-
1
-
-
84856173450
-
High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
-
Alibart, F., Gao, L., Hoskins, B. D., and Strukov, D. B. (2012), High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm, Nanotechnology, 23, 7, 075201
-
(2012)
Nanotechnology
, vol.23
, Issue.7
-
-
Alibart, F.1
Gao, L.2
Hoskins, B.D.3
Strukov, D.B.4
-
2
-
-
36348982825
-
Synchrony in silicon: The gamma rhythm
-
Arthur, J. and Boahen, K. (2007), Synchrony in silicon: The gamma rhythm, IEEE Transactions on Neural Networks, 18, 6, 1815-1825, doi:10.1109/TNN.2007.900238
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.6
, pp. 1815-1825
-
-
Arthur, J.1
Boahen, K.2
-
3
-
-
84870252936
-
Silicon spiking neurons for hardware implementation of Extreme Learning Machines
-
Basu, A., Shuo, S., Zhou, H., Lim, M. H., and Huang, G.-B. (2013), Silicon spiking neurons for hardware implementation of Extreme Learning Machines, Neurocomputing, 102, 125-134, doi:http://dx.doi. org/10.1016/j.neucom.2012.01.042
-
(2013)
Neurocomputing
, vol.102
, pp. 125-134
-
-
Basu, A.1
Shuo, S.2
Zhou, H.3
Lim, M.H.4
Huang, G.-B.5
-
4
-
-
84900521434
-
Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
-
Benjamin, B., Gao, P., Mcquinn, E., Choudhary, S., Chandrasekaran, A., Bussat, J.-M., et al. (2014), Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations, Proceedings of the IEEE, 102, 5, 699-716
-
(2014)
Proceedings of the IEEE
, vol.102
, Issue.5
, pp. 699-716
-
-
Benjamin, B.1
Gao, P.2
Mcquinn, E.3
Choudhary, S.4
Chandrasekaran, A.5
Bussat, J.-M.6
-
5
-
-
84920586979
-
A compound memristive synapse model for statistical learning through STDP in spiking neural networks
-
Bill, J. and Legenstein, R. (2014), A compound memristive synapse model for statistical learning through STDP in spiking neural networks, Frontiers in Neuroscience, 8, 412, doi:10.3389/fnins.2014.00412
-
(2014)
Frontiers in Neuroscience
, vol.8
, Issue.412
-
-
Bill, J.1
Legenstein, R.2
-
6
-
-
85027947125
-
A 240 × 180 130 dB 3us latency global shutter spatiotemporal vision sensor
-
Brändli, C., Berner, R., Yang, M.-H., Liu, S.-C., and Delbrück, T. (2014), A 240 × 180 130 dB 3us latency global shutter spatiotemporal vision sensor, IEEE J. Solid-State Circuits, 49, 10, 2333-2341
-
(2014)
IEEE J. Solid-State Circuits
, vol.49
, Issue.10
, pp. 2333-2341
-
-
Brändli, C.1
Berner, R.2
Yang, M.-H.3
Liu, S.-C.4
Delbrück, T.5
-
7
-
-
84875055083
-
A learning-enabled neuron array IC based upon transistor channel models of biological phenomena
-
Brink, S., Nease, S., Hasler, P., Ramakrishnan, S., Wunderlich, R., Basu, A., et al. (2013), A learning-enabled neuron array IC based upon transistor channel models of biological phenomena, IEEE Transactions onBiomedical Circuits and Systems, 7, 1, 71-81, doi:10.1109/TBCAS.2012.2197858
-
(2013)
IEEE Transactions onBiomedical Circuits and Systems
, vol.7
, Issue.1
, pp. 71-81
-
-
Brink, S.1
Nease, S.2
Hasler, P.3
Ramakrishnan, S.4
Wunderlich, R.5
Basu, A.6
-
8
-
-
84935116871
-
Low precision arithmetic for deep learning, in arXiv
-
in Submission
-
Courbariaux, M., David, J., and Bengio, Y. (2014), Low precision arithmetic for deep learning, in arXiv, Cornell, doi:arxiv.org/pdf/1412.7024, in Submission
-
(2014)
Cornell
-
-
Courbariaux, M.1
David, J.2
Bengio, Y.3
-
9
-
-
84883501396
-
A scalable neural chip with synaptic electronics using CMOS integrated memristors
-
Cruz-Albrecht, J. M., Derosier, T., and Srinivasa, N. (2013), A scalable neural chip with synaptic electronics using CMOS integrated memristors, Nanotechnology, 24, 38, 384011
-
(2013)
Nanotechnology
, vol.24
, Issue.38
-
-
Cruz-Albrecht, J.M.1
Derosier, T.2
Srinivasa, N.3
-
10
-
-
84946219528
-
Gibbs sampling with low-power spiking digital neurons
-
(accepted).
