메뉴 건너뛰기




Volumn 35, Issue 19, 2015, Pages 3354-3369

Structures and functions of the multiple KOW domains of transcription elongation factor Spt5

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTION ELONGATION FACTOR; TRANSCRIPTION ELONGATION FACTOR SPT5; UNCLASSIFIED DRUG; FUNGAL DNA; NONHISTONE PROTEIN; NUCLEAR PROTEIN; PROTEIN BINDING; SACCHAROMYCES CEREVISIAE PROTEIN; SPT4 PROTEIN, S CEREVISIAE; SPT5 TRANSCRIPTIONAL ELONGATION FACTOR;

EID: 84941126330     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00520-15     Document Type: Article
Times cited : (25)

References (78)
  • 1
    • 33747881750 scopus 로고    scopus 로고
    • The general transcription machinery and general cofactors
    • Thomas MC, Chiang CM. 2006. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105-178. http://dx.doi.org/10.1080/10409230600648736.
    • (2006) Crit Rev Biochem Mol Biol , vol.41 , pp. 105-178
    • Thomas, M.C.1    Chiang, C.M.2
  • 2
    • 70350005395 scopus 로고    scopus 로고
    • "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions
    • Perales R, Bentley D. 2009. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 36:178-191. http://dx.doi.org/10.1016/j.molcel.2009.09.018.
    • (2009) Mol Cell , vol.36 , pp. 178-191
    • Perales, R.1    Bentley, D.2
  • 3
    • 84867160564 scopus 로고    scopus 로고
    • The RNA polymerase II CTD coordinates transcription and RNA processing
    • Hsin JP, Manley JL. 2012. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26:2119-2137. http://dx.doi.org/10.1101/gad.200303.112.
    • (2012) Genes Dev , vol.26 , pp. 2119-2137
    • Hsin, J.P.1    Manley, J.L.2
  • 4
    • 77955664901 scopus 로고    scopus 로고
    • The interface between transcription and mRNP export: from THO to THSC/TREX-2
    • Rondon AG, Jimeno S, Aguilera A. 2010. The interface between transcription and mRNP export: from THO to THSC/TREX-2. Biochim Biophys Acta 1799:533-538. http://dx.doi.org/10.1016/j.bbagrm.2010.06.002.
    • (2010) Biochim Biophys Acta , vol.1799 , pp. 533-538
    • Rondon, A.G.1    Jimeno, S.2    Aguilera, A.3
  • 5
    • 84872424651 scopus 로고    scopus 로고
    • The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation
    • Hartzog GA, Fu J. 2013. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim Biophys Acta 1829:105-115. http://dx.doi.org/10.1016/j.bbagrm.2012.08.007.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 105-115
    • Hartzog, G.A.1    Fu, J.2
  • 6
    • 84861857476 scopus 로고    scopus 로고
    • RNA polymerase II elongation control
    • Zhou Q, Li T, Price DH. 2012. RNA polymerase II elongation control. Annu Rev Biochem 81:119-143. http://dx.doi.org/10.1146/annurev-biochem-052610-095910.
    • (2012) Annu Rev Biochem , vol.81 , pp. 119-143
    • Zhou, Q.1    Li, T.2    Price, D.H.3
  • 7
    • 84872393129 scopus 로고    scopus 로고
    • Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond
    • Yamaguchi Y, Shibata H, Handa H. 2013. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. Biochim Biophys Acta 1829:98-104. http://dx.doi.org/10.1016/j.bbagrm.2012.11.007.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 98-104
    • Yamaguchi, Y.1    Shibata, H.2    Handa, H.3
  • 8
    • 84872376792 scopus 로고    scopus 로고
    • The Mediator complex and transcription elongation
    • Conaway RC, Conaway JW. 2013. The Mediator complex and transcription elongation. Biochim Biophys Acta 1829:69-75. http://dx.doi.org/10.1016/j.bbagrm.2012.08.017.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 69-75
    • Conaway, R.C.1    Conaway, J.W.2
  • 9
    • 0034388027 scopus 로고    scopus 로고
    • Spt4 modulates Rad26 requirement in transcriptioncoupled nucleotide excision repair
    • Jansen LE, den Dulk H, Brouns RM, de Ruijter M, Brandsma JA, Brouwer J. 2000. Spt4 modulates Rad26 requirement in transcriptioncoupled nucleotide excision repair. EMBO J 19:6498-6507. http://dx.doi.org/10.1093/emboj/19.23.6498.
