메뉴 건너뛰기




Volumn 30, Issue 6, 2014, Pages 539-546

Autophagy, viruses, and intestinal immunity

Author keywords

ATG16L1; Autophagy; Inflammatory bowel disease; Microbiota; Virome

Indexed keywords

AUTOPHAGY; ENTERIC VIRUS; ENVIRONMENTAL FACTOR; GENE INTERACTION; GENE MUTATION; GENETIC ASSOCIATION; GENOTYPE ENVIRONMENT INTERACTION; HOST PATHOGEN INTERACTION; HUMAN; IMMUNITY; INFLAMMATORY BOWEL DISEASE; INTESTINAL IMMUNITY; INTESTINE EPITHELIUM; INTESTINE FLORA; MUCOSAL IMMUNITY; MUCUS SECRETION; NONHUMAN; PANETH CELL; REVIEW; SIMIAN IMMUNODEFICIENCY VIRUS; VIRAL GASTROENTERITIS; ANIMAL; DISEASE MODEL; DISEASE PREDISPOSITION; IMMUNOLOGY; INNATE IMMUNITY; MICROFLORA; MOUSE; PATHOPHYSIOLOGY; SIGNAL TRANSDUCTION; VIROLOGY;

EID: 84927649365     PISSN: 02671379     EISSN: 15317056     Source Type: Journal    
DOI: 10.1097/MOG.0000000000000121     Document Type: Review
Times cited : (14)

References (114)
  • 1
    • 78650500306 scopus 로고    scopus 로고
    • Probiotics, enteric and diarrheal diseases, and global health
    • Preidis GA, Hill C, Guerrant RL, et al. Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology 2010;140:8-14.
    • (2010) Gastroenterology , vol.140 , pp. 8-14
    • Preidis, G.A.1    Hill, C.2    Guerrant, R.L.3
  • 2
    • 84902657697 scopus 로고    scopus 로고
    • Inflammatory bowel disease as a model for translating the microbiome
    • Huttenhower C, Kostic AD, Xavier RJ. Inflammatory bowel disease as a model for translating the microbiome. Immunity 2014;40:843-854.
    • (2014) Immunity , vol.40 , pp. 843-854
    • Huttenhower, C.1    Kostic, A.D.2    Xavier, R.J.3
  • 3
    • 84868336049 scopus 로고    scopus 로고
    • Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease
    • Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119-124.
    • (2012) Nature , vol.491 , pp. 119-124
    • Jostins, L.1    Ripke, S.2    Weersma, R.K.3
  • 4
    • 84897143522 scopus 로고    scopus 로고
    • To be or not to be? How selective autophagy and cell death govern cell fate
    • Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 2014;157:65-75.
    • (2014) Cell , vol.157 , pp. 65-75
    • Green, D.R.1    Levine, B.2
  • 5
    • 84883452831 scopus 로고    scopus 로고
    • Up-to-date membrane biogenesis in the autophagosome formation
    • Hamasaki M, Shibutani ST, Yoshimori T. Up-to-date membrane biogenesis in the autophagosome formation. Curr Opin Cell Biol 2013;25:455-460.
    • (2013) Curr Opin Cell Biol , vol.25 , pp. 455-460
    • Hamasaki, M.1    Shibutani, S.T.2    Yoshimori, T.3
  • 6
    • 84898624312 scopus 로고    scopus 로고
    • Self and nonself: How autophagy targets mitochondria and bacteria
    • Randow F, Youle RJ. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 2014;15:403-411.
    • (2014) Cell Host Microbe , vol.15 , pp. 403-411
    • Randow, F.1    Youle, R.J.2
  • 7
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012;151:1256-1269.
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 8
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls
    • Wellcome Trust Case Control Consortium. Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 2007;447:661-678.
    • (2007) Nature , vol.447 , pp. 661-678
    • Wellcome Trust Case Control Consortium1
  • 9
    • 48349136889 scopus 로고    scopus 로고
    • Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease
    • Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008;40:955-962.
    • (2008) Nat Genet , vol.40 , pp. 955-962
    • Barrett, J.C.1    Hansoul, S.2    Nicolae, D.L.3
  • 10
    • 34247554965 scopus 로고    scopus 로고
    • Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis
    • Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007;39:596-604.
    • (2007) Nat Genet , vol.39 , pp. 596-604
    • Rioux, J.D.1    Xavier, R.J.2    Taylor, K.D.3
  • 11
    • 84901660514 scopus 로고    scopus 로고
    • Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense
    • Lassen KG, Kuballa P, Conway KL, et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci U S A 2014;111:7741-7746. Generation of Atg16L1 T300A knock-in mice reveals that the Crohn's disease variant has decreased capacity to mediate antibacterial autophagy and suppress inflammatory cytokine signaling.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 7741-7746
    • Lassen, K.G.1    Kuballa, P.2    Conway, K.L.3
  • 12
    • 84896730900 scopus 로고    scopus 로고
    • A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3
    • Murthy A, Li Y, Peng I, et al. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 2014;506:456-462. The T300A polymorphism associated with Crohn's disease reduces autophagy in vitro and in vivo by enhancing ATG16L1 degradation in response to environmental stressors.
