메뉴 건너뛰기




Volumn 82, Issue 18, 2008, Pages 9143-9153

Autophagosome supports coxsackievirus B3 replication in host cells

Author keywords

[No Author keywords available]

Indexed keywords

3 METHYLADENINE; AMMONIUM CHLORIDE; BAFILOMYCIN A1; BECLIN 1; BETA ACTIN; INITIATION FACTOR 2ALPHA; LYSOSOME ASSOCIATED MEMBRANE PROTEIN 2; RAPAMYCIN; SMALL INTERFERING RNA;

EID: 50949133741     PISSN: 0022538X     EISSN: None     Source Type: Journal    
DOI: 10.1128/JVI.00641-08     Document Type: Article
Times cited : (321)

References (41)
  • 1
    • 36048964024 scopus 로고    scopus 로고
    • Analysis of the role of autophagy in replication of herpes simplex virus in cell culture
    • Alexander, D. E., S. L. Ward, N. Mizushima, B. Levine, and D. A. Leib. 2007. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J. Virol. 81:12128-12134.
    • (2007) J. Virol , vol.81 , pp. 12128-12134
    • Alexander, D.E.1    Ward, S.L.2    Mizushima, N.3    Levine, B.4    Leib, D.A.5
  • 2
    • 33748331335 scopus 로고    scopus 로고
    • CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes
    • Andrade, R. M., M. Wessendarp, M. J. Gubbels, B. Striepen, and C. S. Subauste. 2006. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J. Clin. Invcstig. 116:2366-2377.
    • (2006) J. Clin. Invcstig , vol.116 , pp. 2366-2377
    • Andrade, R.M.1    Wessendarp, M.2    Gubbels, M.J.3    Striepen, B.4    Subauste, C.S.5
  • 3
    • 8044257699 scopus 로고    scopus 로고
    • The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes
    • Blommaart, E. F., U. Krause, J. P. Schellens, H. Vreeling-Sindelarova, and A. J. Meijer. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243:240-246.
    • (1997) Eur. J. Biochem , vol.243 , pp. 240-246
    • Blommaart, E.F.1    Krause, U.2    Schellens, J.P.3    Vreeling-Sindelarova, H.4    Meijer, A.J.5
  • 4
    • 34648816108 scopus 로고    scopus 로고
    • Induction of autophagy does not affect human rhinovirus type 2 production
    • Brabec-Zaruba, M., U. Berka, D. Blaas, and R. Fuchs. 2007. Induction of autophagy does not affect human rhinovirus type 2 production. J. Virol. 81:10815-10817.
    • (2007) J. Virol , vol.81 , pp. 10815-10817
    • Brabec-Zaruba, M.1    Berka, U.2    Blaas, D.3    Fuchs, R.4
  • 5
    • 27644466759 scopus 로고    scopus 로고
    • Autophagy and signaling: Their role in cell survival and cell death
    • Codogno, P., and A. J. Meijer. 2005. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12(Suppl. 2):1509-1518.
    • (2005) Cell Death Differ , vol.12 , Issue.SUPPL. 2 , pp. 1509-1518
    • Codogno, P.1    Meijer, A.J.2
  • 6
    • 1842483950 scopus 로고    scopus 로고
    • Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent
    • Esfandiarei, M., H. Luo, B. Yanagawa, A. Suarez, D. Dabiri, J. Zhang, and B. M. McManus. 2004. Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J. Virol. 78:4289-4298.
    • (2004) J. Virol , vol.78 , pp. 4289-4298
    • Esfandiarei, M.1    Luo, H.2    Yanagawa, B.3    Suarez, A.4    Dabiri, D.5    Zhang, J.6    McManus, B.M.7
  • 7
    • 34447543924 scopus 로고    scopus 로고
    • Involvement of autophagy in viral infections: Antiviral function and subversion by viruses
    • Espert, L., P. Codogno, and M. Biard-Piechaczyk. 2007. Involvement of autophagy in viral infections: antiviral function and subversion by viruses. J. Mol. Med. 85:811-823.
    • (2007) J. Mol. Med , vol.85 , pp. 811-823
