-
1
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260:273-279.
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
2
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M., et al. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13:2570-2580.
-
(1999)
Genes Dev.
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
-
3
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin S.J., et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
-
4
-
-
84878864199
-
The hallmarks of aging
-
Lopez-Otin C., et al. The hallmarks of aging. Cell 2013, 153:1194-1217.
-
(2013)
Cell
, vol.153
, pp. 1194-1217
-
-
Lopez-Otin, C.1
-
5
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
-
6
-
-
51449083112
-
SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression
-
Jacobs K.M., et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci. 2008, 4:291-299.
-
(2008)
Int. J. Biol. Sci.
, vol.4
, pp. 291-299
-
-
Jacobs, K.M.1
-
7
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn B-H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14447-14452.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.-H.1
-
8
-
-
84893819991
-
SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress
-
Samant S.A., et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol. 2014, 34:807-819.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 807-819
-
-
Samant, S.A.1
-
9
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
-
10
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
Jing E., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
-
11
-
-
84892989225
-
SirT3 regulates a novel arm of the mitochondrial unfolded protein response
-
Papa L., Germain D. SirT3 regulates a novel arm of the mitochondrial unfolded protein response. Mol. Cell. Biol. 2014, 34:699-710.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 699-710
-
-
Papa, L.1
Germain, D.2
-
12
-
-
0037108799
-
SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
-
Onyango P., et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:13653-13658.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 13653-13658
-
-
Onyango, P.1
-
13
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
-
Feldman J.L., et al. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013, 288:31350-31356.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 31350-31356
-
-
Feldman, J.L.1
-
14
-
-
84996553972
-
Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach
-
Bao X., et al. Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach. Elife 2014, 2014:3.
-
(2014)
Elife
, vol.2014
, pp. 3
-
-
Bao, X.1
-
15
-
-
84884248040
-
+ cycle drives mitochondrial oxidative metabolism in mice
-
+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013, 342:1243417.
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
-
16
-
-
84926182957
-
SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase
-
Zhang Y., et al. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS ONE 2015, 10:e0122297.
-
(2015)
PLoS ONE
, vol.10
, pp. e0122297
-
-
Zhang, Y.1
-
17
-
-
84888329025
-
SIRT3 Regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
Bharathi S.S., et al. SIRT3 Regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 2013, 288:33837-33847.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 33837-33847
-
-
Bharathi, S.S.1
-
19
-
-
0017167185
-
The clonal evolution of tumor cell populations
-
Nowell P.C. The clonal evolution of tumor cell populations. Science 1976, 194:23-28.
-
(1976)
Science
, vol.194
, pp. 23-28
-
-
Nowell, P.C.1
-
20
-
-
0035796023
-
The contribution of endogenous sources of DNA damage to the multiple mutations in cancer
-
Jackson A.L., Loeb L.A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 2001, 477:7-21.
-
(2001)
Mutat. Res.
, vol.477
, pp. 7-21
-
-
Jackson, A.L.1
Loeb, L.A.2
-
21
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
22
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim H-S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.-S.1
-
23
-
-
0024535277
-
Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation
-
Hinds P., et al. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 1989, 63:739-746.
-
(1989)
J. Virol.
, vol.63
, pp. 739-746
-
-
Hinds, P.1
-
24
-
-
0020520516
-
Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes
-
Land H., et al. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983, 304:596-602.
-
(1983)
Nature
, vol.304
, pp. 596-602
-
-
Land, H.1
-
25
-
-
42449149217
-
Analysis of transformation and tumorigenicity using mouse embryonic fibroblast cells
-
Sun H., Taneja R. Analysis of transformation and tumorigenicity using mouse embryonic fibroblast cells. Methods Mol. Biol. 2007, 383:303-310.
-
(2007)
Methods Mol. Biol.
