메뉴 건너뛰기




Volumn , Issue 8 JAN, 2014, Pages

Event-driven contrastive divergence for spiking neuromorphic systems

Author keywords

Generative model; Markov chain monte carlo; Neuromorphic cognition; Recurrent neural network; Synaptic plasticity

Indexed keywords

ALGORITHM; ARITHMETIC; ARTICLE; ASSOCIATION; COMPUTER; CONTRASTIVE DIVERGENCE; HANDWRITING; HISTOGRAM; LEARNING; LEARNING ALGORITHM; LONG TERM DEPRESSION; LONG TERM POTENTIATION; NERVE CELL MEMBRANE POTENTIAL; NERVE CELL NETWORK; NERVE CELL PLASTICITY; NEUROMORPHIC SYSTEM; POSTSYNAPTIC POTENTIAL; RECOGNITION; REFRACTORY PERIOD; RESTRICTED BOLTZMANN MACHINE; SPIKE TIME DEPENDENT PLASTICITY; STOCHASTIC MODEL; SYNAPSE; TASK PERFORMANCE;

EID: 84898035691     PISSN: 16624548     EISSN: 1662453X     Source Type: Journal    
DOI: 10.3389/fnins.2013.00272     Document Type: Article
Times cited : (183)

References (55)
  • 1
    • 0030947941 scopus 로고    scopus 로고
    • Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
    • doi: 10.1093/cercor/7.3.237
    • Amit, D., and Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237-252. doi: 10.1093/cercor/7.3.237.
    • (1997) Cereb. Cortex , vol.7 , pp. 237-252
    • Amit, D.1    Brunel, N.2
  • 3
    • 34548821852 scopus 로고    scopus 로고
    • Synaptic dynamics in analog VLSI
    • doi: 10.1162/neco.2007.19.10.2581
    • Bartolozzi, C., and Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural Comput. 19, 2581-2603. doi: 10.1162/neco.2007.19.10.2581.
    • (2007) Neural Comput , vol.19 , pp. 2581-2603
    • Bartolozzi, C.1    Indiveri, G.2
  • 4
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • doi: 10.1561/2200000006
    • Bengio, Y. (2009). Learning deep architectures for ai. Found. Trends Mach. Learn. 2, 1-127. doi: 10.1561/2200000006.
    • (2009) Found. Trends Mach. Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 84878514215 scopus 로고    scopus 로고
    • Matching recall and storage in sequence learning with spiking neural networks
    • doi: 10.1523/JNEUROSCI.4098-12.2013
    • Brea, J., Senn, W., and Pfister, J.-P. (2013). Matching recall and storage in sequence learning with spiking neural networks. J. Neurosci. 33, 9565-9575. doi: 10.1523/JNEUROSCI.4098-12.2013.
    • (2013) J. Neurosci , vol.33 , pp. 9565-9575
    • Brea, J.1    Senn, W.2    Pfister, J.-P.3
  • 7
    • 81355133300 scopus 로고    scopus 로고
    • Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons
    • doi: 10.1371/journal.pcbi.1002211
    • Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput. Biol. 7:e1002211. doi: 10.1371/journal.pcbi.1002211.
    • (2011) PLoS Comput. Biol , vol.7
    • Buesing, L.1    Bill, J.2    Nessler, B.3    Maass, W.4
  • 8
    • 84862612564 scopus 로고    scopus 로고
    • On contrastive divergence learning
    • Carreira-Perpinan, M. A., and Hinton, G. E. (2005). On contrastive divergence learning. Artif. Intell. Stat. 2005, 17. Available online at: http://www.gatsby.ucl.ac.uk/aistats/AIabst.htm.
    • (2005) Artif. Intell. Stat. , vol.2005 , pp. 17
    • Carreira-Perpinan, M.A.1    Hinton, G.E.2
  • 11
    • 0004291893 scopus 로고
    • London: Methuen
    • Cox, D. (1962). Renewal Theory. Vol. 1. London: Methuen.
    • (1962) Renewal Theory , vol.1
    • Cox, D.1
  • 12
    • 84883501396 scopus 로고    scopus 로고
    • A scalable neural chip with synaptic electronics using cmos integrated memristors
    • 384011. doi: 10.1088/0957-4484/24/38/384011
    • Cruz-Albrecht, J. M., Derosier, T., and Srinivasa, N. (2013). A scalable neural chip with synaptic electronics using cmos integrated memristors. Nanotechnology 24, 384011. doi: 10.1088/0957-4484/24/38/384011.
    • (2013) Nanotechnology , vol.24
    • Cruz-Albrecht, J.M.1    Derosier, T.2    Srinivasa, N.3
  • 13
    • 0003005916 scopus 로고    scopus 로고
    • 'A pulse-coded communications infrastructure for neuromorphic systems, chapter 6'
    • eds. W. Maass and C. Bishop (Cambridge, MA: MIT Press)
    • Deiss, S., Douglas, R., and Whatley, A. (1998). "A pulse-coded communications infrastructure for neuromorphic systems, chapter 6," in Pulsed Neural Networks, eds W. Maass and C. Bishop (Cambridge, MA: MIT Press), 157-178.
