-
2
-
-
0000243874
-
Random sampling approach to state estimation in switching environments
-
Akashi, H. and Kumamoto, H. 1977. Random sampling approach to state estimation in switching environments. Automatica, 13(4), 429–434.
-
(1977)
Automatica
, vol.13
, Issue.4
, pp. 429-434
-
-
Akashi, H.1
Kumamoto, H.2
-
4
-
-
84898966727
-
Rao-blackwellised particle filtering via data augmentation
-
Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds.), MIT Press
-
Andrieu, C., De Freitas, N., and Doucet, A. 2002. Rao-Blackwellised particle filtering via data augmentation. In: Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds.), Advances in Neural Information Processing Systems 14. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems 14
-
-
Andrieu, C.1
De Freitas, N.2
Doucet, A.3
-
5
-
-
10944251332
-
Particle methods for change detection, system identification, and control
-
Andrieu, C., Doucet, A., Singh, S., and Tadic, V. 2004. Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 92(3), 423–438.
-
(2004)
Proceedings of the IEEE
, vol.92
, Issue.3
, pp. 423-438
-
-
Andrieu, C.1
Doucet, A.2
Singh, S.3
Tadic, V.4
-
6
-
-
57849088168
-
A tutorial on adaptive mcmc
-
Andrieu, C. and Thoms, J. 2008. A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343–373.
-
(2008)
Statistics and Computing
, vol.18
, Issue.4
, pp. 343-373
-
-
Andrieu, C.1
Thoms, J.2
-
7
-
-
77953523599
-
Particle markov chain monte carlo methods
-
Andrieu, C., Doucet, A., and Holenstein, R. 2010. Particle Markov chain Monte Carlo methods. The Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269–342.
-
(2010)
The Royal Statistical Society: Series B (Statistical Methodology)
, vol.72
, Issue.3
, pp. 269-342
-
-
Andrieu, C.1
Doucet, A.2
Holenstein, R.3
-
9
-
-
80052751526
-
Cubature kalman smoothers
-
Arasaratnam, I. and Haykin, S. 2011. Cubature Kalman smoothers. Automatica, 47(10), 2245–2250.
-
(2011)
Automatica
, vol.47
, Issue.10
, pp. 2245-2250
-
-
Arasaratnam, I.1
Haykin, S.2
-
10
-
-
44849126898
-
Discrete-time nonlinear filtering algorithms using gauss–hermite quadrature
-
Arasaratnam, I., Haykin, S., and Elliott, R. J. 2007. Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. Proceedings of the IEEE, 95(5), 953–977.
-
(2007)
Proceedings of the IEEE
, vol.95
, Issue.5
, pp. 953-977
-
-
Arasaratnam, I.1
Haykin, S.2
Elliott, R.J.3
-
11
-
-
77956781868
-
Cubature kalman filtering for continuous-discrete systems: Theory and simulations
-
Arasaratnam, I., Haykin, S., and Hurd, T. R. 2010. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing, 58(10), 4977–4993.
-
(2010)
IEEE Transactions on Signal Processing
, vol.58
, Issue.10
, pp. 4977-4993
-
-
Arasaratnam, I.1
Haykin, S.2
Hurd, T.R.3
-
14
-
-
33845270980
-
Expectation correction for smoothed inference in switching linear dynamical systems
-
Barber, D. 2006. Expectation correction for smoothed inference in switching linear dynamical systems. The Journal of Machine Learning Research, 7, 2515–2540.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 2515-2540
-
-
Barber, D.1
-
15
-
-
84923510314
-
Approximate inference in switching linear dynamical systems using gaussian mixtures
-
Chapter 8, pages 166–181 of: Barber, D., Cemgil, A. T., and Chiappa, S. (eds.), Cambridge University Press
-
Barber, D. 2011. Approximate inference in switching linear dynamical systems using Gaussian mixtures. Chapter 8, pages 166–181 of: Barber, D., Cemgil, A. T., and Chiappa, S. (eds.), Bayesian Time Series Models. Cambridge University Press.