    • (2000) EMBO J , vol.19 , pp. 6498-6507
    • Jansen, L.E.1    den Dulk, H.2    Brouns, R.M.3    de Ruijter, M.4    Brandsma, J.A.5    Brouwer, J.6
  • 10
    • 77949312619 scopus 로고    scopus 로고
    • The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair
    • Ding B, LeJeune D, Li S. 2010. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J Biol Chem 285:5317-5326. http://dx.doi.org/10.1074/jbc. M109.082818.
    • (2010) J Biol Chem , vol.285 , pp. 5317-5326
    • Ding, B.1    LeJeune, D.2    Li, S.3
  • 11
    • 84903154637 scopus 로고    scopus 로고
    • Insights into how Spt5 functions in transcription elongation and repressing transcription coupledDNArepair
    • Li W, Giles C, Li S. 2014. Insights into how Spt5 functions in transcription elongation and repressing transcription coupledDNArepair. Nucleic Acids Res 42:7069-7083. http://dx.doi.org/10.1093/nar/gku333.
    • (2014) Nucleic Acids Res , vol.42 , pp. 7069-7083
    • Li, W.1    Giles, C.2    Li, S.3
  • 13
    • 0037313160 scopus 로고    scopus 로고
    • Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins
    • Lindstrom DL, Squazzo SL, Muster N, Burckin TA, Wachter KC, Emigh CA, McCleery JA, Yates JR, III, Hartzog GA. 2003. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol 23:1368-1378. http://dx.doi.org/10.1128/MCB.23.4.1368-1378.2003.
    • (2003) Mol Cell Biol , vol.23 , pp. 1368-1378
    • Lindstrom, D.L.1    Squazzo, S.L.2    Muster, N.3    Burckin, T.A.4    Wachter, K.C.5    Emigh, C.A.6    McCleery, J.A.7    Yates, J.R.8    Hartzog, G.A.9
  • 14
    • 38049146018 scopus 로고    scopus 로고
    • Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking
    • TardiffDF, Abruzzi KC, Rosbash M. 2007. Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking. Proc Natl Acad Sci U S A 104:19948-19953. http://dx.doi.org/10.1073/pnas.0710179104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 19948-19953
    • Tardiff, D.F.1    Abruzzi, K.C.2    Rosbash, M.3
  • 15
    • 0033583290 scopus 로고    scopus 로고
    • Structure and function of the human transcription elongation factor DSIF
    • Yamaguchi Y, Wada T, Watanabe D, Takagi T, Hasegawa J, Handa H. 1999. Structure and function of the human transcription elongation factor DSIF. J Biol Chem 274:8085-8092. http://dx.doi.org/10.1074/jbc.274.12.8085.
    • (1999) J Biol Chem , vol.274 , pp. 8085-8092
    • Yamaguchi, Y.1    Wada, T.2    Watanabe, D.3    Takagi, T.4    Hasegawa, J.5    Handa, H.6
  • 16
    • 2542489173 scopus 로고    scopus 로고
    • Analysis of polymerase II elongation complexes by native gel electrophoresis: evidence for a novel carboxyl-terminal domain-mediated termination mechanism
    • Zhang Z, Wu CH, Gilmour DS. 2004. Analysis of polymerase II elongation complexes by native gel electrophoresis: evidence for a novel carboxyl-terminal domain-mediated termination mechanism. J Biol Chem 279: 23223-23228. http://dx.doi.org/10.1074/jbc. M402956200.