-
Das, S., Pedroni, B. U., Merolla, P., Arthur, J., Cassidy, A. S., Jackson, B. L., et al. (2015), Gibbs sampling with low-power spiking digital neurons, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), (accepted).
-
(2015)
2015 IEEE International Symposium on Circuits and Systems (ISCAS)
-
-
Das, S.1
Pedroni, B.U.2
Merolla, P.3
Arthur, J.4
Cassidy, A.S.5
Jackson, B.L.6
-
11
-
-
84887302917
-
fPyNNg: a common interface for neuronal network simulators
-
Davidson, A. P., Brüderle, D., Eppler, J.M., Kremkow, J.,Muller, E., Pecevski, D., et al. (2009), fPyNNg: a common interface for neuronal network simulators, Frontiers in Neuroinformatics, 2, 1-10, doi:10. 3389/neuro.11.011.2008
-
(2009)
Frontiers in Neuroinformatics
, vol.2
, pp. 1-10
-
-
Davidson, A.P.1
Brüderle, D.2
Eppler, J.M.3
Kremkow, J.4
Muller, E.5
Pecevski, D.6
-
12
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, J., Corrado, G., Monga, R., Chen, M., K.and Devin, Mao, M., Senior, A., et al. (2012), Large scale distributed deep networks, in Advances in Neural Information Processing Systems, 1223-1231
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, M.4
Devin, K.5
Mao, M.6
Senior, A.7
-
13
-
-
80054919955
-
Neuflow: A runtime reconfigurable dataflow processor for vision
-
Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., and LeCun, Y. (2011), Neuflow: A runtime reconfigurable dataflow processor for vision, in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 109-116
-
(2011)
2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
, pp. 109-116
-
-
Farabet, C.1
Martini, B.2
Corda, B.3
Akselrod, P.4
Culurciello, E.5
LeCun, Y.6
-
14
-
-
84900504664
-
The SpiNNaker project
-
Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014), The SpiNNaker project, Proceedings of the IEEE, 102, 5, 652-665, doi:10.1109/JPROC.2014.2304638
-
(2014)
Proceedings of the IEEE
, vol.102
, Issue.5
, pp. 652-665
-
-
Furber, S.1
Galluppi, F.2
Temple, S.3
Plana, L.4
-
16
-
-
84887947383
-
Overview of the SpiNNaker system architecture
-
Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al. (2013), Overview of the SpiNNaker system architecture, IEEE Trans. Comput., 62, 12, 2454-2467, doi:10.1109/TC. 2012.142
-
(2013)
IEEE Trans. Comput.