-
(2011)
Bayesian Time Series Models
-
-
Barber, D.1
-
21
-
-
77950691868
-
Smoothing algorithms for state-space models
-
Briers, M., Doucet, A., and Maskell, S. 2010. Smoothing algorithms for state-space models. Annals of the Institute of Statistical Mathematics, 62(1), 61–89.
-
(2010)
Annals of the Institute of Statistical Mathematics
, vol.62
, Issue.1
, pp. 61-89
-
-
Briers, M.1
Doucet, A.2
Maskell, S.3
-
22
-
-
85059423352
-
-
Chapman & Hall/CRC
-
Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. 2011. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC.
-
(2011)
Handbook of Markov Chain Monte Carlo
-
-
Brooks, S.1
Gelman, A.2
Jones, G.L.3
Meng, X.-L.4
-
24
-
-
84926112923
-
-
Cambridge University Press
-
Challa, S., Morelande, M. R., Mušicki, D., and Evans, R. J. 2011. Fundamentals of Object Tracking. Cambridge University Press.
-
(2011)
Fundamentals of Object Tracking
-
-
Challa, S.1
Morelande, M.R.2
Mušicki, D.3
Evans, R.J.4
-
26
-
-
33746101155
-
On the estimation of state variables and parameters for noisy dynamic systems
-
Cox, H. 1964. On the estimation of state variables and parameters for noisy dynamic systems. IEEE Transactions on Automatic Control, 9(1), 5–12.
-
(1964)
IEEE Transactions on Automatic Control
, vol.9
, Issue.1
, pp. 5-12
-
-
Cox, H.1
-
28
-
-
84863334462
-
A survey of sequentialmonte carlo methods for economics and finance
-
Creal, D. 2012. A survey of sequentialMonte Carlo methods for economics and finance. Econometric Reviews, 31(3), 245–296.
-
(2012)
Econometric Reviews
, vol.31
, Issue.3
, pp. 245-296
-
-
Creal, D.1
-
29
-
-
0036504051
-
A survey of convergence results on particle filtering for practitioners
-
Crisan, D. and Doucet, A. 2002. A survey of convergence results on particle filtering for practitioners. IEEE Transactions on Signal Processing, 50(3), 736–746.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.3
, pp. 736-746
-
-
Crisan, D.1
Doucet, A.2
-
33
-
-
84863002086
-
Robust filtering and smoothing with gaussian processes
-
Deisenroth, M., Turner, R., Huber, M., Hanebeck, U., and Rasmussen, C. 2012. Robust filtering and smoothing with Gaussian processes. IEEE Transactions on Automatic Control, 57(7), 1865–1871.
-
(2012)
IEEE Transactions on Automatic Control
, vol.57
, Issue.7
, pp. 1865-1871
-
-
Deisenroth, M.1
Turner, R.2
Huber, M.3
Hanebeck, U.4
Rasmussen, C.5
-
34
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–38.
-
(1977)
Journal of the Royal Statistical Society: Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
35
-
-
0036296224
-
Sequential particle filtering in the presence of additive gaussian noise with unknown parameters
-
Djuric, P. and Miguez, J. 2002. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters. Pages 1621–1624 of: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2.
-
(2002)
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, vol.2
, pp. 1621-1624
-
-
Djuric, P.1
Miguez, J.2
-
36
-
-
82655181336
-
Sequential monte carlo smoothing for general state space hidden markov models
-
Douc, R., Garivier, A., Moulines, E., and Olsson, J. 2011. Sequential Monte Carlo smoothing for general state space hidden Markov models. Annals of Applied Probability, 21(6), 2109–2145.
-
(2011)
Annals of Applied Probability
, vol.21
, Issue.6
, pp. 2109-2145
-
-
Douc, R.1
Garivier, A.2
Moulines, E.3
Olsson, J.4
-
37
-
-
0001460136
-
On sequential monte carlo sampling methods for bayesian filtering
-
Doucet, A., Godsill, S. J., and Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197–208.