, vol.383
, pp. 303-310
-
-
Sun, H.1
Taneja, R.2
-
26
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
-
Finley L.W.S., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011, 19:416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.S.1
-
27
-
-
84862689176
-
Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation
-
Zhang Y-Y., Zhou L-M. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem. Biophys. Res. Commun. 2012, 423:26-31.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.423
, pp. 26-31
-
-
Zhang, Y.-Y.1
Zhou, L.-M.2
-
28
-
-
84890858374
-
Aberrant expression of SIRT3 is conversely correlated with the progression and prognosis of human gastric cancer
-
Yang B., et al. Aberrant expression of SIRT3 is conversely correlated with the progression and prognosis of human gastric cancer. Biochem. Biophys. Res. Commun. 2014, 443:156-160.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.443
, pp. 156-160
-
-
Yang, B.1
-
29
-
-
84871271176
-
Low SIRT3 expression correlates with poor differentiation and unfavorable prognosis in primary hepatocellular carcinoma
-
Zhang C.Z., et al. Low SIRT3 expression correlates with poor differentiation and unfavorable prognosis in primary hepatocellular carcinoma. PLoS ONE 2012, 7:e51703.
-
(2012)
PLoS ONE
, vol.7
, pp. e51703
-
-
Zhang, C.Z.1
-
30
-
-
84861161546
-
SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis
-
Haigis M.C., et al. SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res. 2012, 72:2468-2472.
-
(2012)
Cancer Res.
, vol.72
, pp. 2468-2472
-
-
Haigis, M.C.1
-
31
-
-
77954675024
-
Involvement of oxidatively damaged DNA and repair in cancer development and aging
-
Tudek B., et al. Involvement of oxidatively damaged DNA and repair in cancer development and aging. Am. J. Transl. Res. 2010, 2:254-284.
-
(2010)
Am. J. Transl. Res.
, vol.2
, pp. 254-284
-
-
Tudek, B.1
-
32
-
-
84901052694
-
ROS function in redox signaling and oxidative stress
-
Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24:R453-R462.
-
(2014)
Curr. Biol.
, vol.24
, pp. R453-R462
-
-
Schieber, M.1
Chandel, N.S.2
-
33
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
-
(2010)
Cell Metab.
, vol.12
, pp. 662-667
-
-
Qiu, X.1
-
34
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production
-
Bell E.L., et al. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
-
35
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
36
-
-
0001221508
-
On respiratory impairment in cancer cells
-
Warburg O. On respiratory impairment in cancer cells. Science 1956, 124:269-270.
-
(1956)
Science
, vol.124
, pp. 269-270
-
-
Warburg, O.1
-
38
-
-
34250745912
-
The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
-
Bell E.L., et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007, 177:1029-1036.
-
(2007)
J. Cell Biol.
, vol.177
, pp. 1029-1036
-
-
Bell, E.L.1
-
39
-
-
84907186695
-
SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells
-
Ozden O., et al. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic. Biol. Med. 2014, 76:163-172.
-
(2014)
Free Radic. Biol. Med.
, vol.76
, pp. 163-172
-
-
Ozden, O.1
-
40
-
-
84894263431
-
Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex
-
Fan J., et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 2014, 53:534-548.
-
(2014)
Mol. Cell
, vol.53
, pp. 534-548
-
-
Fan, J.1
-
41
-
-
53049087909
-
Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells
-
McFate T., et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 2008, 283:22700-22708.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 22700-22708
-
-
McFate, T.1
-
42
-
-
84927698067
-
SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
-
Yang H., et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 2015, 34:1110-1125.
-
(2015)
EMBO J.
, vol.34
, pp. 1110-1125
-
-
Yang, H.1
-
43
-
-
77951089891
-
-
International Diabetes Federation
-
IDF Diabetes Atlas 2013, International Diabetes Federation, International Diabetes Federation. 6th edn.
-
(2013)
IDF Diabetes Atlas
-
-
-
44
-
-
84899955772
-
Mitochondrial response to nutrient availability and its role in metabolic disease
-
Gao A.W., et al. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol. Med. 2014, 6:580-589.
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 580-589
-
-
Gao, A.W.1
-
45
-
-
34347386224
-
Reduced capacity for fatty acid oxidation in rats with inherited susceptibility to diet-induced obesity
-
Ji H., Friedman M.I. Reduced capacity for fatty acid oxidation in rats with inherited susceptibility to diet-induced obesity. Metabolism 2007, 56:1124-1130.
-
(2007)
Metabolism
, vol.56
, pp. 1124-1130
-
-
Ji, H.1
Friedman, M.I.2
-
46
-
-
84934272438
-
Metabolic syndrome, aging and involvement of oxidative stress
-
Bonomini F., et al. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015, 6:109-120.
-
(2015)
Aging Dis.
, vol.6
, pp. 109-120
-
-
Bonomini, F.1
-
47
-
-
33845866857
-
Inflammation and metabolic disorders
-
Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006, 444:860-867.