    • (2014) Nature , vol.506 , pp. 456-462
    • Murthy, A.1    Li, Y.2    Peng, I.3
  • 13
    • 34347338690 scopus 로고    scopus 로고
    • Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility
    • Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet 2007;39:830-832.
    • (2007) Nat Genet , vol.39 , pp. 830-832
    • Parkes, M.1    Barrett, J.C.2    Prescott, N.J.3
  • 14
    • 84880617946 scopus 로고    scopus 로고
    • Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies
    • Ellinghaus D, Zhang H, Zeissig S, et al. Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies. Gastroenterology 2013;145:339-347.
    • (2013) Gastroenterology , vol.145 , pp. 339-347
    • Ellinghaus, D.1    Zhang, H.2    Zeissig, S.3
  • 15
    • 79955790354 scopus 로고    scopus 로고
    • Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease
    • Henckaerts L, Cleynen I, Brinar M, et al. Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease. Inflamm Bowel Dis 2011;17:1392-1397.
    • (2011) Inflamm Bowel Dis , vol.17 , pp. 1392-1397
    • Henckaerts, L.1    Cleynen, I.2    Brinar, M.3
  • 16
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004;119:753-766.
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3
  • 17
    • 33748506089 scopus 로고    scopus 로고
    • Human IRGM induces autophagy to eliminate intracellular mycobacteria
    • Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006;313:1438-1441.
    • (2006) Science , vol.313 , pp. 1438-1441
    • Singh, S.B.1    Davis, A.S.2    Taylor, G.A.3    Deretic, V.4
  • 18
    • 78649833818 scopus 로고    scopus 로고
    • Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria
    • Singh SB, Ornatowski W, Vergne I, et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 2010;12:1154-1165.
    • (2010) Nat Cell Biol , vol.12 , pp. 1154-1165
    • Singh, S.B.1    Ornatowski, W.2    Vergne, I.3
  • 19
    • 79952134938 scopus 로고    scopus 로고
    • A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease
    • Brest P, Lapaquette P, Souidi M, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet 2011;43:242-245.
    • (2011) Nat Genet , vol.43 , pp. 242-245
    • Brest, P.1    Lapaquette, P.2    Souidi, M.3
  • 20
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • Thurston TL, Wandel MP, von Muhlinen N, et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012;482:414-418.
    • (2012) Nature , vol.482 , pp. 414-418
    • Thurston, T.L.1    Wandel, M.P.2    Von Muhlinen, N.3
  • 21
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston TL, Ryzhakov G, Bloor S, et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009;10:1215-1221.
    • (2009) Nat Immunol , vol.10 , pp. 1215-1221
    • Thurston, T.L.1    Ryzhakov, G.2    Bloor, S.3
  • 22
    • 0035897904 scopus 로고    scopus 로고
    • Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations
    • Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 2001;357:1925-1928.
    • (2001) Lancet , vol.357 , pp. 1925-1928
    • Hampe, J.1    Cuthbert, A.2    Croucher, P.J.3
  • 23
    • 0035978651 scopus 로고    scopus 로고
    • Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
    • Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001;411:599-603.
    • (2001) Nature , vol.411 , pp. 599-603
    • Hugot, J.P.1    Chamaillard, M.2    Zouali, H.3
  • 24
    • 0035978533 scopus 로고    scopus 로고
    • A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease
    • Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001;411:603-606.
    • (2001) Nature , vol.411 , pp. 603-606
    • Ogura, Y.1    Bonen, D.K.2    Inohara, N.3
  • 25
    • 77957682295 scopus 로고    scopus 로고
    • ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
    • Homer CR, Richmond AL, Rebert NA, et al. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 2010;139:1630-1641.
    • (2010) Gastroenterology , vol.139 , pp. 1630-1641
    • Homer, C.R.1    Richmond, A.L.2    Rebert, N.A.3
  • 26
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2009;16:90-97.
    • (2009) Nat Med , vol.16 , pp. 90-97
    • Cooney, R.1    Baker, J.2    Brain, O.3
  • 27
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2009;11:55-62.
    • (2009) Nat Immunol , vol.11 , pp. 55-62
    • Travassos, L.H.1    Carneiro, L.A.2    Ramjeet, M.3
  • 28
    • 84887524897 scopus 로고    scopus 로고
    • The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner
    • Sorbara MT, Ellison LK, Ramjeet M, et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 2013;39:858-873.
    • (2013) Immunity , vol.39 , pp. 858-873
    • Sorbara, M.T.1    Ellison, L.K.2    Ramjeet, M.3
  • 29
    • 50249086073 scopus 로고    scopus 로고
    • XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
    • Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008;134:743-756.
    • (2008) Cell , vol.134 , pp. 743-756
    • Kaser, A.1    Lee, A.H.2    Franke, A.3
  • 30
    • 84887621906 scopus 로고    scopus 로고
    • Paneth cells as a site of origin for intestinal inflammation
    • Adolph TE, Tomczak MF, Niederreiter L, et al. Paneth cells as a site of origin for intestinal inflammation. Nature 2013;503:272-276. ER stress and autophagy pathways cooperate to maintain Paneth cell homeostasis to prevent inflammation.