    • (2004) J Biol Chem , vol.279 , pp. 23223-23228
    • Zhang, Z.1    Wu, C.H.2    Gilmour, D.S.3
  • 17
    • 79956319539 scopus 로고    scopus 로고
    • Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly
    • Viktorovskaya OV, Appling FD, Schneider DA. 2011. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J Biol Chem 286:18825-18833. http://dx.doi.org/10.1074/jbc. M110.202119.
    • (2011) J Biol Chem , vol.286 , pp. 18825-18833
    • Viktorovskaya, O.V.1    Appling, F.D.2    Schneider, D.A.3
  • 18
    • 0035918157 scopus 로고    scopus 로고
    • DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFbmediated phosphorylation of RNA polymerase II and DSIF during transcription elongation
    • Ping YH, Rana TM. 2001. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFbmediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 276:12951-12958. http://dx.doi.org/10.1074/jbc. M006130200.
    • (2001) J Biol Chem , vol.276 , pp. 12951-12958
    • Ping, Y.H.1    Rana, T.M.2
  • 19
    • 0036150085 scopus 로고    scopus 로고
    • Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences
    • Bourgeois CF, Kim YK, Churcher MJ, West MJ, Karn J. 2002. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol Cell Biol 22:1079-1093. http://dx.doi.org/10.1128/MCB.22.4.1079-1093.2002.
    • (2002) Mol Cell Biol , vol.22 , pp. 1079-1093
    • Bourgeois, C.F.1    Kim, Y.K.2    Churcher, M.J.3    West, M.J.4    Karn, J.5
  • 20
    • 68849086180 scopus 로고    scopus 로고
    • Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex
    • Liu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S. 2009. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29:4852-4863. http://dx.doi.org/10.1128/MCB.00609-09.
    • (2009) Mol Cell Biol , vol.29 , pp. 4852-4863
    • Liu, Y.1    Warfield, L.2    Zhang, C.3    Luo, J.4    Allen, J.5    Lang, W.H.6    Ranish, J.7    Shokat, K.M.8    Hahn, S.9
  • 21
    • 0025869163 scopus 로고
    • SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat
    • Swanson MS, Malone EA, Winston F. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol Cell Biol 11:3009-3019.
    • (1991) Mol Cell Biol , vol.11 , pp. 3009-3019
    • Swanson, M.S.1    Malone, E.A.2    Winston, F.3
  • 22
    • 0242321980 scopus 로고    scopus 로고
    • Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis
    • Pei Y, Shuman S. 2003. Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. J Biol Chem 278:43346-43356. http://dx.doi.org/10.1074/jbc. M307319200.
    • (2003) J Biol Chem , vol.278 , pp. 43346-43356
    • Pei, Y.1    Shuman, S.2
  • 23
    • 30744449491 scopus 로고    scopus 로고
    • P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation
    • Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H. 2006. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 21:227-237. http://dx.doi.org/10.1016/j.molcel.2005.11.024.
    • (2006) Mol Cell , vol.21 , pp. 227-237
    • Yamada, T.1    Yamaguchi, Y.2    Inukai, N.3    Okamoto, S.4    Mura, T.5    Handa, H.6
  • 24
    • 84857625656 scopus 로고    scopus 로고
    • A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life
    • Werner F. 2012. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 417:13-27. http://dx.doi.org/10.1016/j.jmb.2012.01.031.
    • (2012) J Mol Biol , vol.417 , pp. 13-27
    • Werner, F.1
  • 26
    • 79953779997 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
    • Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P. 2011. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBOJ 30:1302-1310. http://dx.doi.org/10.1038/emboj.2011.64.
    • (2011) EMBOJ , vol.30 , pp. 1302-1310
    • Martinez-Rucobo, F.W.1    Sainsbury, S.2    Cheung, A.C.3    Cramer, P.4
  • 27
    • 79960461851 scopus 로고    scopus 로고
    • Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation
    • Hartzog GA, Kaplan CD. 2011. Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation. Mol Cell 43:161-163. http://dx.doi.org/10.1016/j.molcel.2011.07.002.
