메뉴 건너뛰기




Volumn 26, Issue 10, 2015, Pages 2408-2421

Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training

Author keywords

Backpropagation; hardware; memristive systems; memristor; multilayer neural networks (MNNs); stochastic gradient descent; synapse

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; COMPUTER HARDWARE; HARDWARE; MEMRISTORS; MULTILAYERS; PASSIVE FILTERS; STOCHASTIC SYSTEMS;

EID: 84943802795     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2383395     Document Type: Article
Times cited : (233)

References (74)
  • 1
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Edinburgh, Scotland, Jun.
    • Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng, "Building high-level features using large scale unsupervised learning," in Proc. ICML, Edinburgh, Scotland, Jun. 2012, pp. 81-88.
    • (2012) Proc. ICML , pp. 81-88
    • Le, Q.V.1    Ranzato, M.2    Monga, R.3    Devin, M.4    Chen, K.5    Corrado, G.S.6    Dean, J.7    Ng, A.Y.8
  • 2
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • Providence, RI, USA, Jun.
    • D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-column deep neural networks for image classification," in Proc. CVPR, Providence, RI, USA, Jun. 2012, pp. 3642-3649.
    • (2012) Proc. CVPR , pp. 3642-3649
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 3
    • 84883190472 scopus 로고    scopus 로고
    • Large scale distributed deep networks
    • Lake Tahoe, NV, USA, Dec.
    • J. Dean et al., "Large scale distributed deep networks," in Proc. NIPS, Lake Tahoe, NV, USA, Dec. 2012, pp. 1-9.
    • (2012) Proc. NIPS , pp. 1-9
    • Dean, J.1
  • 5
    • 85028212283 scopus 로고    scopus 로고
    • Now you can build Google's $1M artificial brain on the cheap
    • Jun.
    • D. Hernandez, "Now you can build Google's $1M artificial brain on the cheap," Wired, Jun. 2013, pp. 9-48.
    • (2013) Wired , pp. 9-48
    • Hernandez, D.1
  • 6
    • 0004135065 scopus 로고    scopus 로고
    • Efficient backprop
    • G. Montavon, G. B. Orr, and K.-R. Müller, Eds., 2nd ed. Heidelberg, Germany: Springer-Verlag
    • Y. A. Le Cun, L. Bottou, G. B. Orr, and K.-R. Müller, "Efficient backprop," in Neural Networks: Tricks of the Trade, G. Montavon, G. B. Orr, and K.-R. Müller, Eds., 2nd ed. Heidelberg, Germany: Springer-Verlag, 2012.
    • (2012) Neural Networks: Tricks of the Trade
    • Le Cun, Y.A.1    Bottou, L.2    Orr, G.B.3    Müller, K.-R.4
  • 7
    • 78649481350 scopus 로고    scopus 로고
    • Artificial neural networks in hardware: A survey of two decades of progress
    • Dec.
    • J. Misra and I. Saha, "Artificial neural networks in hardware: A survey of two decades of progress," Neurocomputing, vol. 74, nos. 1-3, pp. 239-255, Dec. 2010.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 239-255
    • Misra, J.1    Saha, I.2
  • 8
    • 0034570060 scopus 로고    scopus 로고
    • Neurocomputers: A dead end?
    • A. R. Omondi, "Neurocomputers: A dead end?" Int. J. Neural Syst., vol. 10, no. 6, pp. 475-481, 2000.
    • (2000) Int. J. Neural Syst. , vol.10 , Issue.6 , pp. 475-481
    • Omondi, A.R.1
  • 9
    • 78649765239 scopus 로고    scopus 로고
    • The brain of a new machine
    • Dec.
    • M. Versace and B. Chandler, "The brain of a new machine," IEEE Spectr., vol. 47, no. 12, pp. 30-37, Dec. 2010.
    • (2010) IEEE Spectr. , vol.47 , Issue.12 , pp. 30-37
    • Versace, M.1    Chandler, B.2
  • 10
    • 84887388670 scopus 로고    scopus 로고
    • Neuroelectronics: Smart connections
    • Nov.
    • M. M. Waldrop, "Neuroelectronics: Smart connections," Nature, vol. 503, no. 7474, pp. 22-24, Nov. 2013.
    • (2013) Nature , vol.503 , Issue.7474 , pp. 22-24
    • Waldrop, M.M.1
  • 11
    • 0015127532 scopus 로고
    • Memristor-The missing circuit element
    • Sep.