    • (1998) Pulsed Neural Networks , pp. 157-178
    • Deiss, S.1    Douglas, R.2    Whatley, A.3
  • 14
    • 37749042762 scopus 로고    scopus 로고
    • Bayesian spiking neurons I: inference
    • doi: 10.1162/neco.2008.20.1.91
    • Deneve, S. (2008). Bayesian spiking neurons I: inference. Neural Comput. 20, 91-117. doi: 10.1162/neco.2008.20.1.91.
    • (2008) Neural Comput , vol.20 , pp. 91-117
    • Deneve, S.1
  • 15
    • 0034932944 scopus 로고    scopus 로고
    • Efficient computation and cue integration with noisy population codes
    • doi: 10.1038/90541
    • Deneve, S., Latham, P., and Pouget, A. (2001). Efficient computation and cue integration with noisy population codes. Nature Neurosci. 4, 826-831. doi: 10.1038/90541.
    • (2001) Nature Neurosci , vol.4 , pp. 826-831
    • Deneve, S.1    Latham, P.2    Pouget, A.3
  • 17
    • 34347235785 scopus 로고    scopus 로고
    • Bayesian Brain Probabilistic Approaches to Neural Coding. Cambridge
    • doi:10.7551/mitpress/9780262042383.001.0001
    • Doya, K., Ishii, S., Pouget, A., and Rao, R. (2006). Bayesian Brain Probabilistic Approaches to Neural Coding. Cambridge, MA: MIT Press. doi: 10.7551/mitpress/9780262042383.001.0001.
    • (2006) MA: MIT Press
    • Doya, K.1    Ishii, S.2    Pouget, A.3    Rao, R.4
  • 18
    • 84870209909 scopus 로고    scopus 로고
    • A large-scale model of the functioning brain
    • doi: 10.1126/science.1225266
    • Eliasmith, C., Stewart, T., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al. (2012). A large-scale model of the functioning brain. Science 338, 1202-1205. doi: 10.1126/science.1225266.
    • (2012) Science , vol.338 , pp. 1202-1205
    • Eliasmith, C.1    Stewart, T.2    Choo, X.3    Bekolay, T.4    DeWolf, T.5    Tang, Y.6
  • 19
    • 76749113376 scopus 로고    scopus 로고
    • Statistically optimal perception and learning: from behavior to neural representations: perceptual learning, motor learning, and automaticity
    • doi: 10.1016/j.tics.2010.01.003
    • Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistically optimal perception and learning: from behavior to neural representations: perceptual learning, motor learning, and automaticity. Trends Cogn. Sci. 14, 119. doi: 10.1016/j.tics.2010.01.003.
    • (2010) Trends Cogn. Sci , vol.14 , pp. 119
    • Fiser, J.1    Berkes, P.2    Orbán, G.3    Lengyel, M.4
  • 20
    • 0033110047 scopus 로고    scopus 로고
    • Collective behavior of networks with linear (VLSI) integrate and fire neurons
    • doi: 10.1162/089976699300016601
    • Fusi, S., and Mattia, M. (1999). Collective behavior of networks with linear (VLSI) integrate and fire neurons. Neural Comput. 11, 633-652. doi: 10.1162/089976699300016601.
    • (1999) Neural Comput , vol.11 , pp. 633-652
    • Fusi, S.1    Mattia, M.2
  • 22
    • 0004017463 scopus 로고    scopus 로고
    • doi:10.1017/CBO9780511815706, Populations, Plasticity. Cambridge: Cambridge University Press
    • Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511815706.
    • (2002) Spiking Neuron Models. Single Neurons
    • Gerstner, W.1    Kistler, W.2
  • 23
    • 84885847922 scopus 로고    scopus 로고
    • Brian: a simulator for spiking neural networks in Python
    • doi: 10.3389/neuro.11.005.2008
    • Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008.
    • (2008) Front. Neuroinform , vol.2 , pp. 5
    • Goodman, D.1    Brette, R.2
  • 24
    • 77955281093 scopus 로고    scopus 로고
    • Probabilistic models of cognition: exploring representations and inductive biases
    • doi: 10.1016/j.tics.2010.05.004
    • Griffiths, T., Chater, N., Kemp, C., Perfors, A., and Tenenbaum, J. B. (2010). Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn. Sci. 14, 357-364. doi: 10.1016/j.tics.2010.05.004.
    • (2010) Trends Cogn. Sci , vol.14 , pp. 357-364
    • Griffiths, T.1    Chater, N.2    Kemp, C.3    Perfors, A.4    Tenenbaum, J.B.5
  • 25
    • 0003413187 scopus 로고    scopus 로고
    • 2nd Edn. Prentice Hall.
    • Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2nd Edn. Prentice Hall. Available online at: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0132733501.