    • Espert, L.1    Codogno, P.2    Biard-Piechaczyk, M.3
  • 9
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez, M. G., S. S. Master, S. B. Singh, G. A. Taylor, M. I. Colombo, and V. Deretic. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753-766.
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3    Taylor, G.A.4    Colombo, M.I.5    Deretic, V.6
  • 13
    • 0035032723 scopus 로고    scopus 로고
    • Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network
    • Kihara, A., Y. Kabeya, Y. Ohsumi, and T. Yoshimori. 2001. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2:330-335.
    • (2001) EMBO Rep , vol.2 , pp. 330-335
    • Kihara, A.1    Kabeya, Y.2    Ohsumi, Y.3    Yoshimori, T.4
  • 15
    • 2142752480 scopus 로고    scopus 로고
    • Cellular autophagy: Surrender, avoidance and subversion by microorganisms
    • Kirkegaard, K., M. P. Taylor, and W. T. Jackson. 2004. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol. 2:301-314.
    • (2004) Nat. Rev. Microbiol , vol.2 , pp. 301-314
    • Kirkegaard, K.1    Taylor, M.P.2    Jackson, W.T.3
  • 16
    • 35448981935 scopus 로고    scopus 로고
    • Autophagy: From phenomenology to molecular understanding in less than a decade
    • Klionsky, D. J. 2007. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8:931-937.
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 931-937
    • Klionsky, D.J.1
  • 17
    • 34447571032 scopus 로고    scopus 로고
    • The correct way to monitor autophagy in higher eukaryotes
    • Klionsky, D. J. 2005. The correct way to monitor autophagy in higher eukaryotes. Autophagy 1:65.
    • (2005) Autophagy , vol.1 , pp. 65
    • Klionsky, D.J.1
  • 18
    • 38949108670 scopus 로고    scopus 로고
    • Klionsky, D. J, H. Abeliovich, P. Agostinis, D. K. Agrawal, G. Aliev, D. S. Askew, M. Baba, E. H. Baehrecke, B. A. Bahr, A. Ballabio, B. A. Bamber, D. C. Bassham, E. Bergamini, X. Bi, M. Biard-Piechaczyk, J. S. Blum, D. E. Bredesen, J. L. Brodsky, J. H. Brumell, U. T. Brunk, W. Bursch, N. Camougrand, E. Cebollero, F. Cecconi, Y. Chen, L. S. Chin, A. Choi, C. T. Chu, J. Chung, P. G. Clarke, R. S. Clark, S. G. Clarke, C. Clave, J. L. Cleveland, P. Codogno, M. I. Colombo, A. Coto-Montes, J. M. Cregg, A. M. Cuervo, J. Debnath, F. Demarchi, P. B. Dennis, P. A. Dennis, V. Deretic, R. J. Devenish, F. Di Sano, J. F. Dice, M. Difiglia, S. Dinesh-Kumar, C. W. Distelhorst, M. Djavaheri-Mergny, F. C. Dorsey, W. Droge, M. Dron, W. A. Dunn, Jr, M. Duszenko, N. T. Eissa, Z. Elazar, A. Esclatine, E. L. Eskelinen, L. Fesus, K. D. Finley, J. M. Fuentes, J. Fueyo, K. Fujisaki, B. Galliot, F. B. Gao, D. A. Gewirtz, S. B. Gibson, A. Gohla, A. L. Goldberg, R. Gonzalez, C. Gonzalez-Estevez, S. Gorski, R
    • Klionsky, D. J., H. Abeliovich, P. Agostinis, D. K. Agrawal, G. Aliev, D. S. Askew, M. Baba, E. H. Baehrecke, B. A. Bahr, A. Ballabio, B. A. Bamber, D. C. Bassham, E. Bergamini, X. Bi, M. Biard-Piechaczyk, J. S. Blum, D. E. Bredesen, J. L. Brodsky, J. H. Brumell, U. T. Brunk, W. Bursch, N. Camougrand, E. Cebollero, F. Cecconi, Y. Chen, L. S. Chin, A. Choi, C. T. Chu, J. Chung, P. G. Clarke, R. S. Clark, S. G. Clarke, C. Clave, J. L. Cleveland, P. Codogno, M. I. Colombo, A. Coto-Montes, J. M. Cregg, A. M. Cuervo, J. Debnath, F. Demarchi, P. B. Dennis, P. A. Dennis, V. Deretic, R. J. Devenish, F. Di