    • L. O. Chua, "Memristor-the missing circuit element," IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep. 1971.
    • (1971) IEEE Trans. Circuit Theory , vol.18 , Issue.5 , pp. 507-519
    • Chua, L.O.1
  • 12
    • 43049126833 scopus 로고    scopus 로고
    • The missing memristor found
    • Mar.
    • D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, no. 7191, pp. 80-83, Mar. 2008.
    • (2008) Nature , vol.453 , Issue.7191 , pp. 80-83
    • Strukov, D.B.1    Snider, G.S.2    Stewart, D.R.3    Williams, R.S.4
  • 13
    • 84863705823 scopus 로고    scopus 로고
    • A boundary condition-based approach to the modeling of memristor nanostructures
    • Nov.
    • F. Corinto and A. Ascoli, "A boundary condition-based approach to the modeling of memristor nanostructures," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2713-2726, Nov. 2012.
    • (2012) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.59 , Issue.11 , pp. 2713-2726
    • Corinto, F.1    Ascoli, A.2
  • 16
    • 84908090755 scopus 로고    scopus 로고
    • Passivity and passification of memristorbased recurrent neural networks with time-varying delays
    • Nov.
    • Z. Guo, J. Wang, and Z. Yan, "Passivity and passification of memristorbased recurrent neural networks with time-varying delays," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 11, pp. 2099-2109, Nov. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.11 , pp. 2099-2109
    • Guo, Z.1    Wang, J.2    Yan, Z.3
  • 17
    • 84943795368 scopus 로고    scopus 로고
    • Adaptive synchronization of memristor-based neural networks with time-varying delays
    • to be published
    • L. Wang, Y. Shen, Q. Yin, and G. Zhang, "Adaptive synchronization of memristor-based neural networks with time-varying delays," IEEE Trans. Neural Netw. Learn. Syst., to be published.
    • IEEE Trans. Neural Netw. Learn. Syst.
    • Wang, L.1    Shen, Y.2    Yin, Q.3    Zhang, G.4
  • 18
    • 84897450409 scopus 로고    scopus 로고
    • Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control
    • Jul.
    • G. Zhang and Y. Shen, "Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control," Neural Netw., vol. 55, pp. 1-10, Jul. 2014.
    • (2014) Neural Netw. , vol.55 , pp. 1-10
    • Zhang, G.1    Shen, Y.2
  • 19
    • 80054729052 scopus 로고    scopus 로고
    • Simulation of a memristorbased spiking neural network immune to device variations
    • San Jose, CA, USA, Jul./Aug.
    • D. Querlioz, O. Bichler, and C. Gamrat, "Simulation of a memristorbased spiking neural network immune to device variations," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), San Jose, CA, USA, Jul./Aug. 2011, pp. 1775-1781.
    • (2011) Proc. Int. Joint Conf. Neural Netw. (IJCNN) , pp. 1775-1781
    • Querlioz, D.1    Bichler, O.2    Gamrat, C.3
  • 21
    • 84863265567 scopus 로고    scopus 로고
    • Memristor-based synaptic networks and logical operations using in-situ computing
    • Adelaide, SA, Australia, Dec.
    • O. Kavehei et al., "Memristor-based synaptic networks and logical operations using in-situ computing," in Proc. 7th Int. Conf. Intell. Sensors, Sensor Netw. Inf. Process., Adelaide, SA, Australia, Dec. 2011, pp. 137-142.
    • (2011) Proc. 7th Int. Conf. Intell. Sensors, Sensor Netw. Inf. Process , pp. 137-142
    • Kavehei, O.1
  • 22
    • 84872029626 scopus 로고    scopus 로고
    • A neuromorphic architecture for object recognition and motion anticipation using burst-STDP
    • Jan.
    • A. Nere, U. Olcese, D. Balduzzi, and G. Tononi, "A neuromorphic architecture for object recognition and motion anticipation using burst-STDP," PloS One, vol. 7, no. 5, p. e36958, Jan. 2012.
    • (2012) PloS One , vol.7 , Issue.5 , pp. e36958
    • Nere, A.1    Olcese, U.2    Balduzzi, D.3    Tononi, G.4
  • 23
    • 84872510545 scopus 로고    scopus 로고
    • A digital neuromorphic VLSI architecture with memristor crossbar synaptic array for machine learning
    • Niagara Falls, NY, USA, Sep.