    • (1998) Neural Networks: A Comprehensive Foundation
    • Haykin, S.1
  • 26
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • doi: 10.1162/neco.2006.18.7.1527
    • Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554. doi: 10.1162/neco.2006.18.7.1527.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • doi: 10.1126/science.1127647
    • Hinton, G., and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science 313, 504-507. doi: 10.1126/science.1127647.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 28
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • doi: 10.1162/089976602760128018
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771-1800. doi: 10.1162/089976602760128018.
    • (2002) Neural Comput , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 31
    • 0035653423 scopus 로고    scopus 로고
    • Intrinsic stabilization of output rates by spike-based hebbian learning
    • doi: 10.1162/089976601317098501
    • Kempter, R., Gerstner, W., and Van Hemmen, J. (2001). Intrinsic stabilization of output rates by spike-based hebbian learning. Neural Comput. 13, 2709-2741. doi: 10.1162/089976601317098501.
    • (2001) Neural Comput , vol.13 , pp. 2709-2741
    • Kempter, R.1    Gerstner, W.2    Van Hemmen, J.3
  • 32
    • 84861089198 scopus 로고    scopus 로고
    • Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
    • doi: 10.1021/nl201040y
    • Kuzum, D., Jeyasingh, R. G., Lee, B., and Wong, H.-S. P. (2011). Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179-2186. doi: 10.1021/nl201040y.
    • (2011) Nano Lett , vol.12 , pp. 2179-2186
    • Kuzum, D.1    Jeyasingh, R.G.2    Lee, B.3    Wong, H.-S.P.4
  • 34
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted boltzmann machines and deep belief networks
    • doi: 10.1162/neco.2008.04-07-510
    • Le Roux, N., and Bengio, Y. (2008). Representational power of restricted boltzmann machines and deep belief networks. Neural Comput. 20, 1631-1649. doi: 10.1162/neco.2008.04-07-510.
    • (2008) Neural Comput , vol.20 , pp. 1631-1649
    • Le Roux, N.1    Bengio, Y.2
  • 35
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • doi: 10.1109/5.726791
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324. doi: 10.1109/5.726791.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 36
    • 77954760819 scopus 로고    scopus 로고
    • Neuromorphic sensory systems
    • doi: 10.1016/j.conb.2010.03.007
    • Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288-295. doi: 10.1016/j.conb.2010.03.007.
    • (2010) Curr. Opin. Neurobiol , vol.20 , pp. 288-295
    • Liu, S.-C.1    Delbruck, T.2
  • 37
    • 0004116444 scopus 로고
    • Analog VLSI and Neural Systems. Reading
    • doi:10.1007/978-1-4613-1639-8
    • Mead, C. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley. doi: 10.1007/978-1-4613-1639-8.
    • (1989) MA: Addison-Wesley
    • Mead, C.1
  • 39
    • 34548610596 scopus 로고    scopus 로고
    • Visual recognition and inference using dynamic over complete sparse learning
    • doi: 10.1162/neco.2007.19.9.2301
    • Murray, J. F., and Kreutz-Delgado, K. (2007). Visual recognition and inference using dynamic over complete sparse learning. Neural Comput. 19, 2301-2352. doi: 10.1162/neco.2007.19.9.2301.
    • (2007) Neural Comput , vol.19 , pp. 2301-2352
    • Murray, J.F.1    Kreutz-Delgado, K.2
  • 41
    • 84862232200 scopus 로고    scopus 로고
    • Dynamic state and parameter estimation applied to neuromorphic systems
    • doi: 10.1162/NECO_a_00293
    • Neftci, E., Toth, B., Indiveri, G., and Abarbanel, H. (2012). Dynamic state and parameter estimation applied to neuromorphic systems. Neural Comput. 24, 1669-1694. doi: 10.1162/NECO_a_00293.
    • (2012) Neural Comput , vol.24 , pp. 1669-1694
    • Neftci, E.1    Toth, B.2    Indiveri, G.3    Abarbanel, H.4
  • 42
    • 84888811418 scopus 로고    scopus 로고
    • Real-time classification and sensor fusion with a spiking deep belief network
    • doi: 10.3389/fnins.2013.00178
