메뉴 건너뛰기




Volumn 26, Issue 5, 2015, Pages 248-255

Notch signaling as a novel regulator of metabolism

Author keywords

Insulin resistance; Notch signaling; Obesity; Type 2 diabetes

Indexed keywords

NOTCH RECEPTOR; INSULIN;

EID: 84928704699     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.02.006     Document Type: Review
Times cited : (146)

References (88)
  • 1
    • 64249172203 scopus 로고    scopus 로고
    • The canonical Notch signaling pathway: unfolding the activation mechanism
    • Kopan R., Ilagan M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009, 137:216-233.
    • (2009) Cell , vol.137 , pp. 216-233
    • Kopan, R.1    Ilagan, M.X.2
  • 2
    • 80051531363 scopus 로고    scopus 로고
    • Notch signaling: simplicity in design, versatility in function
    • Andersson E.R., et al. Notch signaling: simplicity in design, versatility in function. Development 2011, 138:3593-3612.
    • (2011) Development , vol.138 , pp. 3593-3612
    • Andersson, E.R.1
  • 3
    • 84862120880 scopus 로고    scopus 로고
    • Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin
    • Meloty-Kapella L., et al. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 2012, 22:1299-1312.
    • (2012) Dev. Cell , vol.22 , pp. 1299-1312
    • Meloty-Kapella, L.1
  • 4
    • 34547780475 scopus 로고    scopus 로고
    • FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors
    • O'Neil J., et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 2007, 204:1813-1824.
    • (2007) J. Exp. Med. , vol.204 , pp. 1813-1824
    • O'Neil, J.1
  • 5
    • 43249087214 scopus 로고    scopus 로고
    • Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis
    • Perry J.M., Li L. Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis. Genes Dev. 2008, 22:1107-1109.
    • (2008) Genes Dev. , vol.22 , pp. 1107-1109
    • Perry, J.M.1    Li, L.2
  • 6
    • 84879384549 scopus 로고    scopus 로고
    • Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions
    • Sancho R., et al. Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions. PLoS Biol. 2013, 11:e1001586.
    • (2013) PLoS Biol. , vol.11 , pp. e1001586
    • Sancho, R.1
  • 7
    • 84865241459 scopus 로고    scopus 로고
    • The Notch signalling system: recent insights into the complexity of a conserved pathway
    • Guruharsha K.G., et al. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 2012, 13:654-666.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 654-666
    • Guruharsha, K.G.1
  • 9
    • 84896398914 scopus 로고    scopus 로고
    • Notch signaling and new therapeutic options in liver disease
    • Morell C.M., Strazzabosco M. Notch signaling and new therapeutic options in liver disease. J. Hepatol. 2014, 60:885-890.
    • (2014) J. Hepatol. , vol.60 , pp. 885-890
    • Morell, C.M.1    Strazzabosco, M.2
  • 10
    • 84882245596 scopus 로고    scopus 로고
    • Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability
    • Pajvani U.B., et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat. Med. 2013, 19:1054-1060.
    • (2013) Nat. Med. , vol.19 , pp. 1054-1060
    • Pajvani, U.B.1
  • 11
    • 79961173038 scopus 로고    scopus 로고
    • Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner
    • Pajvani U.B., et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat. Med. 2011, 17:961-967.
    • (2011) Nat. Med. , vol.17 , pp. 961-967
    • Pajvani, U.B.1
  • 12
    • 0033636523 scopus 로고    scopus 로고
    • Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
    • Michael M.D., et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 2000, 6:87-97.
    • (2000) Mol. Cell , vol.6 , pp. 87-97
    • Michael, M.D.1
  • 13
    • 38649116056 scopus 로고    scopus 로고
    • Selective versus total insulin resistance: a pathogenic paradox
    • Brown M.S., Goldstein J.L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008, 7:95-96.
    • (2008) Cell Metab. , vol.7 , pp. 95-96
    • Brown, M.S.1    Goldstein, J.L.2
  • 14
    • 38649110496 scopus 로고    scopus 로고
    • Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis
    • Biddinger S.B., et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 2008, 7:125-134.