-
(2006)
Nature
, vol.444
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
48
-
-
84880673845
-
Pharmacological approaches to restore mitochondrial function
-
Andreux P.A., et al. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 2013, 12:465-483.
-
(2013)
Nat. Rev. Drug Discov.
, vol.12
, pp. 465-483
-
-
Andreux, P.A.1
-
49
-
-
0038025371
-
Mitochondrial dysfunction in the elderly: possible role in insulin resistance
-
Petersen K.F., et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003, 300:1140-1142.
-
(2003)
Science
, vol.300
, pp. 1140-1142
-
-
Petersen, K.F.1
-
50
-
-
77956173286
-
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
-
Bao J., et al. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic. Biol. Med. 2010, 49:1230-1237.
-
(2010)
Free Radic. Biol. Med.
, vol.49
, pp. 1230-1237
-
-
Bao, J.1
-
51
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011, 44:177-190.
-
(2011)
Mol. Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
-
52
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick A.A., et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 2011, 433:505-514.
-
(2011)
Biochem. J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
-
53
-
-
84962802960
-
SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high fat fed mice
-
Published online May 6, 2015
-
Lantier L., et al. SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high fat fed mice. Diabetes 2015, Published online May 6, 2015. 10.2337/db14-1810.
-
(2015)
Diabetes
-
-
Lantier, L.1
-
54
-
-
70449552861
-
Insulin resistance is a cellular antioxidant defense mechanism
-
Hoehn K.L., et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:17787-17792.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 17787-17792
-
-
Hoehn, K.L.1
-
55
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14608-14613.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
-
56
-
-
36348935003
-
Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet
-
Matsuzawa N., et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 2007, 46:1392-1403.
-
(2007)
Hepatology
, vol.46
, pp. 1392-1403
-
-
Matsuzawa, N.1
-
57
-
-
67649304876
-
Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria
-
Nakamura S., et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J. Biol. Chem. 2009, 284:14809-14818.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14809-14818
-
-
Nakamura, S.1
-
58
-
-
84939950554
-
In adipose tissue, increased mitochondrial emission of reactive oxygen species is important for short-term high-fat diet-induced insulin resistance in mice
-
Paglialunga S., et al. In adipose tissue, increased mitochondrial emission of reactive oxygen species is important for short-term high-fat diet-induced insulin resistance in mice. Diabetologia 2015, 58:1071-1080.
-
(2015)
Diabetologia
, vol.58
, pp. 1071-1080
-
-
Paglialunga, S.1
-
59
-
-
84908610774
-
Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice
-
Kang L., et al. Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice. Diabetes 2014, 63:3699-3710.
-
(2014)
Diabetes
, vol.63
, pp. 3699-3710
-
-
Kang, L.1
-
60
-
-
84876502959
-
Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients
-
Caton P.W., et al. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 2013, 56:1068-1077.
-
(2013)
Diabetologia
, vol.56
, pp. 1068-1077
-
-
Caton, P.W.1
-
61
-
-
84928599384
-
SIRT3 Overexpression attenuates palmitate-induced pancreatic beta-cell dysfunction
-
Kim M., et al. SIRT3 Overexpression attenuates palmitate-induced pancreatic beta-cell dysfunction. PLoS ONE 2015, 10:e0124744.
-
(2015)
PLoS ONE
, vol.10
, pp. e0124744
-
-
Kim, M.1
-
62
-
-
0342445429
-
Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy
-
Jarreta D., et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc. Res. 2000, 45:860-865.
-
(2000)
Cardiovasc. Res.
, vol.45
, pp. 860-865
-
-
Jarreta, D.1
-
63
-
-
84859884412
-
Mitochondria and cardiovascular aging
-
Dai D.F., et al. Mitochondria and cardiovascular aging. Circ. Res. 2012, 110:1109-1124.
-
(2012)
Circ. Res.
, vol.110
, pp. 1109-1124
-
-
Dai, D.F.1
-
64
-
-
84916635066
-
Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system
-
Ikeda Y., et al. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. J. Mol. Cell. Cardiol. 2015, 78:116-122.