    • (2011) Mol Cell , vol.43 , pp. 161-163
    • Hartzog, G.A.1    Kaplan, C.D.2
  • 28
    • 34147155174 scopus 로고    scopus 로고
    • Structural basis for converting a general transcription factor into an operon-specific virulence regulator
    • Belogurov GA, Vassylyeva MN, Svetlov V, Klyuyev S, Grishin NV, Vassylyev DG, Artsimovitch I. 2007. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell 26:117-129. http://dx.doi.org/10.1016/j.molcel.2007.02.021.
    • (2007) Mol Cell , vol.26 , pp. 117-129
    • Belogurov, G.A.1    Vassylyeva, M.N.2    Svetlov, V.3    Klyuyev, S.4    Grishin, N.V.5    Vassylyev, D.G.6    Artsimovitch, I.7
  • 29
    • 0032079954 scopus 로고    scopus 로고
    • Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli
    • Burns CM, Richardson LV, Richardson JP. 1998. Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J Mol Biol 278:307-316. http://dx.doi.org/10.1006/jmbi.1998.1691.
    • (1998) J Mol Biol , vol.278 , pp. 307-316
    • Burns, C.M.1    Richardson, L.V.2    Richardson, J.P.3
  • 30
    • 67650676737 scopus 로고    scopus 로고
    • Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators
    • Mooney RA, Schweimer K, Rosch P, Gottesman M, Landick R. 2009. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol 391:341-358. http://dx.doi.org/10.1016/j.jmb.2009.05.078.
    • (2009) J Mol Biol , vol.391 , pp. 341-358
    • Mooney, R.A.1    Schweimer, K.2    Rosch, P.3    Gottesman, M.4    Landick, R.5
  • 31
    • 0030296854 scopus 로고    scopus 로고
    • KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins
    • Kyrpides NC, Woese CR, Ouzounis CA. 1996. KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem Sci 21:425-426. http://dx.doi.org/10.1016/S0968-0004(96)30036-4.
    • (1996) Trends Biochem Sci , vol.21 , pp. 425-426
    • Kyrpides, N.C.1    Woese, C.R.2    Ouzounis, C.A.3
  • 32
    • 0037009445 scopus 로고    scopus 로고
    • Crystal structures of transcription factor NusG in light of its nucleic acid-and protein-binding activities
    • Steiner T, Kaiser JT, Marinkovic S, Huber R, Wahl MC. 2002. Crystal structures of transcription factor NusG in light of its nucleic acid-and protein-binding activities. EMBO J 21:4641-4653. http://dx.doi.org/10.1093/emboj/cdf455.
    • (2002) EMBO J , vol.21 , pp. 4641-4653
    • Steiner, T.1    Kaiser, J.T.2    Marinkovic, S.3    Huber, R.4    Wahl, M.C.5
  • 33
    • 2642588196 scopus 로고    scopus 로고
    • Structural and sequence comparisons arising from the solution structure of the transcription elongation factor NusG from Thermus thermophilus
    • Reay P, Yamasaki K, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. 2004. Structural and sequence comparisons arising from the solution structure of the transcription elongation factor NusG from Thermus thermophilus. Proteins 56:40-51. http://dx.doi.org/10.1002/prot.20054.
    • (2004) Proteins , vol.56 , pp. 40-51
    • Reay, P.1    Yamasaki, K.2    Terada, T.3    Kuramitsu, S.4    Shirouzu, M.5    Yokoyama, S.6
  • 35
    • 77957849604 scopus 로고    scopus 로고
    • Tudor domain
    • Lasko P. 2010. Tudor domain. Curr Biol 20:R666-R667. http://dx.doi.org/10.1016/j.cub.2010.05.056.
    • (2010) Curr Biol , vol.20 , pp. R666-R667
    • Lasko, P.1
  • 36
    • 0031574072 scopus 로고    scopus 로고
    • The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
    • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882. http://dx.doi.org/10.1093/nar/25.24.4876.
    • (1997) Nucleic Acids Res , vol.25 , pp. 4876-4882
    • Thompson, J.D.1    Gibson, T.J.2    Plewniak, F.3    Jeanmougin, F.4    Higgins, D.G.5
  • 37
    • 0027968068 scopus 로고
    • CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673.
