-
1
-
-
64249172203
-
The canonical Notch signaling pathway: unfolding the activation mechanism
-
Kopan R., Ilagan M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009, 137:216-233.
-
(2009)
Cell
, vol.137
, pp. 216-233
-
-
Kopan, R.1
Ilagan, M.X.2
-
2
-
-
80051531363
-
Notch signaling: simplicity in design, versatility in function
-
Andersson E.R., et al. Notch signaling: simplicity in design, versatility in function. Development 2011, 138:3593-3612.
-
(2011)
Development
, vol.138
, pp. 3593-3612
-
-
Andersson, E.R.1
-
3
-
-
84862120880
-
Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin
-
Meloty-Kapella L., et al. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 2012, 22:1299-1312.
-
(2012)
Dev. Cell
, vol.22
, pp. 1299-1312
-
-
Meloty-Kapella, L.1
-
4
-
-
34547780475
-
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors
-
O'Neil J., et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 2007, 204:1813-1824.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1813-1824
-
-
O'Neil, J.1
-
5
-
-
43249087214
-
Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis
-
Perry J.M., Li L. Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis. Genes Dev. 2008, 22:1107-1109.
-
(2008)
Genes Dev.
, vol.22
, pp. 1107-1109
-
-
Perry, J.M.1
Li, L.2
-
6
-
-
84879384549
-
Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions
-
Sancho R., et al. Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions. PLoS Biol. 2013, 11:e1001586.
-
(2013)
PLoS Biol.
, vol.11
, pp. e1001586
-
-
Sancho, R.1
-
7
-
-
84865241459
-
The Notch signalling system: recent insights into the complexity of a conserved pathway
-
Guruharsha K.G., et al. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 2012, 13:654-666.
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 654-666
-
-
Guruharsha, K.G.1
-
9
-
-
84896398914
-
Notch signaling and new therapeutic options in liver disease
-
Morell C.M., Strazzabosco M. Notch signaling and new therapeutic options in liver disease. J. Hepatol. 2014, 60:885-890.
-
(2014)
J. Hepatol.
, vol.60
, pp. 885-890
-
-
Morell, C.M.1
Strazzabosco, M.2
-
10
-
-
84882245596
-
Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability
-
Pajvani U.B., et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat. Med. 2013, 19:1054-1060.
-
(2013)
Nat. Med.
, vol.19
, pp. 1054-1060
-
-
Pajvani, U.B.1
-
11
-
-
79961173038
-
Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner
-
Pajvani U.B., et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat. Med. 2011, 17:961-967.
-
(2011)
Nat. Med.
, vol.17
, pp. 961-967
-
-
Pajvani, U.B.1
-
12
-
-
0033636523
-
Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
-
Michael M.D., et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 2000, 6:87-97.
-
(2000)
Mol. Cell
, vol.6
, pp. 87-97
-
-
Michael, M.D.1
-
13
-
-
38649116056
-
Selective versus total insulin resistance: a pathogenic paradox
-
Brown M.S., Goldstein J.L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008, 7:95-96.
-
(2008)
Cell Metab.
, vol.7
, pp. 95-96
-
-
Brown, M.S.1
Goldstein, J.L.2
-
14
-
-
38649110496
-
Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis
-
Biddinger S.B., et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 2008, 7:125-134.
-
(2008)
Cell Metab.
, vol.7
, pp. 125-134
-
-
Biddinger, S.B.1
-
15
-
-
84885187437
-
A central role for mTOR in lipid homeostasis
-
Lamming D.W., Sabatini D.M. A central role for mTOR in lipid homeostasis. Cell Metab. 2013, 18:465-469.
-
(2013)
Cell Metab.
, vol.18
, pp. 465-469
-
-
Lamming, D.W.1
Sabatini, D.M.2
-
16
-
-
84891762279
-
Hepatic Notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease
-
Valenti L., et al. Hepatic Notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease. Diabetes 2013, 62:4052-4062.
-
(2013)
Diabetes
, vol.62
, pp. 4052-4062
-
-
Valenti, L.1
-
17
-
-
84892572665
-
Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids
-
Li H., et al. Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. Am. J. Physiol. Endocrinol. Metab. 2014, 306:E197-E209.
-
(2014)
Am. J. Physiol. Endocrinol. Metab.