-
(2000)
Statistics and Computing
, vol.10
, Issue.3
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.J.2
Andrieu, C.3
-
39
-
-
4243137056
-
Hybrid monte carlo
-
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. 1987. Hybrid Monte Carlo. Physics Letters B, 195(2), 216–222.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
Roweth, D.4
-
40
-
-
0036929961
-
Markov chain monte carlo, sufficient statistics, and particle filters
-
Fearnhead, P. 2002. Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11(4), 848–862.
-
(2002)
Journal of Computational and Graphical Statistics
, vol.11
, Issue.4
, pp. 848-862
-
-
Fearnhead, P.1
-
42
-
-
0036475402
-
Monte carlo smoothing with application to audio signal enhancement
-
Fong, W., Godsill, S. J., Doucet, A., and West, M. 2002. Monte Carlo smoothing with application to audio signal enhancement. IEEE Transactions on Signal Processing, 50(2), 438–449.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.2
, pp. 438-449
-
-
Fong, W.1
Godsill, S.J.2
Doucet, A.3
West, M.4
-
43
-
-
0014550620
-
The optimum linear smoother as a combination of two optimum linear filters
-
Fraser, D. and Potter, J. 1969. The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automatic Control, 14(4), 387–390.
-
(1969)
IEEE Transactions on Automatic Control
, vol.14
, Issue.4
, pp. 387-390
-
-
Fraser, D.1
Potter, J.2
-
46
-
-
0004012196
-
-
Second edn. Chapman & Hall
-
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. R. 2004. Bayesian Data Analysis. Second edn. Chapman & Hall.
-
(2004)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.R.4
-
49
-
-
2142848605
-
Monte carlo smoothing for nonlinear time series
-
Godsill, S. J., Doucet, A., and West, M. 2004. Monte Carlo smoothing for nonlinear time series. Journal of the American Statistical Association, 99(465), 156–168.
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.465
, pp. 156-168
-
-
Godsill, S.J.1
Doucet, A.2
West, M.3
-
51
-
-
0000223746
-
Calculation of gauss quadrature rules
-
Golub, G. H. and Welsch, J. H. 1969. Calculation of Gauss quadrature rules. Mathematics of Computation, 23(106), 221–230.
-
(1969)
Mathematics of Computation
, vol.23
, Issue.106
, pp. 221-230
-
-
Golub, G.H.1
Welsch, J.H.2
-
53
-
-
0027580559
-
Novel approach to nonlinear/non-gaussian bayesian state estimation
-
Gordon, N. J., Salmond, D. J., and Smith, A. F. M. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Pages 107–113 of: IEEE Proceedings on Radar and Signal Processing, vol. 140.
-
(1993)
IEEE Proceedings on Radar and Signal Processing
, vol.140
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.3
-
55
-
-
0024125912
-
Application of fixed point smoothing to the calibration, alignment and navigation data of inertial navigation systems
-
Grewal, M. S., Miyasako, R. S., and Smith, J. M. 1988. Application of fixed point smoothing to the calibration, alignment and navigation data of inertial navigation systems. Pages 476–479 of: Position Location and Navigation Symposium.
-
(1988)
Position Location and Navigation Symposium
, pp. 476-479
-
-
Grewal, M.S.1
Miyasako, R.S.2
Smith, J.M.3
-
56
-
-
0037779968
-
-
Wiley
-
Grewal, M. S., Weill, L. R., and Andrews, A. P. 2001. Global Positioning Systems, Inertial Navigation and Integration. Wiley.
-
(2001)
Global Positioning Systems, Inertial Navigation and Integration
-
-
Grewal, M.S.1
Weill, L.R.2
Andrews, A.P.3
-
57
-
-
0016333007
-
Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations
-
Gupta, N. and Mehra, R. 1974. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations. IEEE Transactions on Automatic Control, 19(6), 774–783.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 774-783
-
-
Gupta, N.1
Mehra, R.2
-
58
-
-
84855949070
-
Some relations between extended and unscented kalman filters
-
Gustafsson, F. and Hendeby, G. 2012. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 60(2), 545–555.