, vol.62
, Issue.12
, pp. 2454-2467
-
-
Furber, S.B.1
Lester, D.R.2
Plana, L.A.3
Garside, J.D.4
Painkras, E.5
Temple, S.6
-
17
-
-
84862638410
-
A hierarchical configuration system for a massively parallel neural hardware platform
-
Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L., and Furber, S. (2012), A hierarchical configuration system for a massively parallel neural hardware platform, in ACM International Conference on Computing Frontiers
-
(2012)
ACM International Conference on Computing Frontiers
-
-
Galluppi, F.1
Davies, S.2
Rast, A.3
Sharp, T.4
Plana, L.5
Furber, S.6
-
18
-
-
84921798570
-
A framework for plasticity implementation on the SpiNNaker neural architecture
-
Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S., et al. (2014), A framework for plasticity implementation on the SpiNNaker neural architecture, Frontiers in Neuroscience, 8, 429, doi:10.3389/fnins.2014.00429
-
(2014)
Frontiers in Neuroscience
, vol.8
, Issue.429
-
-
Galluppi, F.1
Lagorce, X.2
Stromatias, E.3
Pfeiffer, M.4
Plana, L.A.5
Furber, S.6
-
19
-
-
84885847922
-
Brian: a simulator for spiking neural networks in python
-
Goodman, D. F. M. and Brette, R. (2008), Brian: a simulator for spiking neural networks in python, Frontiers in Neuroinformatics, 2, 5, doi:10.3389/neuro.11.005.2008
-
(2008)
Frontiers in Neuroinformatics
, vol.2
, Issue.5
-
-
Goodman, D.F.M.1
Brette, R.2
-
20
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. and Salakhutdinov, R. (2006), Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
21
-
-
84865073476
-
Recurrent competitive networks can learn locally excitatory topologies
-
Jug, F., Cook, M., and Steger, A. (2012), Recurrent competitive networks can learn locally excitatory topologies, in Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN), 1-8, doi:10.1109/IJCNN.2012.6252786
-
(2012)
Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-8
-
-
Jug, F.1
Cook, M.2
Steger, A.3
-
22
-
-
20444492464
-
Device mismatch and tradeoffs in the design of analog circuits
-
Kinget, P. (2005), Device mismatch and tradeoffs in the design of analog circuits, IEEE J. Solid-State Circuits, 40, 6, 1212-1224
-
(2005)
IEEE J. Solid-State Circuits
, vol.40
, Issue.6
, pp. 1212-1224
-
-
Kinget, P.1
-
23
-
-
84861089198
-
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
-
Kuzum, D., Jeyasingh, R. G. D., Lee, B., and Wong, H.-S. P. (2012), Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing, Nano Letters, 12, 5, 2179- 2186, doi:10.1021/nl201040y, pMID: 21668029
-
(2012)
Nano Letters
, vol.12
, Issue.5
, pp. 2179- 2186
-
-
Kuzum, D.1
Jeyasingh, R.G.D.2
Lee, B.3
Wong, H.-S.P.4
-
24
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Le, Q. V., Ranzato, M. A., Monga, R., Devin, M., Chen, K., Corrado, G., et al. (2012), Building high-level features using large scale unsupervised learning, in Proc. of ICML
-
(2012)
Proc. of ICML
-
-
Le, Q.V.1
Ranzato, M.A.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.6
-
25
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998), Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86, 11, 2278-2324
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
26
-
-
0242443320
-
Compact low-power calibration mini-DACs for neural arrays with programmable weights
-
Linares-Barranco, B., Serrano-Gotarredona, T., and Serrano-Gotarredona, R. (2011), Compact low-power calibration mini-DACs for neural arrays with programmable weights, IEEE Transactions on Neural Networks, 14, 5, 1207-1216, doi:10.1109/TNN.2003.816370
-
(2011)
IEEE Transactions on Neural Networks
, vol.14
, Issue.5
, pp. 1207-1216
-
-
Linares-Barranco, B.1
Serrano-Gotarredona, T.2
Serrano-Gotarredona, R.3
-
27
-
-
77954760819
-
Neuromorphic sensory systems
-
Liu, S.-C. and Delbruck, T. (2010), Neuromorphic sensory systems, Curr Opin in Neurobiol, 20, 3, 288-295
-
(2010)
Curr Opin in Neurobiol
, vol.20
, Issue.3
, pp. 288-295
-
-
Liu, S.-C.1
Delbruck, T.2
-
28
-
-
85018236616
-
Event-Based Neuromorphic Systems
-
(John Wiley & Sons, Ltd, UK)
-
Liu, S.-C., Delbrück, T., Indiveri, G., Whatley, A., and Douglas, R. (2015), Event-Based Neuromorphic Systems (John Wiley & Sons, Ltd, UK)
-
(2015)
-
-
Liu, S.-C.1
Delbrück, T.2
Indiveri, G.3
Whatley, A.4
Douglas, R.5
-
29
-
-
4644262757
-
Temporal coding in a silicon network of integrate-and-fire neurons
-
Liu, S.-C. and Douglas, R. (2004), Temporal coding in a silicon network of integrate-and-fire neurons, IEEE Transactions on Neural Networks, 15, 5, 1305-1314, doi:10.1109/TNN.2004.832725
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.5
, pp. 1305-1314
-
-
Liu, S.-C.1
Douglas, R.2
-
30
-
-
84905408366
-
Asynchronous binaural spatial audition sensor with 2 × 64 × 4 channel output
-
Liu, S.-C., van Schaik, A., Minch, B., and Delbrück, T. (2014), Asynchronous binaural spatial audition sensor with 2 × 64 × 4 channel output, IEEE Trans. Biomed. Circuits Syst., 8, 4, 453-464, doi:10.1109/ TBCAS.2013.2281834
-
(2014)
IEEE Trans. Biomed. Circuits Syst.