, vol.306
, pp. E197-E209
-
-
Li, H.1
-
18
-
-
1842452938
-
Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes
-
Ross D.A., et al. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Mol. Cell. Biol. 2004, 24:3505-3513.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3505-3513
-
-
Ross, D.A.1
-
19
-
-
33947172724
-
Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells
-
Vujovic S., et al. Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells. Cell Prolif. 2007, 40:185-195.
-
(2007)
Cell Prolif.
, vol.40
, pp. 185-195
-
-
Vujovic, S.1
-
20
-
-
84871971020
-
Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue
-
Osathanon T., et al. Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol. Int. 2012, 36:1161-1170.
-
(2012)
Cell Biol. Int.
, vol.36
, pp. 1161-1170
-
-
Osathanon, T.1
-
21
-
-
77649215401
-
γ-Secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-γ
-
Huang Y., et al. γ-Secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-γ. Cell Prolif. 2010, 43:147-156.
-
(2010)
Cell Prolif.
, vol.43
, pp. 147-156
-
-
Huang, Y.1
-
22
-
-
7744224387
-
Notch pathway is dispensable for adipocyte specification
-
Nichols A.M., et al. Notch pathway is dispensable for adipocyte specification. Genesis 2004, 40:40-44.
-
(2004)
Genesis
, vol.40
, pp. 40-44
-
-
Nichols, A.M.1
-
23
-
-
84872501735
-
Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes
-
Lai P.Y., et al. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 2013, 430:1132-1139.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.430
, pp. 1132-1139
-
-
Lai, P.Y.1
-
24
-
-
79956302762
-
Hes1 is required for contact inhibition of cell proliferation in 3T3-L1 preadipocytes
-
Noda N., et al. Hes1 is required for contact inhibition of cell proliferation in 3T3-L1 preadipocytes. Genes Cells 2011, 16:704-713.
-
(2011)
Genes Cells
, vol.16
, pp. 704-713
-
-
Noda, N.1
-
25
-
-
84884273954
-
The developmental origins of adipose tissue
-
Berry D.C., et al. The developmental origins of adipose tissue. Development 2013, 140:3939-3949.
-
(2013)
Development
, vol.140
, pp. 3939-3949
-
-
Berry, D.C.1
-
26
-
-
84887431711
-
Brown and beige fat: development, function and therapeutic potential
-
Harms M., Seale P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 2013, 19:1252-1263.
-
(2013)
Nat. Med.
, vol.19
, pp. 1252-1263
-
-
Harms, M.1
Seale, P.2
-
27
-
-
0034682795
-
Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis
-
Matthias A., et al. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis. J. Biol. Chem. 2000, 275:25073-25081.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25073-25081
-
-
Matthias, A.1
-
28
-
-
84867564026
-
Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
-
Fedorenko A., et al. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012, 151:400-413.
-
(2012)
Cell
, vol.151
, pp. 400-413
-
-
Fedorenko, A.1
-
29
-
-
84864287504
-
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
-
Wu J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150:366-376.
-
(2012)
Cell
, vol.150
, pp. 366-376
-
-
Wu, J.1
-
30
-
-
84887502374
-
Tracking adipogenesis during white adipose tissue development, expansion and regeneration
-
Wang Q.A., et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013, 19:1338-1344.
-
(2013)
Nat. Med.
, vol.19
, pp. 1338-1344
-
-
Wang, Q.A.1
-
31
-
-
84878525220
-
Bi-directional interconversion of brite and white adipocytes
-
Rosenwald M., et al. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 2013, 15:659-667.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 659-667
-
-
Rosenwald, M.1
-
32
-
-
84880679205
-
Fat cells directly sense temperature to activate thermogenesis
-
Ye L., et al. Fat cells directly sense temperature to activate thermogenesis. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:12480-12485.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 12480-12485
-
-
Ye, L.1
-
33
-
-
80052739107
-
White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis
-
Cao L., et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011, 14:324-338.
-
(2011)
Cell Metab.
, vol.14
, pp. 324-338
-
-
Cao, L.1
-
34
-
-
50049122271
-
PRDM16 controls a brown fat/skeletal muscle switch
-
Seale P., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454:961-967.
-
(2008)
Nature
, vol.454
, pp. 961-967
-
-
Seale, P.1
-
35
-
-
84883354892
-
A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes
-
Liu W., et al. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J. Cell Sci. 2013, 126:3527-3532.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 3527-3532
-
-
Liu, W.1
-
36
-
-
84905740317
-
Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity
-
Bi P., et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat. Med. 2014, 20:911-918.