    • Y. Kim, Y. Zhang, and P. Li, "A digital neuromorphic VLSI architecture with memristor crossbar synaptic array for machine learning," in Proc. IEEE Int. SOC Conf. (SOCC), Niagara Falls, NY, USA, Sep. 2012, pp. 328-333.
    • (2012) Proc. IEEE Int. SOC Conf. (SOCC) , pp. 328-333
    • Kim, Y.1    Zhang, Y.2    Li, P.3
  • 24
    • 84865084960 scopus 로고    scopus 로고
    • Spike timing dependent plasticity with memristive synapse in neuromorphic systems
    • Brisbane, QLD, Australia, Jun.
    • W. Chan and J. Lohn, "Spike timing dependent plasticity with memristive synapse in neuromorphic systems," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Brisbane, QLD, Australia, Jun. 2012, pp. 1-6.
    • (2012) Proc. Int. Joint Conf. Neural Netw. (IJCNN) , pp. 1-6
    • Chan, W.1    Lohn, J.2
  • 26
    • 84877850976 scopus 로고    scopus 로고
    • Immunity to device variations in a spiking neural network with memristive nanodevices
    • May
    • D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, "Immunity to device variations in a spiking neural network with memristive nanodevices," IEEE Trans. Nanotechnol., vol. 12, no. 3, pp. 288-295, May 2013.
    • (2013) IEEE Trans. Nanotechnol , vol.12 , Issue.3 , pp. 288-295
    • Querlioz, D.1    Bichler, O.2    Dollfus, P.3    Gamrat, C.4
  • 27
    • 25144452832 scopus 로고    scopus 로고
    • What can a neuron learn with spike-timing-dependent plasticity?
    • Mar.
    • R. Legenstein, C. Naeger, and W. Maass, "What can a neuron learn with spike-timing-dependent plasticity?" Neural Comput., vol. 17, no. 11, pp. 2337-2382, Mar. 2005.
    • (2005) Neural Comput. , vol.17 , Issue.11 , pp. 2337-2382
    • Legenstein, R.1    Naeger, C.2    Maass, W.3
  • 29
    • 84860883459 scopus 로고    scopus 로고
    • Stochastic gradient descent inspired training technique for a CMOS/nano memristive trainable threshold gate array
    • May
    • H. Manem, J. Rajendran, and G. S. Rose, "Stochastic gradient descent inspired training technique for a CMOS/nano memristive trainable threshold gate array," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 5, pp. 1051-1060, May 2012.
    • (2012) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.59 , Issue.5 , pp. 1051-1060
    • Manem, H.1    Rajendran, J.2    Rose, G.S.3
  • 30
    • 84880141989 scopus 로고    scopus 로고
    • Memristor-based neural logic blocks for nonlinearly separable functions
    • Aug.
    • M. Soltiz, D. Kudithipudi, C. Merkel, G. S. Rose, and R. E. Pino, "Memristor-based neural logic blocks for nonlinearly separable functions," IEEE Trans. Comput., vol. 62, no. 8, pp. 1597-1606, Aug. 2013.
    • (2013) IEEE Trans. Comput. , vol.62 , Issue.8 , pp. 1597-1606
    • Soltiz, M.1    Kudithipudi, D.2    Merkel, C.3    Rose, G.S.4    Pino, R.E.5
  • 31
    • 84896979826 scopus 로고    scopus 로고
    • Pattern classification by memristive crossbar circuits usingex situ and in situ training
    • May
    • F. Alibart, E. Zamanidoost, and D. B. Strukov, "Pattern classification by memristive crossbar circuits usingex situ and in situ training," Nature Commun., vol. 4, p. 2072, May 2013.
    • (2013) Nature Commun. , vol.4 , pp. 2072
    • Alibart, F.1    Zamanidoost, E.2    Strukov, D.B.3
  • 32
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Nov.
    • F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain," Psychol. Rev., vol. 65, no. 6, pp. 386-408, Nov. 1958.
    • (1958) Psychol. Rev. , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 33
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Control, Signals, Syst., vol. 2, no. 4, pp. 303-314, 1989.
    • (1989) Math. Control, Signals, Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 34
    • 84882309474 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • S. Sra, S. Nowozin, and S. J. Wright, Eds. Cambridge, MA, USA: MIT Press
    • L. Bottou and O. Bousquet, "The tradeoffs of large scale learning," in Optimization for Machine Learning, S. Sra, S. Nowozin, and S. J. Wright, Eds. Cambridge, MA, USA: MIT Press, 2011, p. 351.