    • (2013) Nature , vol.503 , pp. 272-276
    • Adolph, T.E.1    Tomczak, M.F.2    Niederreiter, L.3
  • 31
    • 84870901484 scopus 로고    scopus 로고
    • Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity
    • Shen S, Niso-Santano M, Adjemian S, et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 2012;48:667-680.
    • (2012) Mol Cell , vol.48 , pp. 667-680
    • Shen, S.1    Niso-Santano, M.2    Adjemian, S.3
  • 32
    • 84862907943 scopus 로고    scopus 로고
    • Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP
    • Gomez-Suaga P, Luzon-Toro B, Churamani D, et al. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 2011;21:511-525.
    • (2011) Hum Mol Genet , vol.21 , pp. 511-525
    • Gomez-Suaga, P.1    Luzon-Toro, B.2    Churamani, D.3
  • 33
    • 0037193474 scopus 로고    scopus 로고
    • DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death
    • Inbal B, Bialik S, Sabanay I, et al. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002;157:455-468.
    • (2002) J Cell Biol , vol.157 , pp. 455-468
    • Inbal, B.1    Bialik, S.2    Sabanay, I.3
  • 34
    • 84883082859 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase nonreceptor type 22 modulates NOD2-induced cytokine release and autophagy
    • Spalinger MR, Lang S, Vavricka SR, et al. Protein tyrosine phosphatase nonreceptor type 22 modulates NOD2-induced cytokine release and autophagy. PLoS One 2013;8:e72384.
    • (2013) PLoS One , vol.8 , pp. e72384
    • Spalinger, M.R.1    Lang, S.2    Vavricka, S.R.3
  • 35
    • 84888772363 scopus 로고    scopus 로고
    • Noncanonical autophagy: One small step for LC3, one giant leap for immunity
    • Mehta P, Henault J, Kolbeck R, Sanjuan MA. Noncanonical autophagy: one small step for LC3, one giant leap for immunity. Curr Opin Immunol 2014;26:69-75.
    • (2014) Curr Opin Immunol , vol.26 , pp. 69-75
    • Mehta, P.1    Henault, J.2    Kolbeck, R.3    Sanjuan, M.A.4
  • 36
    • 84902829671 scopus 로고    scopus 로고
    • The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy
    • Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 2014;40:924-935.
    • (2014) Immunity , vol.40 , pp. 924-935
    • Choi, J.1    Park, S.2    Biering, S.B.3
  • 37
    • 84859982621 scopus 로고    scopus 로고
    • Nondegradative role of Atg5-Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma
    • Hwang S, Maloney NS, Bruinsma MW, et al. Nondegradative role of Atg5-Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 2012;11:397-409.
    • (2012) Cell Host Microbe , vol.11 , pp. 397-409
    • Hwang, S.1    Maloney, N.S.2    Bruinsma, M.W.3
  • 38
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
    • Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008;456:259-263.
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1    Liu, J.Y.2    Brown, S.L.3
  • 39
    • 61649114427 scopus 로고    scopus 로고
    • A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease
    • Cadwell K, Patel KK, Komatsu M, et al. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 2009;5:250-252.
    • (2009) Autophagy , vol.5 , pp. 250-252
    • Cadwell, K.1    Patel, K.K.2    Komatsu, M.3
  • 40
    • 84856396298 scopus 로고    scopus 로고
    • Lack of intestinal epithelial atg7 affects Paneth cell granule formation but does not compromise immune homeostasis in the gut
    • Wittkopf N, Gunther C, Martini E, et al. Lack of intestinal epithelial atg7 affects Paneth cell granule formation but does not compromise immune homeostasis in the gut. Clin Dev Immunol 2012;2012:278059.
    • (2012) Clin Dev Immunol , vol.2012 , pp. 278059
    • Wittkopf, N.1    Gunther, C.2    Martini, E.3
  • 41
    • 84882942176 scopus 로고    scopus 로고
    • ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis
    • Cabrera S, Fernandez AF, Marino G, et al. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy 2013;9:1188-1200.
    • (2013) Autophagy , vol.9 , pp. 1188-1200
    • Cabrera, S.1    Fernandez, A.F.2    Marino, G.3
  • 42
    • 84861434652 scopus 로고    scopus 로고
    • Autophagy inhibitor Lys05 has singleagent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency
    • McAfee Q, Zhang Z, Samanta A, et al. Autophagy inhibitor Lys05 has singleagent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci U S A 2012;109:8253-8258.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 8253-8258
    • McAfee, Q.1    Zhang, Z.2    Samanta, A.3
  • 43
    • 84890555657 scopus 로고    scopus 로고
    • Autophagy proteins control goblet cell function by potentiating reactive oxygen species production
    • Patel KK, Miyoshi H, Beatty WL, et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J 2013;32:3130-3144. Autophagy mediates mucus secretion by regulating the levels of reactive oxygen species in goblet cells.
    • (2013) EMBO J , vol.32 , pp. 3130-3144
    • Patel, K.K.1    Miyoshi, H.2    Beatty, W.L.3
  • 44
    • 84896691062 scopus 로고    scopus 로고
    • NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
    • Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014;156:1045-1059. The authors link inflammasome activation and autophagy pathways to the proper secretory function of goblet cells.