-
(2014)
Nat. Med.
, vol.20
, pp. 911-918
-
-
Bi, P.1
-
37
-
-
84871889884
-
Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues
-
Shan T., et al. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J. 2013, 27:277-287.
-
(2013)
FASEB J.
, vol.27
, pp. 277-287
-
-
Shan, T.1
-
38
-
-
76749118930
-
Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research
-
Martens K., et al. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 2010, 584:1054-1058.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1054-1058
-
-
Martens, K.1
-
39
-
-
33748747113
-
Selective expression of an aP2/fatty acid binding protein 4-Cre transgene in non-adipogenic tissues during embryonic development
-
Urs S., et al. Selective expression of an aP2/fatty acid binding protein 4-Cre transgene in non-adipogenic tissues during embryonic development. Transgenic Res. 2006, 15:647-653.
-
(2006)
Transgenic Res.
, vol.15
, pp. 647-653
-
-
Urs, S.1
-
40
-
-
84871750212
-
A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods
-
Mullican S.E., et al. A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods. Mol. Endocrinol. 2013, 27:127-134.
-
(2013)
Mol. Endocrinol.
, vol.27
, pp. 127-134
-
-
Mullican, S.E.1
-
41
-
-
84874399589
-
Lessons on conditional gene targeting in mouse adipose tissue
-
Lee K.Y., et al. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 2013, 62:864-874.
-
(2013)
Diabetes
, vol.62
, pp. 864-874
-
-
Lee, K.Y.1
-
42
-
-
84872225149
-
PGC1α and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders
-
Austin S., St-Pierre J. PGC1α and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 2012, 125:4963-4971.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 4963-4971
-
-
Austin, S.1
St-Pierre, J.2
-
43
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P., et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
44
-
-
84892702771
-
Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
-
Cohen P., et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014, 156:304-316.
-
(2014)
Cell
, vol.156
, pp. 304-316
-
-
Cohen, P.1
-
45
-
-
34347326271
-
Transcriptional control of brown fat determination by PRDM16
-
Seale P., et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007, 6:38-54.
-
(2007)
Cell Metab.
, vol.6
, pp. 38-54
-
-
Seale, P.1
-
46
-
-
84907683854
-
Ebf2 is a selective marker of brown and beige adipogenic precursor cells
-
Wang W., et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:14466-14471.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 14466-14471
-
-
Wang, W.1
-
47
-
-
84926486610
-
ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes
-
247ra103
-
Ussar S., et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl. Med. 2014, 6:247ra103.
-
(2014)
Sci. Transl. Med.
, vol.6
-
-
Ussar, S.1
-
48
-
-
0019935341
-
The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man
-
Thiebaud D., et al. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 1982, 31:957-963.
-
(1982)
Diabetes
, vol.31
, pp. 957-963
-
-
Thiebaud, D.1
-
49
-
-
0023838435
-
The disposal of an oral glucose load in patients with non-insulin-dependent diabetes
-
Ferrannini E., et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 1988, 37:79-85.
-
(1988)
Metabolism
, vol.37
, pp. 79-85
-
-
Ferrannini, E.1
-
50
-
-
75549085755
-
Skeletal muscle insulin resistance is the primary defect in type 2 diabetes
-
DeFronzo R.A., Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32(Suppl. 2):S157-S163.
-
(2009)
Diabetes Care
, vol.32
, pp. S157-S163
-
-
DeFronzo, R.A.1
Tripathy, D.2
-
51
-
-
84864283300
-
Muscles, exercise and obesity: skeletal muscle as a secretory organ
-
Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8:457-465.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 457-465
-
-
Pedersen, B.K.1
Febbraio, M.A.2
-
52
-
-
85017825080
-
Building muscle: molecular regulation of myogenesis
-
Bentzinger C.F., et al. Building muscle: molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4:a008342.
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
, pp. a008342
-
-
Bentzinger, C.F.1
-
53
-
-
84893407906
-
Distinct contextual roles for Notch signalling in skeletal muscle stem cells
-
Mourikis P., Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev. Biol. 2014, 14:2.
-
(2014)
BMC Dev. Biol.
, vol.14
, pp. 2
-
-
Mourikis, P.1
Tajbakhsh, S.2
-
54
-
-
0036744815
-
The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis
-
Conboy I.M., Rando T.A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 2002, 3:397-409.