    • (2011) Optimization for Machine Learning , pp. 351
    • Bottou, L.1    Bousquet, O.2
  • 35
    • 78649669320 scopus 로고    scopus 로고
    • Deep, big, simple neural nets for handwritten digit recognition
    • Nov.
    • D. Cireşan and U. Meier, "Deep, big, simple neural nets for handwritten digit recognition," Neural Comput., vol. 22, no. 12, pp. 3207-3220, Nov. 2010.
    • (2010) Neural Comput. , vol.22 , Issue.12 , pp. 3207-3220
    • Cireşan, D.1    Meier, U.2
  • 36
    • 84876895659 scopus 로고    scopus 로고
    • Memristor bridge synapse-based neural network and its learning
    • Sep.
    • S. P. Adhikari, C. Yang, H. Kim, and L. O. Chua, "Memristor bridge synapse-based neural network and its learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1426-1435, Sep. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.9 , pp. 1426-1435
    • Adhikari, S.P.1    Yang, C.2    Kim, H.3    Chua, L.O.4
  • 37
    • 84908469042 scopus 로고    scopus 로고
    • Enabling back propagation training of memristor crossbar neuromorphic processors
    • Beijing, China, Jul.
    • R. Hasan and T. M. Taha, "Enabling back propagation training of memristor crossbar neuromorphic processors," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Beijing, China, Jul. 2014, pp. 21-28.
    • (2014) Proc. Int. Joint Conf. Neural Netw. (IJCNN) , pp. 21-28
    • Hasan, R.1    Taha, T.M.2
  • 38
    • 80054733639 scopus 로고    scopus 로고
    • Review of stability properties of neural plasticity rules for implementation on memristive neuromorphic hardware
    • San Jose, CA, USA, Jul./Aug.
    • Z. Vasilkoski et al., "Review of stability properties of neural plasticity rules for implementation on memristive neuromorphic hardware," in Proc. Int. Joint Conf. Neural Netw., San Jose, CA, USA, Jul./Aug. 2011, pp. 2563-2569.
    • (2011) Proc. Int. Joint Conf. Neural Netw. , pp. 2563-2569
    • Vasilkoski, Z.1
  • 40
    • 0016918810 scopus 로고
    • Memristive devices and systems
    • Feb.
    • L. O. Chua and S. M. Kang, "Memristive devices and systems," Proc. IEEE, vol. 64, no. 2, pp. 209-223, Feb. 1976.
    • (1976) Proc. IEEE , vol.64 , Issue.2 , pp. 209-223
    • Chua, L.O.1    Kang, S.M.2
  • 41
    • 70350092588 scopus 로고    scopus 로고
    • Switching dynamics in titanium dioxide memristive devices
    • M. D. Pickett et al., "Switching dynamics in titanium dioxide memristive devices," J. Appl. Phys., vol. 106, no. 7, p. 074508, 2009.
    • (2009) J. Appl. Phys. , vol.106 , Issue.7 , pp. 074508
    • Pickett, M.D.1
  • 42
    • 84879990023 scopus 로고    scopus 로고
    • State dynamics and modeling of tantalum oxide memristors
    • Jul.
    • J. Strachan et al., "State dynamics and modeling of tantalum oxide memristors," IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2194-2202, Jul. 2013.
    • (2013) IEEE Trans. Electron Devices , vol.60 , Issue.7 , pp. 2194-2202
    • Strachan, J.1
  • 43
    • 0002278965 scopus 로고
    • Stanford Electron. Labs, Stanford Univ., Stanford, CA, USA, Tech. Rep
    • B. Widrow and M. E. Hoff, "Adaptive switching circuits," Stanford Electron. Labs, Stanford Univ., Stanford, CA, USA, Tech. Rep., 1960.
    • (1960) Adaptive Switching Circuits
    • Widrow, B.1    Hoff, M.E.2
  • 45
    • 0020464111 scopus 로고
    • Simplified neuron model as a principal component analyzer
    • Nov.
    • E. Oja, "Simplified neuron model as a principal component analyzer," J. Math. Biol., vol. 15, no. 3, pp. 267-273, Nov. 1982.
    • (1982) J. Math. Biol. , vol.15 , Issue.3 , pp. 267-273
    • Oja, E.1
  • 47
    • 79952748054 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • Oct.
    • S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal estimated sub-gradient solver for SVM," Math. Program., vol. 127, no. 1, pp. 3-30, Oct. 2010.