    • (2008) Cell Metab. , vol.7 , pp. 125-134
    • Biddinger, S.B.1
  • 15
    • 84885187437 scopus 로고    scopus 로고
    • A central role for mTOR in lipid homeostasis
    • Lamming D.W., Sabatini D.M. A central role for mTOR in lipid homeostasis. Cell Metab. 2013, 18:465-469.
    • (2013) Cell Metab. , vol.18 , pp. 465-469
    • Lamming, D.W.1    Sabatini, D.M.2
  • 16
    • 84891762279 scopus 로고    scopus 로고
    • Hepatic Notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease
    • Valenti L., et al. Hepatic Notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease. Diabetes 2013, 62:4052-4062.
    • (2013) Diabetes , vol.62 , pp. 4052-4062
    • Valenti, L.1
  • 17
    • 84892572665 scopus 로고    scopus 로고
    • Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids
    • Li H., et al. Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. Am. J. Physiol. Endocrinol. Metab. 2014, 306:E197-E209.
    • (2014) Am. J. Physiol. Endocrinol. Metab. , vol.306 , pp. E197-E209
    • Li, H.1
  • 18
    • 1842452938 scopus 로고    scopus 로고
    • Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes
    • Ross D.A., et al. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Mol. Cell. Biol. 2004, 24:3505-3513.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3505-3513
    • Ross, D.A.1
  • 19
    • 33947172724 scopus 로고    scopus 로고
    • Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells
    • Vujovic S., et al. Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells. Cell Prolif. 2007, 40:185-195.
    • (2007) Cell Prolif. , vol.40 , pp. 185-195
    • Vujovic, S.1
  • 20
    • 84871971020 scopus 로고    scopus 로고
    • Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue
    • Osathanon T., et al. Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol. Int. 2012, 36:1161-1170.
    • (2012) Cell Biol. Int. , vol.36 , pp. 1161-1170
    • Osathanon, T.1
  • 21
    • 77649215401 scopus 로고    scopus 로고
    • γ-Secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-γ
    • Huang Y., et al. γ-Secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-γ. Cell Prolif. 2010, 43:147-156.
    • (2010) Cell Prolif. , vol.43 , pp. 147-156
    • Huang, Y.1
  • 22
    • 7744224387 scopus 로고    scopus 로고
    • Notch pathway is dispensable for adipocyte specification
    • Nichols A.M., et al. Notch pathway is dispensable for adipocyte specification. Genesis 2004, 40:40-44.
    • (2004) Genesis , vol.40 , pp. 40-44
    • Nichols, A.M.1
  • 23
    • 84872501735 scopus 로고    scopus 로고
    • Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes
    • Lai P.Y., et al. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 2013, 430:1132-1139.
    • (2013) Biochem. Biophys. Res. Commun. , vol.430 , pp. 1132-1139
    • Lai, P.Y.1
  • 24
    • 79956302762 scopus 로고    scopus 로고
    • Hes1 is required for contact inhibition of cell proliferation in 3T3-L1 preadipocytes
    • Noda N., et al. Hes1 is required for contact inhibition of cell proliferation in 3T3-L1 preadipocytes. Genes Cells 2011, 16:704-713.
    • (2011) Genes Cells , vol.16 , pp. 704-713
    • Noda, N.1
  • 25
    • 84884273954 scopus 로고    scopus 로고
    • The developmental origins of adipose tissue
    • Berry D.C., et al. The developmental origins of adipose tissue. Development 2013, 140:3939-3949.
    • (2013) Development , vol.140 , pp. 3939-3949
    • Berry, D.C.1
  • 26
    • 84887431711 scopus 로고    scopus 로고
    • Brown and beige fat: development, function and therapeutic potential
    • Harms M., Seale P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 2013, 19:1252-1263.
    • (2013) Nat. Med. , vol.19 , pp. 1252-1263
    • Harms, M.1    Seale, P.2
  • 27
    • 0034682795 scopus 로고    scopus 로고
    • Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis
    • Matthias A., et al. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis. J. Biol. Chem. 2000, 275:25073-25081.
    • (2000) J. Biol. Chem. , vol.275 , pp. 25073-25081
    • Matthias, A.1
  • 28
    • 84867564026 scopus 로고    scopus 로고
    • Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
    • Fedorenko A., et al. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012, 151:400-413.