    • (2014) Cell , vol.156 , pp. 1045-1059
    • Wlodarska, M.1    Thaiss, C.A.2    Nowarski, R.3
  • 45
    • 84901310586 scopus 로고    scopus 로고
    • Mechanisms and functions of inflammasomes
    • Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014;157:1013-1022.
    • (2014) Cell , vol.157 , pp. 1013-1022
    • Lamkanfi, M.1    Dixit, V.M.2
  • 46
    • 84885673740 scopus 로고    scopus 로고
    • Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation
    • Liu B, Gulati AS, Cantillana V, et al. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2013;305:G573-G584.
    • (2013) Am J Physiol Gastrointest Liver Physiol , vol.305 , pp. G573-G584
    • Liu, B.1    Gulati, A.S.2    Cantillana, V.3
  • 47
    • 77953904042 scopus 로고    scopus 로고
    • Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine
    • Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 2010;141:1135-1145.
    • (2010) Cell , vol.141 , pp. 1135-1145
    • Cadwell, K.1    Patel, K.K.2    Maloney, N.S.3
  • 48
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013;13:722-737.
    • (2013) Nat Rev Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 49
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011;469:323-335.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 50
    • 52049102433 scopus 로고    scopus 로고
    • Efficient cross-presentation depends on autophagy in tumor cells
    • Li Y, Wang LX, Yang G, et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 2008;68:6889-6895.
    • (2008) Cancer Res , vol.68 , pp. 6889-6895
    • Li, Y.1    Wang, L.X.2    Yang, G.3
  • 51
    • 84872140163 scopus 로고    scopus 로고
    • Antigen processing for MHC class II presentation via autophagy
    • Munz C. Antigen processing for MHC class II presentation via autophagy. Front Immunol 2012;3:9.
    • (2012) Front Immunol , vol.3 , pp. 9
    • Munz, C.1
  • 52
    • 84890828734 scopus 로고    scopus 로고
    • Autophagy proteins stabilize pathogencontaining phagosomes for prolonged MHC II antigen processing
    • Romao S, Gasser N, Becker AC, et al. Autophagy proteins stabilize pathogencontaining phagosomes for prolonged MHC II antigen processing. J Cell Biol 2013;203:757-766.
    • (2013) J Cell Biol , vol.203 , pp. 757-766
    • Romao, S.1    Gasser, N.2    Becker, A.C.3
  • 53
    • 84874565064 scopus 로고    scopus 로고
    • Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance
    • Aichinger M, Wu C, Nedjic J, Klein L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med 2013;210:287-300.
    • (2013) J Exp Med , vol.210 , pp. 287-300
    • Aichinger, M.1    Wu, C.2    Nedjic, J.3    Klein, L.4
  • 54
    • 84880868722 scopus 로고    scopus 로고
    • Endosomemediated autophagy: An unconventional MIIC-driven autophagic pathway operational in dendritic cells
    • Kondylis V, van Nispen Tot Pannerden HE, van Dijk S, et al. Endosomemediated autophagy: an unconventional MIIC-driven autophagic pathway operational in dendritic cells. Autophagy 2013;9:861-880.
    • (2013) Autophagy , vol.9 , pp. 861-880
    • Kondylis, V.1    Van Nispen Tot Pannerden, H.E.2    Van Dijk, S.3
  • 55
    • 78650643194 scopus 로고    scopus 로고
    • Macroautophagy regulates energy metabolism during effector T cell activation
    • Hubbard VM, Valdor R, Patel B, et al. Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 2010;185:7349-7357.
    • (2010) J Immunol , vol.185 , pp. 7349-7357
    • Hubbard, V.M.1    Valdor, R.2    Patel, B.3
  • 56
    • 64249123646 scopus 로고    scopus 로고
    • Autophagy is essential for mitochondrial clearance in mature T lymphocytes
    • Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol 2009;182:4046-4055.
    • (2009) J Immunol , vol.182 , pp. 4046-4055
    • Pua, H.H.1    Guo, J.2    Komatsu, M.3    He, Y.W.4
  • 57
    • 79955540204 scopus 로고    scopus 로고
    • Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy
    • Jia W, He YW. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 2011;186:5313-5322.
    • (2011) J Immunol , vol.186 , pp. 5313-5322
    • Jia, W.1    He, Y.W.2
  • 58
    • 79251534395 scopus 로고    scopus 로고
    • Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes
    • Jia W, Pua HH, Li QJ, He YW. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 2011;186:1564-1574.
    • (2011) J Immunol , vol.186 , pp. 1564-1574
    • Jia, W.1    Pua, H.H.2    Li, Q.J.3    He, Y.W.4
  • 59
    • 84856734124 scopus 로고    scopus 로고
    • Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery
    • Kovacs JR, Li C, Yang Q, et al. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 2011;19:144-152.
    • (2011) Cell Death Differ , vol.19 , pp. 144-152
    • Kovacs, J.R.1    Li, C.2    Yang, Q.3
  • 60
    • 84897947505 scopus 로고    scopus 로고
    • Autophagy in plasma cell pathophysiology
    • Oliva L, Cenci S. Autophagy in plasma cell pathophysiology. Front Immunol 2014;5:103.