, vol.8
, Issue.4
, pp. 453-464
-
-
Liu, S.-C.1
van Schaik, A.2
Minch, B.3
Delbrück, T.4
-
31
-
-
84895919380
-
A multicast tree router for multichip neuromorphic systems
-
Merolla, P., Arthur, J., Alvarez, R., Bussat, J.-M., and Boahen, K. (2014a), A multicast tree router for multichip neuromorphic systems, IEEE Trans. Circuits and Syst. I, 61, 3, 820-833, doi:10.1109/TCSI. 2013.2284184
-
(2014)
IEEE Trans. Circuits and Syst. I
, vol.61
, Issue.3
, pp. 820-833
-
-
Merolla, P.1
Arthur, J.2
Alvarez, R.3
Bussat, J.-M.4
Boahen, K.5
-
32
-
-
84905915006
-
A million spiking-neuron integrated circuit with a scalable communication network and interface
-
Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., et al. (2014b), A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, 345, 6197, 668-673, doi:DOI:10.1126/science.1254642
-
(2014)
Science
, vol.345
, Issue.6197
, pp. 668-673
-
-
Merolla, P.A.1
Arthur, J.V.2
Alvarez-Icaza, R.3
Cassidy, A.S.4
Sawada, J.5
Akopyan, F.6
-
33
-
-
60149108117
-
Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI
-
Mitra, S., Fusi, S., and Indiveri, G. (2009), Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI, IEEE Trans. on Biomedical Circuits and Systems, 3, 1, 32-42
-
(2009)
IEEE Trans. on Biomedical Circuits and Systems
, vol.3
, Issue.1
, pp. 32-42
-
-
Mitra, S.1
Fusi, S.2
Indiveri, G.3
-
34
-
-
84864932722
-
Bluehive - a field-programable custom computing machine for extreme-scale real-time neural network simulation
-
Moore, S., Fox, P., Marsh, S., Markettos, A., and Mujumdar, A. (2012), Bluehive - a field-programable custom computing machine for extreme-scale real-time neural network simulation, in 2012 IEEE 20th Annual International Symposiumon Field-Programmable CustomComputingMachines (FCCM), 133- 140, doi:10.1109/FCCM.2012.32
-
(2012)
2012 IEEE 20th Annual International Symposiumon Field-Programmable CustomComputingMachines (FCCM)
, pp. 133-140
-
-
Moore, S.1
Fox, P.2
Marsh, S.3
Markettos, A.4
Mujumdar, A.5
-
35
-
-
84897963931
-
An event-based neural network architecture with an asynchronous programmable synaptic memory
-
Moradi, S. and Indiveri, G. (2014), An event-based neural network architecture with an asynchronous programmable synaptic memory, IEEE Trans. Biomed. Circuits Syst., 8, 1, 98-107, doi:10.1109/ TBCAS.2013.2255873
-
(2014)
IEEE Trans. Biomed. Circuits Syst.