    • (2012) Cell , vol.151 , pp. 400-413
    • Fedorenko, A.1
  • 29
    • 84864287504 scopus 로고    scopus 로고
    • Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
    • Wu J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150:366-376.
    • (2012) Cell , vol.150 , pp. 366-376
    • Wu, J.1
  • 30
    • 84887502374 scopus 로고    scopus 로고
    • Tracking adipogenesis during white adipose tissue development, expansion and regeneration
    • Wang Q.A., et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013, 19:1338-1344.
    • (2013) Nat. Med. , vol.19 , pp. 1338-1344
    • Wang, Q.A.1
  • 31
    • 84878525220 scopus 로고    scopus 로고
    • Bi-directional interconversion of brite and white adipocytes
    • Rosenwald M., et al. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 2013, 15:659-667.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 659-667
    • Rosenwald, M.1
  • 32
    • 84880679205 scopus 로고    scopus 로고
    • Fat cells directly sense temperature to activate thermogenesis
    • Ye L., et al. Fat cells directly sense temperature to activate thermogenesis. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:12480-12485.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 12480-12485
    • Ye, L.1
  • 33
    • 80052739107 scopus 로고    scopus 로고
    • White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis
    • Cao L., et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011, 14:324-338.
    • (2011) Cell Metab. , vol.14 , pp. 324-338
    • Cao, L.1
  • 34
    • 50049122271 scopus 로고    scopus 로고
    • PRDM16 controls a brown fat/skeletal muscle switch
    • Seale P., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454:961-967.
    • (2008) Nature , vol.454 , pp. 961-967
    • Seale, P.1
  • 35
    • 84883354892 scopus 로고    scopus 로고
    • A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes
    • Liu W., et al. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J. Cell Sci. 2013, 126:3527-3532.
    • (2013) J. Cell Sci. , vol.126 , pp. 3527-3532
    • Liu, W.1
  • 36
    • 84905740317 scopus 로고    scopus 로고
    • Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity
    • Bi P., et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat. Med. 2014, 20:911-918.
    • (2014) Nat. Med. , vol.20 , pp. 911-918
    • Bi, P.1
  • 37
    • 84871889884 scopus 로고    scopus 로고
    • Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues
    • Shan T., et al. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J. 2013, 27:277-287.
    • (2013) FASEB J. , vol.27 , pp. 277-287
    • Shan, T.1
  • 38
    • 76749118930 scopus 로고    scopus 로고
    • Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research
    • Martens K., et al. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 2010, 584:1054-1058.
    • (2010) FEBS Lett. , vol.584 , pp. 1054-1058
    • Martens, K.1
  • 39
    • 33748747113 scopus 로고    scopus 로고
    • Selective expression of an aP2/fatty acid binding protein 4-Cre transgene in non-adipogenic tissues during embryonic development
    • Urs S., et al. Selective expression of an aP2/fatty acid binding protein 4-Cre transgene in non-adipogenic tissues during embryonic development. Transgenic Res. 2006, 15:647-653.
    • (2006) Transgenic Res. , vol.15 , pp. 647-653
    • Urs, S.1
  • 40
    • 84871750212 scopus 로고    scopus 로고
    • A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods
    • Mullican S.E., et al. A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods. Mol. Endocrinol. 2013, 27:127-134.
    • (2013) Mol. Endocrinol. , vol.27 , pp. 127-134
    • Mullican, S.E.1
  • 41
    • 84874399589 scopus 로고    scopus 로고
    • Lessons on conditional gene targeting in mouse adipose tissue
    • Lee K.Y., et al. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 2013, 62:864-874.
    • (2013) Diabetes , vol.62 , pp. 864-874
    • Lee, K.Y.1
  • 42
    • 84872225149 scopus 로고    scopus 로고
    • PGC1α and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders
    • Austin S., St-Pierre J. PGC1α and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 2012, 125:4963-4971.
    • (2012) J. Cell Sci. , vol.125 , pp. 4963-4971
    • Austin, S.1    St-Pierre, J.2
  • 43
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P., et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 44
    • 84892702771 scopus 로고    scopus 로고
    • Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
    • Cohen P., et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014, 156:304-316.