    • (2010) Math. Program. , vol.127 , Issue.1 , pp. 3-30
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3    Cotter, A.4
  • 50
    • 0032185581 scopus 로고    scopus 로고
    • Analog versus digital: Extrapolating from electronics to neurobiology
    • Oct.
    • R. Sarpeshkar, "Analog versus digital: Extrapolating from electronics to neurobiology," Neural Comput., vol. 10, no. 7, pp. 1601-1638, Oct. 1998.
    • (1998) Neural Comput. , vol.10 , Issue.7 , pp. 1601-1638
    • Sarpeshkar, R.1
  • 51
    • 84882383792 scopus 로고    scopus 로고
    • [Online]. accessed Nov. 21
    • The Mosis Service. [Online]. Available: http://www.mosis.com, accessed Nov. 21, 2012.
    • (2012) The Mosis Service
  • 52
    • 35348843366 scopus 로고    scopus 로고
    • Compact physical models for power supply noise and chip/package co-design of gigascale integration
    • Sparks, NV, USA, May/Jun.
    • G. Huang, D. C. Sekar, A. Naeemi, K. Shakeri, and J. D. Meindl, "Compact physical models for power supply noise and chip/package co-design of gigascale integration," in Proc. IEEE 57th Electron. Compon. Technol. Conf. (ECTC), Sparks, NV, USA, May/Jun. 2007, pp. 1659-1666.
    • (2007) Proc. IEEE 57th Electron. Compon. Technol. Conf. (ECTC) , pp. 1659-1666
    • Huang, G.1    Sekar, D.C.2    Naeemi, A.3    Shakeri, K.4    Meindl, J.D.5
  • 54
    • 85028197512 scopus 로고    scopus 로고
    • [Online]. accessed Nov. 21
    • Sim Electronics. [Online]. Available: http://www.mathworks.com/products/simelectronics/, accessed Nov. 21, 2012.
    • (2012) Sim Electronics
  • 55
    • 79959342648 scopus 로고    scopus 로고
    • Synaptic behaviors and modeling of a metal oxide memristive device
    • Feb.
    • T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, "Synaptic behaviors and modeling of a metal oxide memristive device," Appl. Phys. A, vol. 102, no. 4, pp. 857-863, Feb. 2011.
    • (2011) Appl. Phys. A , vol.102 , Issue.4 , pp. 857-863
    • Chang, T.1    Jo, S.-H.2    Kim, K.-H.3    Sheridan, P.4    Gaba, S.5    Lu, W.6
  • 57
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • Edinburgh, Scotland, Aug.
    • P. Y. Simard, D. Steinkraus, and J. C. Platt, "Best practices for convolutional neural networks applied to visual document analysis," in Proc. 7th Int. Conf. Document Anal. Recognit., vol. 1. Edinburgh, Scotland, Aug. 2003, pp. 958-963.
    • (2003) Proc. 7th Int. Conf. Document Anal. Recognit. , vol.1 , pp. 958-963
    • Simard, P.Y.1    Steinkraus, D.2    Platt, J.C.3
  • 58
    • 84886655497 scopus 로고    scopus 로고
    • Reconfigurable nano-crossbar architectures
    • R. Waser, Ed. New York, NY, USA: Wiley
    • D. B. Strukov and K. K. Likharev, "Reconfigurable nano-crossbar architectures," in Nanoelectronics and Information Technology, R. Waser, Ed. New York, NY, USA: Wiley, 2012, pp. 543-562.
    • (2012) Nanoelectronics and Information Technology , pp. 543-562
    • Strukov, D.B.1    Likharev, K.K.2
  • 59
    • 0026866964 scopus 로고
    • Analysis and verification of an analog VLSI incremental outer-product learning system
    • May
    • G. Cauwenberghs, C. F. Neugebauer, and A. Yariv, "Analysis and verification of an analog VLSI incremental outer-product learning system," IEEE Trans. Neural Netw., vol. 3, no. 3, pp. 488-497, May 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.3 , pp. 488-497
    • Cauwenberghs, G.1    Neugebauer, C.F.2    Yariv, A.3
  • 61
    • 0026140324 scopus 로고
    • Analogue CMOS Hebbian synapses
    • Apr.
    • C. Schneider and H. Card, "Analogue CMOS Hebbian synapses," Electron. Lett., vol. 27, no. 9, pp. 785-786, Apr. 1991.
