improve neural network performance in daily flows prediction. Journal of Hydrology 2009, 372(1-4):80-93.
    • (2009) Journal of Hydrology , vol.372 , Issue.1-4 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 71
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of forecasts of rainfall-runoff models by the first-order TS fussy system for forecast of rainfall-runoff model
    • Xiong L.H., Shamseldin A.Y., O'Connor K.M. A non-linear combination of forecasts of rainfall-runoff models by the first-order TS fussy system for forecast of rainfall-runoff model. Journal of Hydrology 2001, 245:196-217.
    • (2001) Journal of Hydrology , vol.245 , pp. 196-217
    • Xiong, L.H.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 72
    • 0033851863 scopus 로고    scopus 로고
    • Prediction of a flash flood in complex terrain. Part II: A comparison of flood discharge simulations using rainfall input from radar, a dynamic model, and an automated algorithmic system
    • Yates D.N., Warner T.T., Leavesley G.H. Prediction of a flash flood in complex terrain. Part II: A comparison of flood discharge simulations using rainfall input from radar, a dynamic model, and an automated algorithmic system. Journal of Applied Meteorology 2000, 39(6):815-825.
    • (2000) Journal of Applied Meteorology , vol.39 , Issue.6 , pp. 815-825
    • Yates, D.N.1    Warner, T.T.2    Leavesley, G.H.3
  • 74
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B., Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resources Research 2000, 36(3):753-762.
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.