    • (2014) Cell , vol.156 , pp. 304-316
    • Cohen, P.1
  • 45
    • 34347326271 scopus 로고    scopus 로고
    • Transcriptional control of brown fat determination by PRDM16
    • Seale P., et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007, 6:38-54.
    • (2007) Cell Metab. , vol.6 , pp. 38-54
    • Seale, P.1
  • 46
    • 84907683854 scopus 로고    scopus 로고
    • Ebf2 is a selective marker of brown and beige adipogenic precursor cells
    • Wang W., et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:14466-14471.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 14466-14471
    • Wang, W.1
  • 47
    • 84926486610 scopus 로고    scopus 로고
    • ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes
    • 247ra103
    • Ussar S., et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl. Med. 2014, 6:247ra103.
    • (2014) Sci. Transl. Med. , vol.6
    • Ussar, S.1
  • 48
    • 0019935341 scopus 로고
    • The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man
    • Thiebaud D., et al. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 1982, 31:957-963.
    • (1982) Diabetes , vol.31 , pp. 957-963
    • Thiebaud, D.1
  • 49
    • 0023838435 scopus 로고
    • The disposal of an oral glucose load in patients with non-insulin-dependent diabetes
    • Ferrannini E., et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 1988, 37:79-85.
    • (1988) Metabolism , vol.37 , pp. 79-85
    • Ferrannini, E.1
  • 50
    • 75549085755 scopus 로고    scopus 로고
    • Skeletal muscle insulin resistance is the primary defect in type 2 diabetes
    • DeFronzo R.A., Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32(Suppl. 2):S157-S163.
    • (2009) Diabetes Care , vol.32 , pp. S157-S163
    • DeFronzo, R.A.1    Tripathy, D.2
  • 51
    • 84864283300 scopus 로고    scopus 로고
    • Muscles, exercise and obesity: skeletal muscle as a secretory organ
    • Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8:457-465.
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 457-465
    • Pedersen, B.K.1    Febbraio, M.A.2
  • 52
    • 85017825080 scopus 로고    scopus 로고
    • Building muscle: molecular regulation of myogenesis
    • Bentzinger C.F., et al. Building muscle: molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4:a008342.
    • (2012) Cold Spring Harb. Perspect. Biol. , vol.4 , pp. a008342
    • Bentzinger, C.F.1
  • 53
    • 84893407906 scopus 로고    scopus 로고
    • Distinct contextual roles for Notch signalling in skeletal muscle stem cells
    • Mourikis P., Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev. Biol. 2014, 14:2.
    • (2014) BMC Dev. Biol. , vol.14 , pp. 2
    • Mourikis, P.1    Tajbakhsh, S.2
  • 54
    • 0036744815 scopus 로고    scopus 로고
    • The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis
    • Conboy I.M., Rando T.A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 2002, 3:397-409.
    • (2002) Dev. Cell , vol.3 , pp. 397-409
    • Conboy, I.M.1    Rando, T.A.2
  • 55
    • 84856118451 scopus 로고    scopus 로고
    • A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state
    • Mourikis P., et al. A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 2012, 30:243-252.
    • (2012) Stem Cells , vol.30 , pp. 243-252
    • Mourikis, P.1
  • 56
    • 84862942273 scopus 로고    scopus 로고
    • Notch signaling is necessary to maintain quiescence in adult muscle stem cells
    • Bjornson C.R., et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 2012, 30:232-242.
    • (2012) Stem Cells , vol.30 , pp. 232-242
    • Bjornson, C.R.1
  • 57
    • 84864021783 scopus 로고    scopus 로고
    • Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells
    • Wen Y., et al. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol. Cell. Biol. 2012, 32:2300-2311.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2300-2311
    • Wen, Y.1
  • 58
    • 34248364852 scopus 로고    scopus 로고
    • RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells
    • Vasyutina E., et al. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:4443-4448.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 4443-4448
    • Vasyutina, E.1
  • 59
    • 33846330114 scopus 로고    scopus 로고
    • Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants
    • Schuster-Gossler K., et al. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:537-542.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 537-542
    • Schuster-Gossler, K.1
  • 60
    • 34848838902 scopus 로고    scopus 로고
    • A Foxo/Notch pathway controls myogenic differentiation and fiber type specification
    • Kitamura T., et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest. 2007, 117:2477-2485.