-
(2002)
Dev. Cell
, vol.3
, pp. 397-409
-
-
Conboy, I.M.1
Rando, T.A.2
-
55
-
-
84856118451
-
A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state
-
Mourikis P., et al. A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 2012, 30:243-252.
-
(2012)
Stem Cells
, vol.30
, pp. 243-252
-
-
Mourikis, P.1
-
56
-
-
84862942273
-
Notch signaling is necessary to maintain quiescence in adult muscle stem cells
-
Bjornson C.R., et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 2012, 30:232-242.
-
(2012)
Stem Cells
, vol.30
, pp. 232-242
-
-
Bjornson, C.R.1
-
57
-
-
84864021783
-
Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells
-
Wen Y., et al. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol. Cell. Biol. 2012, 32:2300-2311.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 2300-2311
-
-
Wen, Y.1
-
58
-
-
34248364852
-
RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells
-
Vasyutina E., et al. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:4443-4448.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 4443-4448
-
-
Vasyutina, E.1
-
59
-
-
33846330114
-
Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants
-
Schuster-Gossler K., et al. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:537-542.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 537-542
-
-
Schuster-Gossler, K.1
-
60
-
-
34848838902
-
A Foxo/Notch pathway controls myogenic differentiation and fiber type specification
-
Kitamura T., et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest. 2007, 117:2477-2485.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 2477-2485
-
-
Kitamura, T.1
-
61
-
-
65449183851
-
Targeting the CNS to treat type 2 diabetes
-
Sandoval D.A., et al. Targeting the CNS to treat type 2 diabetes. Nat. Rev. Drug Discov. 2009, 8:386-398.
-
(2009)
Nat. Rev. Drug Discov.
, vol.8
, pp. 386-398
-
-
Sandoval, D.A.1
-
62
-
-
84908159068
-
Obesity: cerebral damage in obesity-associated metabolic syndrome
-
Rusinek H., Convit A. Obesity: cerebral damage in obesity-associated metabolic syndrome. Nat. Rev. Endocrinol. 2014, 10:642-644.
-
(2014)
Nat. Rev. Endocrinol.
, vol.10
, pp. 642-644
-
-
Rusinek, H.1
Convit, A.2
-
63
-
-
84886994729
-
Neural stem cells: generating and regenerating the brain
-
Gage F.H., Temple S. Neural stem cells: generating and regenerating the brain. Neuron 2013, 80:588-601.
-
(2013)
Neuron
, vol.80
, pp. 588-601
-
-
Gage, F.H.1
Temple, S.2
-
64
-
-
77749336752
-
Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains
-
Imayoshi I., et al. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 2010, 30:3489-3498.
-
(2010)
J. Neurosci.
, vol.30
, pp. 3489-3498
-
-
Imayoshi, I.1
-
65
-
-
84867051812
-
IKKβa/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes
-
Li J., et al. IKKβa/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol. 2012, 14:999-1012.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 999-1012
-
-
Li, J.1
-
66
-
-
78650878363
-
NF-κB, inflammation, and metabolic disease
-
Baker R.G., et al. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011, 13:11-22.
-
(2011)
Cell Metab.
, vol.13
, pp. 11-22
-
-
Baker, R.G.1
-
67
-
-
84908508160
-
Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells
-
Ottone C., et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol. 2014, 16:1045-1056.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1045-1056
-
-
Ottone, C.1
-
68
-
-
84863605556
-
Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders
-
Fukuda D., et al. Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E1868-E1877.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E1868-E1877
-
-
Fukuda, D.1
-
69
-
-
34548164780
-
Notch signaling in vascular development and physiology
-
Gridley T. Notch signaling in vascular development and physiology. Development 2007, 134:2709-2718.
-
(2007)
Development
, vol.134
, pp. 2709-2718
-
-
Gridley, T.1
-
70
-
-
35349012675
-
Regulation of vascular morphogenesis by Notch signaling
-
Roca C., Adams R.H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 2007, 21:2511-2524.
-
(2007)
Genes Dev.
, vol.21
, pp. 2511-2524
-
-
Roca, C.1
Adams, R.H.2
-
71
-
-
77956304457
-
Notch signaling in the vasculature
-
Gridley T. Notch signaling in the vasculature. Curr. Top. Dev. Biol. 2010, 92:277-309.
-
(2010)
Curr. Top. Dev. Biol.
, vol.92
, pp. 277-309
-
-
Gridley, T.1
-
72
-
-
84879667468
-
Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells
-
Zhao X.C., et al. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells. Neoplasia 2013, 15:815-825.