, vol.8
, Issue.1
, pp. 98-107
-
-
Moradi, S.1
Indiveri, G.2
-
36
-
-
80053989520
-
A systematic method for configuring VLSI networks of spiking neurons
-
Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. (2011), A systematic method for configuring VLSI networks of spiking neurons, Neural Computation, 23, 10, 2457-2497
-
(2011)
Neural Computation
, vol.23
, Issue.10
, pp. 2457-2497
-
-
Neftci, E.1
Chicca, E.2
Indiveri, G.3
Douglas, R.4
-
37
-
-
84898035691
-
Event-driven contrastive divergence for spiking neuromorphic systems
-
Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014), Event-driven contrastive divergence for spiking neuromorphic systems, Frontiers in Neuroscience, 7, 272, doi:10. 3389/fnins.2013.00272
-
(2014)
Frontiers in Neuroscience
, vol.7
, Issue.272
-
-
Neftci, E.1
Das, S.2
Pedroni, B.3
Kreutz-Delgado, K.4
Cauwenberghs, G.5
-
38
-
-
84913549485
-
Minitaur
-
Neil, D. and Liu, S.-C. (2014), Minitaur, an event-driven FPGA-based spiking network accelerator, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22, 12, 2621-2628, doi:10.1109/TVLSI. 2013.2294916
-
(2014)
an event-driven FPGA-based spiking network accelerator, IEEE Transactions on Very Large Scale Integration (VLSI) Systems
, vol.22
, Issue.12
, pp. 2621-2628
-
-
Neil, D.1
Liu, S.-C.2
-
39
-
-
84888811418
-
Real-time classification and sensor fusion with a spiking deep belief network
-
O'Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013), Real-time classification and sensor fusion with a spiking deep belief network, Frontiers in Neuroscience, 7, 178, doi:10.3389/fnins. 2013.00178
-
(2013)
Frontiers in Neuroscience
, vol.7
, Issue.178
-
-
O'Connor, P.1
Neil, D.2
Liu, S.-C.3
Delbruck, T.4
Pfeiffer, M.5
-
40
-
-
57149124102
-
Quantification of a spike-based winner-take620 VLSI network
-
Oster, M., Wang, Y., Douglas, R., and Liu, S.-C. (2008), Quantification of a spike-based winner-take620 VLSI network, IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 10, 3160-3169, doi:10.1109/TCSI.2008.923430
-
(2008)
IEEE Transactions on Circuits and Systems I: Regular Papers
, vol.55
, Issue.10
, pp. 3160-3169
-
-
Oster, M.1
Wang, Y.2
Douglas, R.3
Liu, S.-C.4
-
41
-
-
0028460526
-
Characterization of subthreshold MOS mismatch in transistors for VLSI systems
-
Pavasovic, A., Andreou, A., and Westgate, C. (1994), Characterization of subthreshold MOS mismatch in transistors for VLSI systems, Journal of VLSI Signal Processing, 8, 1, 75-85
-
(1994)
Journal of VLSI Signal Processing
, vol.8
, Issue.1
, pp. 75-85
-
-
Pavasovic, A.1
Andreou, A.2
Westgate, C.3
-
42
-
-
0024754187
-
Matching properties of MOS transistors
-
Pelgrom, M., Duinmaijer, A., and Welbers, A. (1989), Matching properties of MOS transistors, IEEE J. Solid-State Circuits, 25, 5, 1212-1224
-
(1989)
IEEE J. Solid-State Circuits
, vol.25
, Issue.5
, pp. 1212-1224
-
-
Pelgrom, M.1
Duinmaijer, A.2
Welbers, A.3
-
43
-
-
84878827374
-
Six networks on a universal neuromorphic computing substrate
-
Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al. (2013), Six networks on a universal neuromorphic computing substrate, Frontiers in Neuroscience, 7, 11, doi:10.3389/fnins.2013. 00011
-
(2013)
Frontiers in Neuroscience
, vol.7
, Issue.11
-
-
Pfeil, T.1
Grübl, A.2
Jeltsch, S.3
Müller, E.4
Müller, P.5
Petrovici, M.A.6
-
44
-
-
84865180086
-
Is a 4- bit synaptic weight resolution enough?-constraints on enabling spike-timing dependent plasticity in neuromorphic hardware
-
Pfeil, T., 629 Potjans, T. C., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., et al. (2012), Is a 4- bit synaptic weight resolution enough?-constraints on enabling spike-timing dependent plasticity in neuromorphic hardware, Frontiers in neuroscience, 6, doi:10.3389/fnins.2012.00090
-
(2012)
Frontiers in neuroscience
, vol.6
-
-
Pfeil, T.1
629 Potjans, T.C.2
Schrader, S.3
Potjans, W.4
Schemmel, J.5
Diesmann, M.6
-
45
-
-
84867306359
-
Neuflow: Dataflow vision processing system-on-a-chip
-
Pham, P.-H., Jelaca, D., Farabet, C.,Martini, B., LeCun, Y., and Culurciello, E. (2011), Neuflow: Dataflow vision processing system-on-a-chip, in 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), 1044-1047
-
(2011)
2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)
, pp. 1044-1047
-
-
Pham, P.-H.1
Jelaca, D.2
Farabet, C.3
Martini, B.4
LeCun, Y.5
Culurciello, E.6
-
46
-
-
85027937576
-