    • (2007) J. Clin. Invest. , vol.117 , pp. 2477-2485
    • Kitamura, T.1
  • 61
    • 65449183851 scopus 로고    scopus 로고
    • Targeting the CNS to treat type 2 diabetes
    • Sandoval D.A., et al. Targeting the CNS to treat type 2 diabetes. Nat. Rev. Drug Discov. 2009, 8:386-398.
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 386-398
    • Sandoval, D.A.1
  • 62
    • 84908159068 scopus 로고    scopus 로고
    • Obesity: cerebral damage in obesity-associated metabolic syndrome
    • Rusinek H., Convit A. Obesity: cerebral damage in obesity-associated metabolic syndrome. Nat. Rev. Endocrinol. 2014, 10:642-644.
    • (2014) Nat. Rev. Endocrinol. , vol.10 , pp. 642-644
    • Rusinek, H.1    Convit, A.2
  • 63
    • 84886994729 scopus 로고    scopus 로고
    • Neural stem cells: generating and regenerating the brain
    • Gage F.H., Temple S. Neural stem cells: generating and regenerating the brain. Neuron 2013, 80:588-601.
    • (2013) Neuron , vol.80 , pp. 588-601
    • Gage, F.H.1    Temple, S.2
  • 64
    • 77749336752 scopus 로고    scopus 로고
    • Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains
    • Imayoshi I., et al. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 2010, 30:3489-3498.
    • (2010) J. Neurosci. , vol.30 , pp. 3489-3498
    • Imayoshi, I.1
  • 65
    • 84867051812 scopus 로고    scopus 로고
    • IKKβa/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes
    • Li J., et al. IKKβa/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol. 2012, 14:999-1012.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 999-1012
    • Li, J.1
  • 66
    • 78650878363 scopus 로고    scopus 로고
    • NF-κB, inflammation, and metabolic disease
    • Baker R.G., et al. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011, 13:11-22.
    • (2011) Cell Metab. , vol.13 , pp. 11-22
    • Baker, R.G.1
  • 67
    • 84908508160 scopus 로고    scopus 로고
    • Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells
    • Ottone C., et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol. 2014, 16:1045-1056.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 1045-1056
    • Ottone, C.1
  • 68
    • 84863605556 scopus 로고    scopus 로고
    • Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders
    • Fukuda D., et al. Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E1868-E1877.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E1868-E1877
    • Fukuda, D.1
  • 69
    • 34548164780 scopus 로고    scopus 로고
    • Notch signaling in vascular development and physiology
    • Gridley T. Notch signaling in vascular development and physiology. Development 2007, 134:2709-2718.
    • (2007) Development , vol.134 , pp. 2709-2718
    • Gridley, T.1
  • 70
    • 35349012675 scopus 로고    scopus 로고
    • Regulation of vascular morphogenesis by Notch signaling
    • Roca C., Adams R.H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 2007, 21:2511-2524.
    • (2007) Genes Dev. , vol.21 , pp. 2511-2524
    • Roca, C.1    Adams, R.H.2
  • 71
    • 77956304457 scopus 로고    scopus 로고
    • Notch signaling in the vasculature
    • Gridley T. Notch signaling in the vasculature. Curr. Top. Dev. Biol. 2010, 92:277-309.
    • (2010) Curr. Top. Dev. Biol. , vol.92 , pp. 277-309
    • Gridley, T.1
  • 72
    • 84879667468 scopus 로고    scopus 로고
    • Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells
    • Zhao X.C., et al. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells. Neoplasia 2013, 15:815-825.
    • (2013) Neoplasia , vol.15 , pp. 815-825
    • Zhao, X.C.1
  • 73
    • 84878245626 scopus 로고    scopus 로고
    • Regulation of innate and adaptive immunity by Notch
    • Radtke F., et al. Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 2013, 13:427-437.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 427-437
    • Radtke, F.1
  • 74
    • 84870058819 scopus 로고    scopus 로고
    • Adaptive immunity in obesity and insulin resistance
    • Sell H., et al. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 2012, 8:709-716.