    • (2014) Front Immunol , vol.5 , pp. 103
    • Oliva, L.1    Cenci, S.2
  • 61
    • 84877337315 scopus 로고    scopus 로고
    • ATG5 regulates plasma cell differentiation
    • Conway KL, Kuballa P, Khor B, et al. ATG5 regulates plasma cell differentiation. Autophagy 2013;9:528-537.
    • (2013) Autophagy , vol.9 , pp. 528-537
    • Conway, K.L.1    Kuballa, P.2    Khor, B.3
  • 62
    • 84902954600 scopus 로고    scopus 로고
    • Essential role for autophagy in the maintenance of immunological memory against influenza infection
    • Chen M, Hong MJ, Sun H, et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 2014;20:503-510.
    • (2014) Nat Med , vol.20 , pp. 503-510
    • Chen, M.1    Hong, M.J.2    Sun, H.3
  • 63
    • 84879107779 scopus 로고    scopus 로고
    • Intestinal epithelial autophagy is essential for host defense against invasive bacteria
    • Benjamin JL, Sumpter R Jr, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 2013;13:723-734. In-vivo evidence that antimicrobial autophagy in the intestinal epithelial cells reduces bacterial burden and prevents translocation.
    • (2013) Cell Host Microbe , vol.13 , pp. 723-734
    • Benjamin, J.L.1    Sumpter, R.2    Levine, B.3    Hooper, L.V.4
  • 64
    • 84888223618 scopus 로고    scopus 로고
    • Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection
    • Conway KL, Kuballa P, Song JH, et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 2013;145:1347-1357. Autophagy limits extraintestinal dissemination of invasive bacteria.
    • (2013) Gastroenterology , vol.145 , pp. 1347-1357
    • Conway, K.L.1    Kuballa, P.2    Song, J.H.3
  • 65
    • 84899765817 scopus 로고    scopus 로고
    • Autophagy facilitates Salmonella replication in HeLa cells
    • Yu HB, Croxen MA, Marchiando AM, et al. Autophagy facilitates Salmonella replication in HeLa cells. MBio 2014;5:e00865-e00914.
    • (2014) MBio , vol.5 , pp. e00865-e00914
    • Yu, H.B.1    Croxen, M.A.2    Marchiando, A.M.3
  • 66
    • 84880919517 scopus 로고    scopus 로고
    • Autophagy and viruses: Adversaries or allies?
    • Dong X, Levine B. Autophagy and viruses: adversaries or allies? J Innate Immun 2013;5:480-493.
    • (2013) J Innate Immun , vol.5 , pp. 480-493
    • Dong, X.1    Levine, B.2
  • 67
    • 84856020006 scopus 로고    scopus 로고
    • Manipulation or capitulation: Virus interactions with autophagy
    • Jordan TX, Randall G. Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 2011;14:126-139.
    • (2011) Microbes Infect , vol.14 , pp. 126-139
    • Jordan, T.X.1    Randall, G.2
  • 68
    • 84873733623 scopus 로고    scopus 로고
    • Autophagy in antiviral innate immunity
    • Richetta C, Faure M. Autophagy in antiviral innate immunity. Cell Microbiol 2012;15:368-376.
    • (2012) Cell Microbiol , vol.15 , pp. 368-376
    • Richetta, C.1    Faure, M.2
  • 69
    • 84878756142 scopus 로고    scopus 로고
    • The Crohn's disease: Associated ATG16L1 variant and Salmonella invasion
    • Messer JS, Murphy SF, Logsdon MF, et al. The Crohn's disease: associated ATG16L1 variant and Salmonella invasion. BMJ Open 2013;3:e002790.
    • (2013) BMJ Open , vol.3 , pp. e002790
    • Messer, J.S.1    Murphy, S.F.2    Logsdon, M.F.3
  • 70
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008;456:264-268.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3
  • 71
    • 84900420410 scopus 로고    scopus 로고
    • Crosstalk between autophagy and inflammasomes
    • Yuk JM, Jo EK. Crosstalk between autophagy and inflammasomes. Mol Cells 2013;36:393-399.
    • (2013) Mol Cells , vol.36 , pp. 393-399
    • Yuk, J.M.1    Jo, E.K.2
  • 72
    • 84897487697 scopus 로고    scopus 로고
    • Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling
    • Xia M, Gonzalez P, Li C, et al. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J Virol 2014;88:5152-5164.
    • (2014) J Virol , vol.88 , pp. 5152-5164
    • Xia, M.1    Gonzalez, P.2    Li, C.3
  • 73
    • 84893912159 scopus 로고    scopus 로고
    • Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses
    • Liang Q, Seo GJ, Choi YJ, et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 2014;15:228-238.
    • (2014) Cell Host Microbe , vol.15 , pp. 228-238
    • Liang, Q.1    Seo, G.J.2    Choi, Y.J.3
  • 74
    • 84886789626 scopus 로고    scopus 로고
    • Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STINGto prevent sustained innate immune signaling
    • Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STINGto prevent sustained innate immune signaling. Cell 2013;155:688-698.
    • (2013) Cell , vol.155 , pp. 688-698
    • Konno, H.1    Konno, K.2    Barber, G.N.3
  • 75
    • 84877344662 scopus 로고    scopus 로고
    • The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy
    • Lei Y, Wen H, Ting JP. The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy. Autophagy 2013;9:432-433.