    • O'Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-time classification and sensor fusion with a spiking deep belief network. Front. Neurosci. 7:178. doi: 10.3389/fnins.2013.00178.
    • (2013) Front. Neurosci , vol.7 , pp. 178
    • O'Connor, P.1    Neil, D.2    Liu, S.-C.3    Delbruck, T.4    Pfeiffer, M.5
  • 43
    • 84866595921 scopus 로고    scopus 로고
    • "Live demonstration: Hierarchical address-event routing architecture for reconfigurable large scale neuromorphic systems,"
    • 2012 IEEE International Symposium on, (Seoul). doi: 10.1109/ISCAS.2012.6272133.
    • Park, J., Yu, T., Maier, C., Joshi, S., and Cauwenberghs, G. (2012). "Live demonstration: Hierarchical address-event routing architecture for reconfigurable large scale neuromorphic systems," in Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, (Seoul), 707, 711, 20-23. doi: 10.1109/ISCAS.2012.6272133. Available online at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6272133.
    • (2012) Circuits and Systems (ISCAS) , vol.707 , Issue.711 , pp. 20-23
    • Park, J.1    Yu, T.2    Maier, C.3    Joshi, S.4    Cauwenberghs, G.5
  • 46
    • 0034133323 scopus 로고    scopus 로고
    • Noise in integrate-and-fire neurons: from stochastic input to escape rates
    • doi: 10.1162/089976600300015835
    • Plesser, H. E., and Gerstner, W. (2000). Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neural Comput. 12, 367-384. doi: 10.1162/089976600300015835.
    • (2000) Neural Comput , vol.12 , pp. 367-384
    • Plesser, H.E.1    Gerstner, W.2
  • 47
    • 0037566546 scopus 로고    scopus 로고
    • Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks
    • doi: 10.1016/S0896-6273(03)00255-1
    • Renart, A., Song, P., and Wang, X.-J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38, 473-485. doi: 10.1016/S0896-6273(03)00255-1.
    • (2003) Neuron , vol.38 , pp. 473-485
    • Renart, A.1    Song, P.2    Wang, X.-J.3
  • 48
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • doi: 10.1214/aoms/1177729586
    • Robbins, H., and Monro, S. (1951). A stochastic approximation method. Ann. Math. Stat. 22, 400-407. doi: 10.1214/aoms/1177729586.
    • (1951) Ann. Math. Stat , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 50
  • 51
    • 35948993879 scopus 로고    scopus 로고
    • Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools
    • doi: 10.1523/JNEUROSCI.3575-07.2007
    • Silver, R., Boahen, K., Grillner, S., Kopell, N., and Olsen, K. (2007). Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools. J. Neurosci. 27, 11807. doi: 10.1523/JNEUROSCI.3575-07.2007.
    • (2007) J. Neurosci , vol.27 , pp. 11807
    • Silver, R.1    Boahen, K.2    Grillner, S.3    Kopell, N.4    Olsen, K.5
  • 52
    • 43049126833 scopus 로고    scopus 로고
    • The missing memristor found
    • doi: 10.1038/nature06932
    • Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. (2008). The missing memristor found. Nature 453, 80-83. doi: 10.1038/nature06932.
    • (2008) Nature , vol.453 , pp. 80-83
    • Strukov, D.B.1    Snider, G.S.2    Stewart, D.R.3    Williams, R.S.4
  • 54
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • doi: 10.1126/science.274.5293.1724
    • van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724-1726. doi: 10.1126/science.274.5293.1724.
    • (1996) Science , vol.274 , pp. 1724-1726
    • van Vreeswijk, C.1    Sompolinsky, H.2
  • 55
    • 84874143086 scopus 로고    scopus 로고
    • '65k-neuron integrate-and-fire array transceiver with address-event reconfigurable synaptic routing'
    • (Hsinch). doi: 10.1109/BioCAS.2012.6418479.
    • Yu, T., Park, J., Joshi, S., Maier, C., and Cauwenberghs, G. (2012) "65k-neuron integrate-and-fire array transceiver with address-event reconfigurable synaptic routing," in Biomedical Circuits and Systems Conference (BioCAS), IEEE, (Hsinch), 21, 24. 28-30. doi: 10.1109/BioCAS.2012.6418479. Available online at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6418479.
    • (2012) Biomedical Circuits and Systems Conference (BioCAS),IEEE , vol.21-24 , pp. 28-30
    • Yu, T.1    Park, J.2    Joshi, S.3    Maier, C.4    Cauwenberghs, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.