    • (1991) Electron. Lett. , vol.27 , Issue.9 , pp. 785-786
    • Schneider, C.1    Card, H.2
  • 63
    • 0030122857 scopus 로고    scopus 로고
    • An experimental analog VLSI neural network with on-chip back-propagation learning
    • Apr.
    • M. Valle, D. D. Caviglia, and G. M. Bisio, "An experimental analog VLSI neural network with on-chip back-propagation learning," Analog Integr. Circuits Signal Process., vol. 9, no. 3, pp. 231-245, Apr. 1996.
    • (1996) Analog Integr. Circuits Signal Process , vol.9 , Issue.3 , pp. 231-245
    • Valle, M.1    Caviglia, D.D.2    Bisio, G.M.3
  • 64
    • 0028495068 scopus 로고
    • An all-analog expandable neural network LSI with on-chip backpropagation learning
    • Sep.
    • T. Morie and Y. Amemiya, "An all-analog expandable neural network LSI with on-chip backpropagation learning," IEEE J. Solid-State Circuits, vol. 29, no. 9, pp. 1086-1093, Sep. 1994.
    • (1994) IEEE J. Solid-State Circuits , vol.29 , Issue.9 , pp. 1086-1093
    • Morie, T.1    Amemiya, Y.2
  • 65
    • 0036534928 scopus 로고    scopus 로고
    • An on-chip BP learning neural network with ideal neuron characteristics and learning rate adaptation
    • Apr.
    • C. Lu, B.-X. Shi, and L. Chen, "An on-chip BP learning neural network with ideal neuron characteristics and learning rate adaptation," Analog Integr. Circuits Signal Process., vol. 31, no. 1, pp. 55-62, Apr. 2002.
    • (2002) Analog Integr. Circuits Signal Process , vol.31 , Issue.1 , pp. 55-62
    • Lu, C.1    Shi, B.-X.2    Chen, L.3
  • 67
    • 40649110894 scopus 로고
    • Survey of neural network hardware
    • Apr.
    • C. S. Lindsey and T. Lindblad, "Survey of neural network hardware," Proc. SPIE, vol. 2492, pp. 1194-1205, Apr. 1995.
    • (1995) Proc. SPIE , vol.2492 , pp. 1194-1205
    • Lindsey, C.S.1    Lindblad, T.2
  • 68
    • 0038642931 scopus 로고
    • A learning analog neural network chip with continuous-time recurrent dynamics
    • Golden, CO, USA, Nov.
    • G. Cauwenberghs, "A learning analog neural network chip with continuous-time recurrent dynamics," in Proc. NIPS, Golden, CO, USA, Nov. 1994, pp. 858-865.
    • (1994) Proc. NIPS , pp. 858-865
    • Cauwenberghs, G.1
  • 70
    • 0026386918 scopus 로고
    • CMOS implementation of analog Hebbian synaptic learning circuits
    • Seattle, WA, USA Jul.
    • C. Schneider and H. Card, "CMOS implementation of analog Hebbian synaptic learning circuits," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. i. Seattle, WA, USA, vol. 1, Jul. 1991, pp. 437-442.
    • (1991) Proc. Int. Joint Conf. Neural Netw. (IJCNN) , vol.1 , pp. 437-442
    • Schneider, C.1    Card, H.2
  • 71
    • 84856173450 scopus 로고    scopus 로고
    • High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
    • Feb.
    • F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, "High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm," Nanotechnology, vol. 23, no. 7, p. 075201, Feb. 2012.
    • (2012) Nanotechnology , vol.23 , Issue.7 , pp. 075201
    • Alibart, F.1    Gao, L.2    Hoskins, B.D.3    Strukov, D.B.4
  • 72
    • 84937908919 scopus 로고    scopus 로고
    • Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights
    • Montreal, QC, Canada, Dec.
    • D. Soudry, I. Hubara, and R. Meir, "Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights," in Proc. NIPS, Montreal, QC, Canada, Dec. 2014, pp. 963-971.
    • (2014) Proc. NIPS , pp. 963-971
    • Soudry, D.1    Hubara, I.2    Meir, R.3
  • 73
    • 0242611592 scopus 로고    scopus 로고
    • Analog implementation of ANN with inherent quadratic nonlinearity of the synapses
    • Sep.
    • M. Milev and M. Hristov, "Analog implementation of ANN with inherent quadratic nonlinearity of the synapses," IEEE Trans. Neural Netw., vol. 14, no. 5, pp. 1187-1200, Sep. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.5 , pp. 1187-1200
    • Milev, M.1    Hristov, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.