    • (1994) Nucleic Acids Res , vol.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.G.2    Gibson, T.J.3
  • 38
    • 0030464460 scopus 로고    scopus 로고
    • SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny
    • Galtier N, Gouy M, Gautier C. 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543-548.
    • (1996) Comput Appl Biosci , vol.12 , pp. 543-548
    • Galtier, N.1    Gouy, M.2    Gautier, C.3
  • 39
    • 65349114255 scopus 로고    scopus 로고
    • ALINE: a WYSIWYG proteinsequence alignment editor for publication-quality alignments
    • Bond CS, Schuttelkopf AW. 2009. ALINE: a WYSIWYG proteinsequence alignment editor for publication-quality alignments. Acta Crystallogr D Biol Crystallogr 65:510-512. http://dx.doi.org/10.1107/S0907444909007835.
    • (2009) Acta Crystallogr D Biol Crystallogr , vol.65 , pp. 510-512
    • Bond, C.S.1    Schuttelkopf, A.W.2
  • 40
    • 0042622240 scopus 로고    scopus 로고
    • GlobPlot: exploring protein sequences for globularity and disorder
    • Linding R, Russell RB, Neduva V, Gibson TJ. 2003. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31: 3701-3708. http://dx.doi.org/10.1093/nar/gkg519.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3701-3708
    • Linding, R.1    Russell, R.B.2    Neduva, V.3    Gibson, T.J.4
  • 41
    • 0242458482 scopus 로고    scopus 로고
    • Protein disorder prediction: implications for structural proteomics
    • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. 2003. Protein disorder prediction: implications for structural proteomics. Structure 11:1453-1459. http://dx.doi.org/10.1016/j.str.2003.10.002.
    • (2003) Structure , vol.11 , pp. 1453-1459
    • Linding, R.1    Jensen, L.J.2    Diella, F.3    Bork, P.4    Gibson, T.J.5    Russell, R.B.6
  • 42
  • 43
    • 48449106792 scopus 로고    scopus 로고
    • The Jpred 3 secondary structure prediction server
    • Cole C, Barber JD, Barton GJ. 2008. The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197-W201. http://dx.doi.org/10.1093/nar/gkn238.
    • (2008) Nucleic Acids Res , vol.36 , pp. W197-W201
    • Cole, C.1    Barber, J.D.2    Barton, G.J.3
  • 46
    • 0028103275 scopus 로고
    • The CCP4 suite: programs for protein crystallography
    • Collaborative Computational Project Number 4. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D 50:760-763. http://dx.doi.org/10.1107/S0907444994003112.
    • (1994) Acta Crystallogr D , vol.50 , pp. 760-763
  • 47
    • 13244281317 scopus 로고    scopus 로고
    • Coot: model-building tools for molecular graphics
    • Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132. http://dx.doi.org/10.1107/S0907444904019158.
    • (2004) Acta Crystallogr D Biol Crystallogr , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 51
    • 34547559704 scopus 로고    scopus 로고
    • PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations
    • Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA. 2007. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:W522-W525. http://dx.doi.org/10.1093/nar/gkm276.
    • (2007) Nucleic Acids Res , vol.35 , pp. W522-W525
    • Dolinsky, T.J.1    Czodrowski, P.2    Li, H.3    Nielsen, J.E.4    Jensen, J.H.5    Klebe, G.6    Baker, N.A.7
  • 53
    • 0035964342 scopus 로고    scopus 로고
    • Electrostatics of nanosystems: application to microtubules and the ribosome
    • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. 2001. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad SciUSA98:10037-10041. http://dx.doi.org/10.1073/pnas.181342398.
    • (2001) Proc Natl Acad SciUSA , vol.98 , pp. 10037-10041
    • Baker, N.A.1    Sept, D.2    Joseph, S.3    Holst, M.J.4    McCammon, J.A.5
  • 54
    • 0029016182 scopus 로고
    • Classical electrostatics in biology and chemistry
    • Honig B, Nicholls A. 1995. Classical electrostatics in biology and chemistry. Science 268:1144-1149. http://dx.doi.org/10.1126/science.7761829.