    • (2013) Autophagy , vol.9 , pp. 432-433
    • Lei, Y.1    Wen, H.2    Ting, J.P.3
  • 76
    • 0016717532 scopus 로고
    • Experimental animal studies of the etiology and pathogenesis of Crohn's disease
    • Cave DR, Mitchell DN, Brooke BN. Experimental animal studies of the etiology and pathogenesis of Crohn's disease. Gastroenterology 1975;69:618-624.
    • (1975) Gastroenterology , vol.69 , pp. 618-624
    • Cave, D.R.1    Mitchell, D.N.2    Brooke, B.N.3
  • 77
    • 79960781683 scopus 로고    scopus 로고
    • Viruses, autophagy genes, and Crohn's disease
    • Hubbard VM, Cadwell K. Viruses, autophagy genes, and Crohn's disease. Viruses 2011;3:1281-1311.
    • (2011) Viruses , vol.3 , pp. 1281-1311
    • Hubbard, V.M.1    Cadwell, K.2
  • 78
    • 84890887876 scopus 로고    scopus 로고
    • Echovirus 7 entry into polarized caco-2 intestinal epithelial cells involves core components of the autophagy machinery
    • Kim C, Bergelson JM. Echovirus 7 entry into polarized caco-2 intestinal epithelial cells involves core components of the autophagy machinery. J Virol 2013;88:434-443.
    • (2013) J Virol , vol.88 , pp. 434-443
    • Kim, C.1    Bergelson, J.M.2
  • 79
    • 84874420024 scopus 로고    scopus 로고
    • Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication
    • Crawford SE, Hyser JM, Utama B, Estes MK. Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication. Proc Natl Acad Sci U S A 2012;109:E3405-E3413.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. E3405-E3413
    • Crawford, S.E.1    Hyser, J.M.2    Utama, B.3    Estes, M.K.4
  • 80
    • 84899670033 scopus 로고    scopus 로고
    • Rotavirus increases levels of lipidated LC3 supporting accumulation of infectious progeny virus without inducing autophagosome formation
    • Arnoldi F, De Lorenzo G, Mano M, et al. Rotavirus increases levels of lipidated LC3 supporting accumulation of infectious progeny virus without inducing autophagosome formation. PLoS One 2014;9:e95197.
    • (2014) PLoS One , vol.9 , pp. e95197
    • Arnoldi, F.1    De Lorenzo, G.2    Mano, M.3
  • 81
    • 84870776595 scopus 로고    scopus 로고
    • Intracellular vesicle acidification promotes maturation of infectious poliovirus particles
    • Richards AL, Jackson WT. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog 2012;8:e1003046.
    • (2012) PLoS Pathog , vol.8 , pp. e1003046
    • Richards, A.L.1    Jackson, W.T.2
  • 82
    • 84901370753 scopus 로고    scopus 로고
    • Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers
    • Robinson SM, Tsueng G, Sin J, et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 2014;10:e1004045.
    • (2014) PLoS Pathog , vol.10 , pp. e1004045
    • Robinson, S.M.1    Tsueng, G.2    Sin, J.3
  • 83
    • 33846086489 scopus 로고    scopus 로고
    • Hijacking components of the cellular secretory pathway for replication of poliovirus RNA
    • Belov GA, Altan-Bonnet N, Kovtunovych G, et al. Hijacking components of the cellular secretory pathway for replication of poliovirus RNA. J Virol 2007;81:558-567.
    • (2007) J Virol , vol.81 , pp. 558-567
    • Belov, G.A.1    Altan-Bonnet, N.2    Kovtunovych, G.3
  • 84
    • 0033798416 scopus 로고    scopus 로고
    • Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: An autophagylike origin for virus-induced vesicles
    • Suhy DA, Giddings TH Jr, Kirkegaard K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagylike origin for virus-induced vesicles. J Virol 2000;74:8953-8965.
    • (2000) J Virol , vol.74 , pp. 8953-8965
    • Suhy, D.A.1    Giddings, T.H.2    Kirkegaard, K.3
  • 85
    • 50949133741 scopus 로고    scopus 로고
    • Autophagosome supports coxsackievirus B3 replication in host cells
    • Wong J, Zhang J, Si X, et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 2008;82:9143-9153.
    • (2008) J Virol , vol.82 , pp. 9143-9153
    • Wong, J.1    Zhang, J.2    Si, X.3
  • 86
    • 79958746242 scopus 로고    scopus 로고
    • Viral infection augments Nod1/2 signaling to potentiate lethality associated with secondary bacterial infections
    • Kim YG, Park JH, Reimer T, et al. Viral infection augments Nod1/2 signaling to potentiate lethality associated with secondary bacterial infections. Cell Host Microbe 2011;9:496-507.
    • (2011) Cell Host Microbe , vol.9 , pp. 496-507
    • Kim, Y.G.1    Park, J.H.2    Reimer, T.3
  • 87
    • 70349459620 scopus 로고    scopus 로고
    • Activation of innate immune antiviral responses by Nod2
    • Sabbah A, Chang TH, Harnack R, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol 2009;10:1073-1080.