-
(2013)
Neoplasia
, vol.15
, pp. 815-825
-
-
Zhao, X.C.1
-
73
-
-
84878245626
-
Regulation of innate and adaptive immunity by Notch
-
Radtke F., et al. Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 2013, 13:427-437.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 427-437
-
-
Radtke, F.1
-
74
-
-
84870058819
-
Adaptive immunity in obesity and insulin resistance
-
Sell H., et al. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 2012, 8:709-716.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 709-716
-
-
Sell, H.1
-
75
-
-
77951918926
-
Macrophages, inflammation, and insulin resistance
-
Olefsky J.M., Glass C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72:219-246.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 219-246
-
-
Olefsky, J.M.1
Glass, C.K.2
-
76
-
-
84862591151
-
Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization
-
Xu H., et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 2012, 13:642-650.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 642-650
-
-
Xu, H.1
-
77
-
-
77956954197
-
The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
-
Satoh T., et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 2010, 11:936-944.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 936-944
-
-
Satoh, T.1
-
78
-
-
84055217307
-
Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice
-
Maniati E., et al. Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J. Clin. Invest. 2011, 121:4685-4699.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4685-4699
-
-
Maniati, E.1
-
79
-
-
70349249979
-
Notch1 upregulates LPS-induced macrophage activation by increasing NF-κB activity
-
Monsalve E., et al. Notch1 upregulates LPS-induced macrophage activation by increasing NF-κB activity. Eur. J. Immunol. 2009, 39:2556-2570.
-
(2009)
Eur. J. Immunol.
, vol.39
, pp. 2556-2570
-
-
Monsalve, E.1
-
80
-
-
78149475633
-
Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1
-
Foldi J., et al. Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. J. Immunol. 2010, 185:5023-5031.
-
(2010)
J. Immunol.
, vol.185
, pp. 5023-5031
-
-
Foldi, J.1
-
81
-
-
77950664128
-
Notch exhibits ligand bias and maneuvers stage-specific steering of neural differentiation in embryonic stem cells
-
Ramasamy S.K., Lenka N. Notch exhibits ligand bias and maneuvers stage-specific steering of neural differentiation in embryonic stem cells. Mol. Cell. Biol. 2010, 30:1946-1957.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1946-1957
-
-
Ramasamy, S.K.1
Lenka, N.2
-
82
-
-
84883436417
-
Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1
-
Andrawes M.B., et al. Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J. Biol. Chem. 2013, 288:25477-25489.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 25477-25489
-
-
Andrawes, M.B.1
-
83
-
-
66449123068
-
The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
-
Benedito R., et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 2009, 137:1124-1135.
-
(2009)
Cell
, vol.137
, pp. 1124-1135
-
-
Benedito, R.1
-
84
-
-
84899626029
-
Therapeutic modulation of Notch signalling - are we there yet?
-
Andersson E.R., Lendahl U. Therapeutic modulation of Notch signalling - are we there yet?. Nat. Rev. Drug Discov. 2014, 13:357-378.
-
(2014)
Nat. Rev. Drug Discov.
, vol.13
, pp. 357-378
-
-
Andersson, E.R.1
Lendahl, U.2
-
85
-
-
84880712325
-
A Phase 3 trial of semagacestat for treatment of Alzheimer's disease
-
Doody R.S., et al. A Phase 3 trial of semagacestat for treatment of Alzheimer's disease. N. Engl. J. Med. 2013, 369:341-350.
-
(2013)
N. Engl. J. Med.
, vol.369
, pp. 341-350
-
-
Doody, R.S.1
-
86
-
-
33645013015
-
Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease
-
Siemers E.R., et al. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 2006, 66:602-604.
-
(2006)
Neurology
, vol.66
, pp. 602-604
-
-
Siemers, E.R.1
-
87
-
-
49449101906
-
Phase 2 safety trial targeting amyloid beta production with a γ-secretase inhibitor in Alzheimer disease
-
Fleisher A.S., et al. Phase 2 safety trial targeting amyloid beta production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol. 2008, 65:1031-1038.
-
(2008)
Arch. Neurol.
, vol.65
, pp. 1031-1038
-
-
Fleisher, A.S.1
-
88
-
-
74949092824
-
Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade
-
Ma J. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Invest. 2010, 120:103-114.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 103-114
-
-
Ma, J.1
|