Sano, J. F. Dice, M. Difiglia, S. Dinesh-Kumar, C. W. Distelhorst, M. Djavaheri-Mergny, F. C. Dorsey, W. Droge, M. Dron, W. A. Dunn, Jr., M. Duszenko, N. T. Eissa, Z. Elazar, A. Esclatine, E. L. Eskelinen, L. Fesus, K. D. Finley, J. M. Fuentes, J. Fueyo, K. Fujisaki, B. Galliot, F. B. Gao, D. A. Gewirtz, S. B. Gibson, A. Gohla, A. L. Goldberg, R. Gonzalez, C. Gonzalez-Estevez, S. Gorski, R. A. Gottlieb, D. Haussinger, Y. W. He, K. Heidenreich, J. A. Hill, M. Hoyer-Hansen, X. Hu, W. P. Huang, A. Iwasaki, M. Jaattela, W. T. Jackson, X. Jiang, S. Jin, T. Johansen, J. U. Jung, M. Kadowaki, C. Rang, A. Kelekar, D. H. Kessel, J. A. Kiel, H. P. Kim, A. Kimchi, T. J. Kinsella, K. Kiselyov, K. Kitamoto, E. Knecht, et al. 2008. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151-175.
  • 19
    • 0034537290 scopus 로고    scopus 로고
    • Autophagy as a regulated pathway of cellular degradation
    • Klionsky, D. J., and S. D. Emr. 2000. Autophagy as a regulated pathway of cellular degradation. Science 290:1717-1721.
    • (2000) Science , vol.290 , pp. 1717-1721
    • Klionsky, D.J.1    Emr, S.D.2
  • 21
    • 33846211417 scopus 로고    scopus 로고
    • ER stress (PERK/ eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
    • Kouroku, Y., E. Fujita, I. Tanida, T. Ueno, A. Isoai, H. Kumagai, S. Ogawa, R. J. Kaufman, E. Kominami, and T. Momoi. 2007. ER stress (PERK/ eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14: 230-239.
    • (2007) Cell Death Differ , vol.14 , pp. 230-239
    • Kouroku, Y.1    Fujita, E.2    Tanida, I.3    Ueno, T.4    Isoai, A.5    Kumagai, H.6    Ogawa, S.7    Kaufman, R.J.8    Kominami, E.9    Momoi, T.10
  • 22
    • 23044501264 scopus 로고    scopus 로고
    • Autophagy in development, tumor suppression, and innate immunity
    • Levine, B. 2003. Autophagy in development, tumor suppression, and innate immunity. Harvey Lect. 99:47-76.
    • (2003) Harvey Lect , vol.99 , pp. 47-76
    • Levine, B.1
  • 23
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine, B., and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132:27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 24
    • 4344712684 scopus 로고    scopus 로고
    • Methods for monitoring autophagy
    • Mizushima, N. 2004. Methods for monitoring autophagy. Int. J. Biochem. Cell. Biol. 36:2491-2502.
    • (2004) Int. J. Biochem. Cell. Biol , vol.36 , pp. 2491-2502
    • Mizushima, N.1
  • 26
    • 1642553357 scopus 로고    scopus 로고
    • Neutralizing innate host defenses to control viral translation in HSV-1 infected cells
    • Mohr, I. 2004. Neutralizing innate host defenses to control viral translation in HSV-1 infected cells. Int. Rev. Immunol. 23:199-220.
    • (2004) Int. Rev. Immunol , vol.23 , pp. 199-220
    • Mohr, I.1
  • 28
    • 0035286734 scopus 로고    scopus 로고
    • Molecular dissection of autophagy: Two ubiquitin-like systems
    • Ohsumi, Y. 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2:211-216.
    • (2001) Nat. Rev. Mol. Cell Biol , vol.2 , pp. 211-216
    • Ohsumi, Y.1
  • 29
    • 0033978633 scopus 로고    scopus 로고
    • Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells
    • Petiot, A., E. Ogier-Denis, E. F. Blommaart, A. J. Meijer, and P. Codogno. 2000. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275:992-998.
    • (2000) J. Biol. Chem , vol.275 , pp. 992-998
    • Petiot, A.1    Ogier-Denis, E.2    Blommaart, E.F.3    Meijer, A.J.4    Codogno, P.5
  • 30
    • 0026572608 scopus 로고
    • Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: A proposal for the existence of tRNA-like terminal structures
    • Pilipenko, E. V., S. V. Maslova, A. N. Sinyakov, and V. I. Agol. 1992. Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res. 20:1739-1745.
    • (1992) Nucleic Acids Res , vol.20 , pp. 1739-1745
    • Pilipenko, E.V.1    Maslova, S.V.2    Sinyakov, A.N.3    Agol, V.I.4
  • 31
    • 1642280930 scopus 로고    scopus 로고
    • Coronavirus replication complex formation utilizes components of cellular autophagy
    • Prentice, E., W. G. Jerome, T. Yoshimori, N. Mizushima, and M. R. Denison. 2004. Coronavirus replication complex formation utilizes components of cellular autophagy. J. Biol. Chem. 279:10136-10141.
    • (2004) J. Biol. Chem , vol.279 , pp. 10136-10141
    • Prentice, E.1    Jerome, W.G.2    Yoshimori, T.3    Mizushima, N.4    Denison, M.R.5
  • 32
    • 34447629523 scopus 로고    scopus 로고
    • Innate and adaptive immunity through autophagy
    • Schmid, D., and C. Munz. 2007. Innate and adaptive immunity through autophagy. Immunity 27:11-21.
    • (2007) Immunity , vol.27 , pp. 11-21
    • Schmid, D.1    Munz, C.2
  • 33
    • 0005677775 scopus 로고
    • 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
    • Seglen, P. O., and P. B. Gordon. 1982. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 79:1889-1892.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 1889-1892
    • Seglen, P.O.1    Gordon, P.B.2
  • 34
    • 33947411760 scopus 로고    scopus 로고
    • Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication
    • Si, X., Y. Wang, J. Wong, J. Zhang, B. M. McManus, and H. Luo. 2007. Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J. Virol. 81:3142-3150.
    • (2007) J. Virol , vol.81 , pp. 3142-3150
    • Si, X.1    Wang, Y.2    Wong, J.3    Zhang, J.4    McManus, B.M.5    Luo, H.6
  • 35
    • 0035503594 scopus 로고    scopus 로고
    • The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
    • Suzuki, K., T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971-5981.
    • (2001) EMBO J , vol.20 , pp. 5971-5981
    • Suzuki, K.1    Kirisako, T.2    Kamada, Y.3    Mizushima, N.4    Noda, T.5    Ohsumi, Y.6
  • 38
    • 33646555141 scopus 로고    scopus 로고
    • Aggresomes and autophagy generate sites for virus replication
    • Wileman, T. 2006. Aggresomes and autophagy generate sites for virus replication. Science 312:875-878.
    • (2006) Science , vol.312 , pp. 875-878
    • Wileman, T.1
  • 39
    • 32244442749 scopus 로고    scopus 로고
    • Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking
    • Zeng, X., J. H. Overmeyer, and W. A. Maltese. 2006. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci. 119:259-270.
    • (2006) J. Cell Sci , vol.119 , pp. 259-270
    • Zeng, X.1    Overmeyer, J.H.2    Maltese, W.A.3
  • 41
    • 0031438648 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 is a fibronectin mRNA-binding protein linked to mRNA translation in lamb vascular smooth muscle cells
    • Zhou, B., N. Boudreau, C. Coulber, J. Hammarback, and M. Rabinovitch. 1997. Microtubule-associated protein 1 light chain 3 is a fibronectin mRNA-binding protein linked to mRNA translation in lamb vascular smooth muscle cells. J. Clin. Investig. 100:3070-3082.
    • (1997) J. Clin. Investig , vol.100 , pp. 3070-3082
    • Zhou, B.1    Boudreau, N.2    Coulber, C.3    Hammarback, J.4    Rabinovitch, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.