Retinomorphic event636 based vision sensors: Bioinspired cameras with spiking output
-
Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014), Retinomorphic event636 based vision sensors: Bioinspired cameras with spiking output, Proceedings of the IEEE, 102, 10, 1470-1484
-
(2014)
Proceedings of the IEEE
, vol.102
, Issue.10
, pp. 1470-1484
-
-
Posch, C.1
Serrano-Gotarredona, T.2
Linares-Barranco, B.3
Delbruck, T.4
-
47
-
-
84877850976
-
Immunity to device variations in a spiking neural network with memristive nanodevices
-
Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013), Immunity to device variations in a spiking neural network with memristive nanodevices, IEEE Trans on Nanotechnology, 12, 3, 288-295
-
(2013)
IEEE Trans on Nanotechnology
, vol.12
, Issue.3
, pp. 288-295
-
-
Querlioz, D.1
Bichler, O.2
Dollfus, P.3
Gamrat, C.4
-
48
-
-
77955993002
-
A wafer641 scale neuromorphic hardware system for large-scale neural modeling
-
Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S. (2010), A wafer641 scale neuromorphic hardware system for large-scale neural modeling, in 2010 IEEE International Symposium on Circuits and Systems (ISCAS), 1947-1950, doi:10.1109/ISCAS.2010.5536970
-
(2010)
2010 IEEE International Symposium on Circuits and Systems (ISCAS)
, pp. 1947-1950
-
-
Schemmel, J.1
Brüderle, D.2
Grübl, A.3
Hock, M.4
Meier, K.5
Millner, S.6
-
49
-
-
84935063376
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. (2014), Deep learning in neural networks: An overview, CoRR, abs/1404.7828
-
(2014)
CoRR
-
-
Schmidhuber, J.1
-
50
-
-
84906347546
-
OverFeat: Integrated recognition, localization and detection using convolutional networks
-
arXiv preprint arXiv:1312.6229
-
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013), OverFeat: Integrated recognition, localization and detection using convolutional networks, arXiv preprint arXiv:1312.6229
-
(2013)
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
51
-
-
48949116215
-
On real-time AER 2-D convolutions hardware for neuromorphic spike-based cortical processing
-
Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jimenez, A., Serrano-Gotarredona, C., Perez-Carrasco, J., Barranco, B., et al. (2008), On real-time AER 2-D convolutions hardware for neuromorphic spike-based cortical processing, IEEE Transactions on Neural Networks, 19, 7, 1196-1219, doi:10.1109/TNN.2008.2000163
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, Issue.7
, pp. 1196-1219
-
-
Serrano-Gotarredona, R.1
Serrano-Gotarredona, T.2
Acosta-Jimenez, A.3
Serrano-Gotarredona, C.4
Perez-Carrasco, J.5
Barranco, B.6
-
52
-
-
0033350671
-
Systematic width-and-length dependent CMOS transistor mismatch characterization and simulation
-
Serrano-Gotarredona, T. and Linares-Barranco, B. (1999), Systematic width-and-length dependent CMOS transistor mismatch characterization and simulation, Analog Integrated Circuits and Signal Processing, 21, 271-296
-
Analog Integrated Circuits and Signal Processing
, vol.21
, Issue.1999
, pp. 271-296
-
-
Serrano-Gotarredona, T.1
Linares-Barranco, B.2
-
53
-
-
84878952572
-
STDP and STDP variations with memristors for spiking neuromorphic learning systems
-
Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., and Linares-Barranco, B. (2013), STDP and STDP variations with memristors for spiking neuromorphic learning systems, Frontiers in Neuroscience, 7, 2, doi:10.3389/fnins.2013.00002
-
(2013)
Frontiers in Neuroscience
, vol.7
, Issue.2
-
-
Serrano-Gotarredona, T.1
Masquelier, T.2
Prodromakis, T.3
Indiveri, G.4
Linares-Barranco, B.5
-
54
-
-
36149019489
-
On the first passage time probability problem
-
Siegert, A. J. F. (1951), On the first passage time probability problem, Physical Review, 81, 4, 617
-
(1951)
Physical Review
, vol.81
, Issue.4
, pp. 617
-
-
Siegert, A.J.F.1
-
55
-
-
84893588360
-
Power analysis of large-scale, real658 time neural networks on spiNNaker
-
Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013), Power analysis of large-scale, real658 time neural networks on spiNNaker, in Proceedings of 2013 International Joint Conference on Neural Networks (IJCNN), 1-8, doi:10.1109/IJCNN.2013.6706927
-
(2013)
Proceedings of 2013 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-8
-
-
Stromatias, E.1
Galluppi, F.2
Patterson, C.3
Furber, S.4
-
56
-
-
84946230589
-
Live demonstration: Handwritten digit recognition using Spiking Deep Belief Networks on SpiNNaker
-
(accepted).