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 709-716
    • Sell, H.1
  • 75
    • 77951918926 scopus 로고    scopus 로고
    • Macrophages, inflammation, and insulin resistance
    • Olefsky J.M., Glass C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72:219-246.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 219-246
    • Olefsky, J.M.1    Glass, C.K.2
  • 76
    • 84862591151 scopus 로고    scopus 로고
    • Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization
    • Xu H., et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 2012, 13:642-650.
    • (2012) Nat. Immunol. , vol.13 , pp. 642-650
    • Xu, H.1
  • 77
    • 77956954197 scopus 로고    scopus 로고
    • The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
    • Satoh T., et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 2010, 11:936-944.
    • (2010) Nat. Immunol. , vol.11 , pp. 936-944
    • Satoh, T.1
  • 78
    • 84055217307 scopus 로고    scopus 로고
    • Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice
    • Maniati E., et al. Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J. Clin. Invest. 2011, 121:4685-4699.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4685-4699
    • Maniati, E.1
  • 79
    • 70349249979 scopus 로고    scopus 로고
    • Notch1 upregulates LPS-induced macrophage activation by increasing NF-κB activity
    • Monsalve E., et al. Notch1 upregulates LPS-induced macrophage activation by increasing NF-κB activity. Eur. J. Immunol. 2009, 39:2556-2570.
    • (2009) Eur. J. Immunol. , vol.39 , pp. 2556-2570
    • Monsalve, E.1
  • 80
    • 78149475633 scopus 로고    scopus 로고
    • Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1
    • Foldi J., et al. Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. J. Immunol. 2010, 185:5023-5031.
    • (2010) J. Immunol. , vol.185 , pp. 5023-5031
    • Foldi, J.1
  • 81
    • 77950664128 scopus 로고    scopus 로고
    • Notch exhibits ligand bias and maneuvers stage-specific steering of neural differentiation in embryonic stem cells
    • Ramasamy S.K., Lenka N. Notch exhibits ligand bias and maneuvers stage-specific steering of neural differentiation in embryonic stem cells. Mol. Cell. Biol. 2010, 30:1946-1957.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 1946-1957
    • Ramasamy, S.K.1    Lenka, N.2
  • 82
    • 84883436417 scopus 로고    scopus 로고
    • Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1
    • Andrawes M.B., et al. Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J. Biol. Chem. 2013, 288:25477-25489.
    • (2013) J. Biol. Chem. , vol.288 , pp. 25477-25489
    • Andrawes, M.B.1
  • 83
    • 66449123068 scopus 로고    scopus 로고
    • The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
    • Benedito R., et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 2009, 137:1124-1135.
    • (2009) Cell , vol.137 , pp. 1124-1135
    • Benedito, R.1
  • 84
    • 84899626029 scopus 로고    scopus 로고
    • Therapeutic modulation of Notch signalling - are we there yet?
    • Andersson E.R., Lendahl U. Therapeutic modulation of Notch signalling - are we there yet?. Nat. Rev. Drug Discov. 2014, 13:357-378.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 357-378
    • Andersson, E.R.1    Lendahl, U.2
  • 85
    • 84880712325 scopus 로고    scopus 로고
    • A Phase 3 trial of semagacestat for treatment of Alzheimer's disease
    • Doody R.S., et al. A Phase 3 trial of semagacestat for treatment of Alzheimer's disease. N. Engl. J. Med. 2013, 369:341-350.
    • (2013) N. Engl. J. Med. , vol.369 , pp. 341-350
    • Doody, R.S.1
  • 86
    • 33645013015 scopus 로고    scopus 로고
    • Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease
    • Siemers E.R., et al. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 2006, 66:602-604.
    • (2006) Neurology , vol.66 , pp. 602-604
    • Siemers, E.R.1
  • 87
    • 49449101906 scopus 로고    scopus 로고
    • Phase 2 safety trial targeting amyloid beta production with a γ-secretase inhibitor in Alzheimer disease
    • Fleisher A.S., et al. Phase 2 safety trial targeting amyloid beta production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol. 2008, 65:1031-1038.
    • (2008) Arch. Neurol. , vol.65 , pp. 1031-1038
    • Fleisher, A.S.1
  • 88
    • 74949092824 scopus 로고    scopus 로고
    • Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade
    • Ma J. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Invest. 2010, 120:103-114.
    • (2010) J. Clin. Invest. , vol.120 , pp. 103-114
    • Ma, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.