    • (2009) Nat Immunol , vol.10 , pp. 1073-1080
    • Sabbah, A.1    Chang, T.H.2    Harnack, R.3
  • 88
    • 84855293818 scopus 로고    scopus 로고
    • IRGM is a common target of RNA viruses that subvert the autophagy network
    • Gregoire IP, Richetta C, Meyniel-Schicklin L, et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog 2011;7:e1002422.
    • (2011) PLoS Pathog , vol.7 , pp. e1002422
    • Gregoire, I.P.1    Richetta, C.2    Meyniel-Schicklin, L.3
  • 89
    • 84858693205 scopus 로고    scopus 로고
    • Role of genetic and environmental factors in British twins with inflammatory bowel disease
    • Ng SC, Woodrow S, Patel N, et al. Role of genetic and environmental factors in British twins with inflammatory bowel disease. Inflamm Bowel Dis 2011;18:725-736.
    • (2011) Inflamm Bowel Dis , vol.18 , pp. 725-736
    • Ng, S.C.1    Woodrow, S.2    Patel, N.3
  • 90
    • 51249104054 scopus 로고    scopus 로고
    • Infectious gastroenteritis and risk of developing inflammatory bowel disease
    • Porter CK, Tribble DR, Aliaga PA, et al. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology 2008;135:781-786.
    • (2008) Gastroenterology , vol.135 , pp. 781-786
    • Porter, C.K.1    Tribble, D.R.2    Aliaga, P.A.3
  • 91
    • 84879909112 scopus 로고    scopus 로고
    • Study of the viral and microbial communities associated with Crohn's disease: A metagenomic approach
    • Perez-Brocal V, Garcia-Lopez R, Vazquez-Castellanos JF, et al. Study of the viral and microbial communities associated with Crohn's disease: a metagenomic approach. Clin Transl Gastroenterol 2013;4:e36.
    • (2013) Clin Transl Gastroenterol , vol.4 , pp. e36
    • Perez-Brocal, V.1    Garcia-Lopez, R.2    Vazquez-Castellanos, J.F.3
  • 92
    • 77951620428 scopus 로고    scopus 로고
    • Cytomegalovirus in inflammatory bowel disease: Pathogen or innocent bystander?
    • Lawlor G, Moss AC. Cytomegalovirus in inflammatory bowel disease: pathogen or innocent bystander? Inflamm Bowel Dis 2010;16:1620-1627.
    • (2010) Inflamm Bowel Dis , vol.16 , pp. 1620-1627
    • Lawlor, G.1    Moss, A.C.2
  • 93
    • 84897144989 scopus 로고    scopus 로고
    • Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice
    • Basic M, Keubler LM, Buettner M, et al. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm Bowel Dis 2014;20:431-443.
    • (2014) Inflamm Bowel Dis , vol.20 , pp. 431-443
    • Basic, M.1    Keubler, L.M.2    Buettner, M.3
  • 94
    • 59049094068 scopus 로고    scopus 로고
    • Murine norovirus: An intercurrent variable in a mouse model of bacteria-induced inflammatory bowel disease
    • Lencioni KC, Seamons A, Treuting PM, et al. Murine norovirus: an intercurrent variable in a mouse model of bacteria-induced inflammatory bowel disease. Comp Med 2008;58:522-533.
    • (2008) Comp Med , vol.58 , pp. 522-533
    • Lencioni, K.C.1    Seamons, A.2    Treuting, P.M.3
  • 95
    • 84897128562 scopus 로고    scopus 로고
    • Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities
    • Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 2014;146:1459-1469.
    • (2014) Gastroenterology , vol.146 , pp. 1459-1469
    • Norman, J.M.1    Handley, S.A.2    Virgin, H.W.3
  • 96
    • 84861964286 scopus 로고    scopus 로고
    • Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
    • Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012;336:1314-1317.
    • (2012) Science , vol.336 , pp. 1314-1317
    • Iliev, I.D.1    Funari, V.A.2    Taylor, K.D.3
  • 97
    • 84867903844 scopus 로고    scopus 로고
    • A composite bacteriophage alters colonization by an intestinal commensal bacterium
    • Duerkop BA, Clements CV, Rollins D, et al. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A 2012;109:17621-17626.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 17621-17626
    • Duerkop, B.A.1    Clements, C.V.2    Rollins, D.3
  • 98
    • 61949233686 scopus 로고    scopus 로고
    • Helminths and the IBD hygiene hypothesis
    • Weinstock JV, Elliott DE. Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis 2009;15:128-133.
    • (2009) Inflamm Bowel Dis , vol.15 , pp. 128-133
    • Weinstock, J.V.1    Elliott, D.E.2
  • 99
    • 84897127283 scopus 로고    scopus 로고
    • The virome in mammalian physiology and disease
    • Virgin HW. The virome in mammalian physiology and disease. Cell 2014;157:142-150.
    • (2014) Cell , vol.157 , pp. 142-150
    • Virgin, H.W.1
  • 100
    • 84863598031 scopus 로고    scopus 로고
    • Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo
    • Wang C, Mendonsa GR, Symington JW, et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc Natl Acad Sci U S A 2012;109:11008-11013.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 11008-11013
    • Wang, C.1    Mendonsa, G.R.2    Symington, J.W.3
  • 101
    • 84882369710 scopus 로고    scopus 로고
    • A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection
    • Marchiando AM, Ramanan D, Ding Y, et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 2013;14:216-224. Atg16L1 deficiency in mice leads to an increased immune response that protects against Citrobacter rodentium infection.