-
(2015)
J. Mol. Cell. Cardiol.
, vol.78
, pp. 116-122
-
-
Ikeda, Y.1
-
65
-
-
77956676765
-
Aging impairs myocardial fatty acid and ketone oxidation and modifies cardiac functional and metabolic responses to insulin in mice
-
Hyyti O.M., et al. Aging impairs myocardial fatty acid and ketone oxidation and modifies cardiac functional and metabolic responses to insulin in mice. Am. J. Physiol. Heart Circ. Physiol. 2010, 299:H868-H875.
-
(2010)
Am. J. Physiol. Heart Circ. Physiol.
, vol.299
, pp. H868-H875
-
-
Hyyti, O.M.1
-
66
-
-
84907339466
-
Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling
-
Alrob O.A., et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc. Res. 2014, 103:485-497.
-
(2014)
Cardiovasc. Res.
, vol.103
, pp. 485-497
-
-
Alrob, O.A.1
-
67
-
-
33644874700
-
Increased alpha2 subunit-associated AMPK activity and PRKAG2 cardiomyopathy
-
Ahmad F., et al. Increased alpha2 subunit-associated AMPK activity and PRKAG2 cardiomyopathy. Circulation 2005, 112:3140-3148.
-
(2005)
Circulation
, vol.112
, pp. 3140-3148
-
-
Ahmad, F.1
-
68
-
-
41149087688
-
-/- mice in response to chronic pressure overload
-
-/- mice in response to chronic pressure overload. Cardiovasc. Res. 2008, 78:79-89.
-
(2008)
Cardiovasc. Res.
, vol.78
, pp. 79-89
-
-
Smeets, P.J.H.1
-
69
-
-
70549113382
-
Cardiac hypertrophy in mice with long-chain acyl-CoA dehydrogenase or very long-chain acyl-CoA dehydrogenase deficiency
-
Cox K., et al. Cardiac hypertrophy in mice with long-chain acyl-CoA dehydrogenase or very long-chain acyl-CoA dehydrogenase deficiency. Lab. Invest. 2009, 89:1348-1354.
-
(2009)
Lab. Invest.
, vol.89
, pp. 1348-1354
-
-
Cox, K.1
-
70
-
-
0642287603
-
Functional disorders of the oxidative phosphorylation system in the heart mitochondria of mice with juvenile visceral steatosis
-
Suenaga M., et al. Functional disorders of the oxidative phosphorylation system in the heart mitochondria of mice with juvenile visceral steatosis. Biol. Pharm. Bull. 2003, 26:289-294.
-
(2003)
Biol. Pharm. Bull.
, vol.26
, pp. 289-294
-
-
Suenaga, M.1
-
71
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
Sundaresan N.R., et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
-
72
-
-
79952266729
-
Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
-
Hafner A.V., et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2010, 2:914-923.
-
(2010)
Aging
, vol.2
, pp. 914-923
-
-
Hafner, A.V.1
-
73
-
-
25444474703
-
Mitochondria take center stage in aging and neurodegeneration
-
Beal M.F. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 2005, 58:495-505.
-
(2005)
Ann. Neurol.
, vol.58
, pp. 495-505
-
-
Beal, M.F.1
-
74
-
-
84883652690
-
Light-dark condition regulates sirtuin mRNA levels in the retina
-
Ban N., et al. Light-dark condition regulates sirtuin mRNA levels in the retina. Exp. Gerontol. 2013, 48:1212-1217.
-
(2013)
Exp. Gerontol.
, vol.48
, pp. 1212-1217
-
-
Ban, N.1
-
75
-
-
84921354327
-
Differential expression of sirtuin family members in the developing, adult, and aged rat brain
-
Sidorova-Darmos E., et al. Differential expression of sirtuin family members in the developing, adult, and aged rat brain. Front. Aging Neurosci. 2014, 6:333.
-
(2014)
Front. Aging Neurosci.
, vol.6
, pp. 333
-
-
Sidorova-Darmos, E.1
-
76
-
-
84895089601
-
Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model
-
Zeng L., et al. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS ONE 2014, 9:e88019.
-
(2014)
PLoS ONE
, vol.9
, pp. e88019
-
-
Zeng, L.1
-
77
-
-
84902119469
-
Pituitary adenylate cyclase-activating polypeptide protects against beta-amyloid toxicity
-
Han P., et al. Pituitary adenylate cyclase-activating polypeptide protects against beta-amyloid toxicity. Neurobiol. Aging 2014, 35:2064-2071.
-
(2014)
Neurobiol. Aging
, vol.35
, pp. 2064-2071
-
-
Han, P.1
-
78
-
-
84876445381
-
CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease
-
Weir H.J., et al. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease. PLoS ONE 2012, 7:e48225.