    • (1995) Science , vol.268 , pp. 1144-1149
    • Honig, B.1    Nicholls, A.2
  • 55
    • 0037314068 scopus 로고    scopus 로고
    • TopDraw: a sketchpad for protein structure topology cartoons
    • Bond CS. 2003. TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19:311-312. http://dx.doi.org/10.1093/bioinformatics/19.2.311.
    • (2003) Bioinformatics , vol.19 , pp. 311-312
    • Bond, C.S.1
  • 57
    • 33847608289 scopus 로고    scopus 로고
    • Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC
    • Li MZ, Elledge SJ. 2007. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251-256. http://dx.doi.org/10.1038/nmeth1010.
    • (2007) Nat Methods , vol.4 , pp. 251-256
    • Li, M.Z.1    Elledge, S.J.2
  • 58
    • 62849096400 scopus 로고    scopus 로고
    • Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae
    • Funakoshi M, Hochstrasser M. 2009. Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae. Yeast 26: 185-192. http://dx.doi.org/10.1002/yea.1658.
    • (2009) Yeast , vol.26 , pp. 185-192
    • Funakoshi, M.1    Hochstrasser, M.2
  • 59
    • 0342748478 scopus 로고    scopus 로고
    • Domains in the SPT5 protein that modulate its transcriptional regulatory properties
    • Ivanov D, Kwak YT, Guo J, Gaynor RB. 2000. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol Cell Biol 20:2970-2983. http://dx.doi.org/10.1128/MCB.20.9.2970
    • (2000) Mol Cell Biol , vol.20 , pp. 2970-2983
    • Ivanov, D.1    Kwak, Y.T.2    Guo, J.3    Gaynor, R.B.4
  • 63
    • 84894427016 scopus 로고    scopus 로고
    • Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity
    • Gong W, Wang J, Perrett S, Feng Y. 2014. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity. J Biol Chem 289:4882-4895. http://dx.doi.org/10.1074/jbc. M113.501940.
    • (2014) J Biol Chem , vol.289 , pp. 4882-4895
    • Gong, W.1    Wang, J.2    Perrett, S.3    Feng, Y.4
  • 64
    • 55249117324 scopus 로고    scopus 로고
    • Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation
    • Guo M, Xu F, Yamada J, Egelhofer T, Gao Y, Hartzog GA, Teng M, Niu L. 2008. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Structure 16:1649-1658. http://dx.doi.org/10.1016/j.str.2008.08.013.
    • (2008) Structure , vol.16 , pp. 1649-1658
    • Guo, M.1    Xu, F.2    Yamada, J.3    Egelhofer, T.4    Gao, Y.5    Hartzog, G.A.6    Teng, M.7    Niu, L.8
  • 65
    • 0029905349 scopus 로고    scopus 로고
    • Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae
    • Basrai MA, Kingsbury J, Koshland D, Spencer F, Hieter P. 1996. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol Cell Biol 16:2838-2847.
    • (1996) Mol Cell Biol , vol.16 , pp. 2838-2847
    • Basrai, M.A.1    Kingsbury, J.2    Koshland, D.3    Spencer, F.4    Hieter, P.5
  • 67
    • 1142310578 scopus 로고    scopus 로고
    • Structural basis of transcription: separation of RNA from DNA by RNA polymerase II
    • Westover KD, Bushnell DA, Kornberg RD. 2004. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303:1014-1016. http://dx.doi.org/10.1126/science.1090839.
    • (2004) Science , vol.303 , pp. 1014-1016
    • Westover, K.D.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 68
    • 77954889072 scopus 로고    scopus 로고
    • Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex
    • Missra A, Gilmour DS. 2010. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc Natl Acad Sci U S A 107:11301-11306. http://dx.doi.org/10.1073/pnas.1000681107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 11301-11306
    • Missra, A.1    Gilmour, D.S.2
  • 69
    • 56649106687 scopus 로고    scopus 로고
    • Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay
    • Cheng B, Price DH. 2008. Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay. Nucleic Acids Res 36:e135. http://dx.doi.org/10.1093/nar/gkn630.