    • (2013) Cell Host Microbe , vol.14 , pp. 216-224
    • Marchiando, A.M.1    Ramanan, D.2    Ding, Y.3
  • 102
    • 79956319462 scopus 로고    scopus 로고
    • The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes
    • Kim YG, Kamada N, Shaw MH, et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 2011;34:769-780.
    • (2011) Immunity , vol.34 , pp. 769-780
    • Kim, Y.G.1    Kamada, N.2    Shaw, M.H.3
  • 103
    • 84907597189 scopus 로고    scopus 로고
    • Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus
    • Ramanan D, Tang MS, Bowcutt R, et al. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 2014;41:311-324. Mice deficient in the Crohn's disease gene Nod2 are susceptible to colonization by a commensal bacterium that mediates intestinal abnormalities.
    • (2014) Immunity , vol.41 , pp. 311-324
    • Ramanan, D.1    Tang, M.S.2    Bowcutt, R.3
  • 104
    • 84865278789 scopus 로고    scopus 로고
    • Viral interactions with the host and microbiota in the intestine
    • Moon C, Stappenbeck TS. Viral interactions with the host and microbiota in the intestine. Curr Opin Immunol 2012;24:405-410.
    • (2012) Curr Opin Immunol , vol.24 , pp. 405-410
    • Moon, C.1    Stappenbeck, T.S.2
  • 105
    • 77953605339 scopus 로고    scopus 로고
    • Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris
    • Hayes KS, Bancroft AJ, Goldrick M, et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 2010;328:1391-1394.
    • (2010) Science , vol.328 , pp. 1391-1394
    • Hayes, K.S.1    Bancroft, A.J.2    Goldrick, M.3
  • 106
    • 84901808283 scopus 로고    scopus 로고
    • Helminth colonization is associated with increased diversity of the gut microbiota
    • Lee SC, Tang MS, Lim YA, et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis 2014;8:e2880.
    • (2014) PLoS Negl Trop Dis , vol.8 , pp. e2880
    • Lee, S.C.1    Tang, M.S.2    Lim, Y.A.3
  • 107
    • 84871860604 scopus 로고    scopus 로고
    • Movers and shakers: Influence of bacteriophages in shaping the mammalian gut microbiota
    • Mills S, Shanahan F, Stanton C, et al. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 2012;4:4-16.
    • (2012) Gut Microbes , vol.4 , pp. 4-16
    • Mills, S.1    Shanahan, F.2    Stanton, C.3
  • 108
    • 84884239907 scopus 로고    scopus 로고
    • Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences
    • Ogilvie LA, Bowler LD, Caplin J, et al. Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences. Nat Commun 2013;4:2420.
    • (2013) Nat Commun , vol.4 , pp. 2420
    • Ogilvie, L.A.1    Bowler, L.D.2    Caplin, J.3
  • 109
    • 84890281518 scopus 로고    scopus 로고
    • Gnotobiotic mouse model of phagebacterial host dynamics in the human gut
    • Reyes A, Wu M, McNulty NP, et al. Gnotobiotic mouse model of phagebacterial host dynamics in the human gut. Proc Natl Acad Sci U S A 2013;110:20236-20241.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 20236-20241
    • Reyes, A.1    Wu, M.2    McNulty, N.P.3
  • 110
    • 84892621089 scopus 로고    scopus 로고
    • Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus
    • Robinson CM, Jesudhasan PR, Pfeiffer JK. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 2014;15:36-46.
    • (2014) Cell Host Microbe , vol.15 , pp. 36-46
    • Robinson, C.M.1    Jesudhasan, P.R.2    Pfeiffer, J.K.3
  • 111
    • 80054091498 scopus 로고    scopus 로고
    • Intestinal microbiota promote enteric virus replication and systemic pathogenesis
    • Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011;334:249-252.
    • (2011) Science , vol.334 , pp. 249-252
    • Kuss, S.K.1    Best, G.T.2    Etheredge, C.A.3
  • 112
    • 80054115012 scopus 로고    scopus 로고
    • Successful transmission of a retrovirus depends on the commensal microbiota
    • Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 2011;334:245-249.
    • (2011) Science , vol.334 , pp. 245-249
    • Kane, M.1    Case, L.K.2    Kopaskie, K.3
  • 113
    • 84867521316 scopus 로고    scopus 로고
    • Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome
    • Handley SA, Thackray LB, Zhao G, et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell 2012;151:253-266.
    • (2012) Cell , vol.151 , pp. 253-266
    • Handley, S.A.1    Thackray, L.B.2    Zhao, G.3
  • 114
    • 84905918361 scopus 로고    scopus 로고
    • Coinfection. Helminth infection reactivates latent gamma-herpesvirus via cytokine competition at a viral promoter
    • Reese TA, Wakeman BS, Choi HS, et al. Coinfection. Helminth infection reactivates latent gamma-herpesvirus via cytokine competition at a viral promoter. Science 2014;345:573-577.
    • (2014) Science , vol.345 , pp. 573-577
    • Reese, T.A.1    Wakeman, B.S.2    Choi, H.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.