-
(2012)
PLoS ONE
, vol.7
, pp. e48225
-
-
Weir, H.J.1
-
79
-
-
16844366080
-
Mitochondrial dysfunction and its role in motor neuron degeneration in ALS
-
Manfredi G., Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 2005, 5:77-87.
-
(2005)
Mitochondrion
, vol.5
, pp. 77-87
-
-
Manfredi, G.1
Xu, Z.2
-
80
-
-
84872683148
-
Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1alpha
-
Song W., et al. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1alpha. Neurobiol. Dis. 2013, 51:72-81.
-
(2013)
Neurobiol. Dis.
, vol.51
, pp. 72-81
-
-
Song, W.1
-
81
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
-
82
-
-
84919694179
-
+ precursor nicotinamide riboside protects from noise-induced hearing loss
-
+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 2014, 20:1059-1068.
-
(2014)
Cell Metab.
, vol.20
, pp. 1059-1068
-
-
Brown, K.D.1
-
83
-
-
84876217035
-
Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
-
Rardin M.J., et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:6601-6606.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 6601-6606
-
-
Rardin, M.J.1
-
84
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert A.S., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 2013, 49:186-199.
-
(2013)
Mol. Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
-
85
-
-
84870880080
-
Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase Sirt3
-
Sol E.M., et al. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase Sirt3. PLoS ONE 2012, 7:e50545.
-
(2012)
PLoS ONE
, vol.7
, pp. e50545
-
-
Sol, E.M.1
-
86
-
-
84928386194
-
SIRT3 mediates multi-tissue coupling for metabolic fuel switching
-
Dittenhafer-Reed K.E., et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab. 2015, 21:637-646.
-
(2015)
Cell Metab.
, vol.21
, pp. 637-646
-
-
Dittenhafer-Reed, K.E.1
-
87
-
-
84883659304
-
Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation
-
Still A.J., et al. Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J. Biol. Chem. 2013, 288:26209-26219.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 26209-26219
-
-
Still, A.J.1
-
88
-
-
84905378213
-
Stoichiometry of site-specific lysine acetylation in an entire proteome
-
Baeza J., et al. Stoichiometry of site-specific lysine acetylation in an entire proteome. J. Biol. Chem. 2014, 289:21326-21338.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 21326-21338
-
-
Baeza, J.1
-
89
-
-
84898012537
-
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
-
Weinert B.T., et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 2014, 10:716.
-
(2014)
Mol. Syst. Biol.
, vol.10
, pp. 716
-
-
Weinert, B.T.1
-
90
-
-
84898012702
-
Non-enzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
-
Wagner G., Hirschey M.D. Non-enzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 2014, 54:5-16.
-
(2014)
Mol. Cell
, vol.54
, pp. 5-16
-
-
Wagner, G.1
Hirschey, M.D.2
-
91
-
-
10744232772
-
Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly
-
Rose G., et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp. Gerontol. 2003, 38:1065-1070.
-
(2003)
Exp. Gerontol.
, vol.38
, pp. 1065-1070
-
-
Rose, G.1
-
92
-
-
19944433088
-
A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages
-
Bellizzi D., et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 2005, 85:258-263.
-
(2005)
Genomics
, vol.85
, pp. 258-263
-
-
Bellizzi, D.1
-
93
-
-
38349176358
-
A novel sampling design to explore gene-longevity associations: the ECHA study
-
De Rango F., et al. A novel sampling design to explore gene-longevity associations: the ECHA study. Eur. J. Hum. Genet. 2008, 16:236-242.
-
(2008)
Eur. J. Hum. Genet.
, vol.16
, pp. 236-242
-
-
De Rango, F.1
-
94
-
-
70350365059
-
Human longevity and 11p15.5: a study in 1321 centenarians
-
Lescai F., et al. Human longevity and 11p15.5: a study in 1321 centenarians. Eur. J. Hum. Genet. 2009, 17:1515-1519.
-
(2009)
Eur. J. Hum. Genet.
, vol.17
, pp. 1515-1519
-
-
Lescai, F.1
-
95
-
-
65349128571
-
Disruption of the Ang II type 1 receptor promotes longevity in mice
-
Benigni A., et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 2009, 119:524-530.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 524-530
-
-
Benigni, A.1
|