-
Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S.-C., and Furber, S. (2015a), Live demonstration: Handwritten digit recognition using Spiking Deep Belief Networks on SpiNNaker, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), (accepted).
-
(2015)
2015 IEEE International Symposium on Circuits and Systems (ISCAS)
-
-
Stromatias, E.1
Neil, D.2
Galluppi, F.3
Pfeiffer, M.4
Liu, S.-C.5
Furber, S.6
-
57
-
-
84950994666
-
Scalable energy-efficient, low-latency implementations of spiking deep belief networks on SpiNNaker
-
(accepted).
-
Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S.-C., and Furber, S. (2015b), Scalable energy-efficient, low-latency implementations of spiking deep belief networks on SpiNNaker, in 2015 International Joint Conference on Neural Networks (IJCNN), (accepted).
-
(2015)
2015 International Joint Conference on Neural Networks (IJCNN)
-
-
Stromatias, E.1
Neil, D.2
Galluppi, F.3
Pfeiffer, M.4
Liu, S.-C.5
Furber, S.6
-
59
-
-
33846098196
-
Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses
-
Vogelstein, R., Mallik, U., Vogelstein, J., and Cauwenberghs, G. (2007), Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses, IEEE Transactions on Neural Networks, 18, 1, 253-265
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.1
, pp. 253-265
-
-
Vogelstein, R.1
Mallik, U.2
Vogelstein, J.3
Cauwenberghs, G.4
-
60
-
-
34547270429
-
Programmable synaptic weights for an aVLSI network of spiking neurons
-
Wang, Y.-X. and Liu, S.-C. (2006), Programmable synaptic weights for an aVLSI network of spiking neurons, in Proc. IEEE Int. Symp. Circuits and Syst., doi:10.1109/ISCAS.2006.1693637
-
(2006)
Proc. IEEE Int. Symp. Circuits and Syst.
-
-
Wang, Y.-X.1
Liu, S.-C.2
-
61
-
-
80052904851
-
A two-dimensional configurable active silicon dendritic neuron array
-
Wang, Y.-X. and Liu, S.-C. (2011), A two-dimensional configurable active silicon dendritic neuron array, IEEE Transactions on Circuits and Systems I: Regular Papers, 58, 9, 2159-2171, doi:10.1109/TCSI. 2011.2112570
-
(2011)
IEEE Transactions on Circuits and Systems I: Regular Papers
, vol.58
, Issue.9
, pp. 2159-2171
-
-
Wang, Y.-X.1
Liu, S.-C.2
-
62
-
-
84878306965
-
Active processing of spatio-temporal input patterns in silicon dendrites
-
Wang, Y.-X. and Liu, S.-C. (2013), Active processing of spatio-temporal input patterns in silicon dendrites, IEEE Transactions on Biomedical Circuits and Systems, 7, 3, 307-318, doi:10.1109/TBCAS. 2012.2199487
-
(2013)
IEEE Transactions on Biomedical Circuits and Systems
, vol.7
, Issue.3
, pp. 307-318
-
-
Wang, Y.-X.1
Liu, S.-C.2
|