    • (2008) Nucleic Acids Res , vol.36
    • Cheng, B.1    Price, D.H.2
  • 70
    • 55849112295 scopus 로고    scopus 로고
    • Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader
    • Yakhnin AV, Yakhnin H, Babitzke P. 2008. Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc Natl Acad SciUSA105:16131-16136. http://dx.doi.org/10.1073/pnas.0808842105.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 16131-16136
    • Yakhnin, A.V.1    Yakhnin, H.2    Babitzke, P.3
  • 71
    • 84896000321 scopus 로고    scopus 로고
    • NusG/Spt5: are there common functions of this ubiquitous transcription elongation factor?
    • Yakhnin AV, Babitzke P. 2014. NusG/Spt5: are there common functions of this ubiquitous transcription elongation factor? Curr Opin Microbiol 18:68-71. http://dx.doi.org/10.1016/j.mib.2014.02.005.
    • (2014) Curr Opin Microbiol , vol.18 , pp. 68-71
    • Yakhnin, A.V.1    Babitzke, P.2
  • 72
    • 77951157212 scopus 로고    scopus 로고
    • Functional regions of the N-terminal domain of the antiterminator RfaH
    • Belogurov GA, Sevostyanova A, Svetlov V, Artsimovitch I. 2010. Functional regions of the N-terminal domain of the antiterminator RfaH. Mol Microbiol 76:286-301. http://dx.doi.org/10.1111/j.1365-2958.2010.07056.x.
    • (2010) Mol Microbiol , vol.76 , pp. 286-301
    • Belogurov, G.A.1    Sevostyanova, A.2    Svetlov, V.3    Artsimovitch, I.4
  • 73
    • 0037133970 scopus 로고    scopus 로고
    • The transcriptional regulator RfaH stimulatesRNAchain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand
    • Artsimovitch I, Landick R. 2002. The transcriptional regulator RfaH stimulatesRNAchain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109:193-203. http://dx.doi.org/10.1016/S0092-8674(02)00724-9.
    • (2002) Cell , vol.109 , pp. 193-203
    • Artsimovitch, I.1    Landick, R.2
  • 74
    • 0142059889 scopus 로고    scopus 로고
    • In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization
    • Cui Y, Denis CL. 2003. In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Mol Cell Biol 23:7887-7901. http://dx.doi.org/10.1128/MCB.23.21.7887-7901.2003.
    • (2003) Mol Cell Biol , vol.23 , pp. 7887-7901
    • Cui, Y.1    Denis, C.L.2
  • 75
    • 12544260507 scopus 로고    scopus 로고
    • Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus
    • Kaplan CD, Holland MJ, Winston F. 2005. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem 280:913-922. http://dx.doi.org/10.1074/jbc. M411108200.
    • (2005) J Biol Chem , vol.280 , pp. 913-922
    • Kaplan, C.D.1    Holland, M.J.2    Winston, F.3
  • 76
  • 77
    • 0034595503 scopus 로고    scopus 로고
    • Overextended RNA: DNA hybrid as a negative regulator of RNA polymerase II processivity
    • Kireeva ML, Komissarova N, Kashlev M. 2000. Overextended RNA: DNA hybrid as a negative regulator of RNA polymerase II processivity. J Mol Biol 299:325-335. http://dx.doi.org/10.1006/jmbi.2000.3755.
    • (2000) J Mol Biol , vol.299 , pp. 325-335
    • Kireeva, M.L.1    Komissarova, N.2    Kashlev, M.3
  • 78
    • 0141819093 scopus 로고    scopus 로고
    • Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcriptionassociated recombination
    • Huertas P, Aguilera A. 2003. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcriptionassociated recombination. Mol Cell 12:711-721. http://dx.doi.org/10.1016/j.molcel.2003.08.010.
    • (2003) Mol Cell , vol.12 , pp. 711-721
    • Huertas, P.1    Aguilera, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.