-
(2012)
IEEE Transactions on Signal Processing
, vol.60
, Issue.2
, pp. 545-555
-
-
Gustafsson, F.1
Hendeby, G.2
-
59
-
-
0033436531
-
Adaptive proposal distribution for random walk metropolis algorithm
-
Haario, H., Saksman, E., and Tamminen, J. 1999. Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics, 14(3), 375–395.
-
(1999)
Computational Statistics
, vol.14
, Issue.3
, pp. 375-395
-
-
Haario, H.1
Saksman, E.2
Tamminen, J.3
-
60
-
-
0038563932
-
An adaptive metropolis algorithm
-
Haario, H., Saksman, E., and Tamminen, J. 2001. An adaptive Metropolis algorithm. Bernoulli, 7(2), 223–242.
-
(2001)
Bernoulli
, vol.7
, Issue.2
, pp. 223-242
-
-
Haario, H.1
Saksman, E.2
Tamminen, J.3
-
62
-
-
1842452806
-
Keep it simple: A case for using classical minimum norm estimation in the analysis of eeg and meg data
-
Hauk, O. 2004. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. NeuroImage, 21(4), 1612–1621.
-
(2004)
Neuroimage
, vol.21
, Issue.4
, pp. 1612-1621
-
-
Hauk, O.1
-
65
-
-
79551666736
-
State space regularization in the nonstationary inverse problem for diffuse optical tomography
-
025009
-
Hiltunen, P., Särkkä, S., Nissilä, I., Lajunen, A., and Lampinen, J. 2011. State space regularization in the nonstationary inverse problem for diffuse optical tomography. Inverse Problems, 27, 025009.
-
(2011)
Inverse Problems
, vol.27
-
-
Hiltunen, P.1
Särkkä, S.2
Nissilä, I.3
Lajunen, A.4
Lampinen, J.5
-
66
-
-
84916593381
-
A bayesian approach to problems in stochastic estimation and control
-
Ho, Y. C. and Lee, R. C. K. 1964. A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, 9(4), 333–339.
-
(1964)
IEEE Transactions on Automatic Control
, vol.9
, Issue.4
, pp. 333-339
-
-
Ho, Y.C.1
Lee, R.2
-
67
-
-
41849123126
-
A basic convergence result for particle filtering
-
Hu, X., Schön, T., and Ljung, L. 2008. A basic convergence result for particle filtering. IEEE Transactions on Signal Processing, 56(4), 1337–1348.
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.4
, pp. 1337-1348
-
-
Hu, X.1
Schön, T.2
Ljung, L.3
-
68
-
-
79959253281
-
A general convergence result for particle filtering
-
Hu, X., Schön, T., and Ljung, L. 2011. A general convergence result for particle filtering. IEEE Transactions on Signal Processing, 59(7), 3424–3429.
-
(2011)
IEEE Transactions on Signal Processing
, vol.59
, Issue.7
, pp. 3424-3429
-
-
Hu, X.1
Schön, T.2
Ljung, L.3
-
70
-
-
0034186948
-
Gaussian filters for nonlinear filtering problems
-
Ito, K. and Xiong, K. 2000. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 45(5), 910–927.
-
(2000)
IEEE Transactions on Automatic Control
, vol.45
, Issue.5
, pp. 910-927
-
-
Ito, K.1
Xiong, K.2
-
71
-
-
0141773212
-
Filtering for nonlinear dynamical systems
-
Jazwinski, A. H. 1966. Filtering for nonlinear dynamical systems. IEEE Transactions on Automatic Control, 11(4), 765–766.
-
(1966)
IEEE Transactions on Automatic Control
, vol.11
, Issue.4
, pp. 765-766
-
-
Jazwinski, A.H.1
-
74
-
-
21244437999
-
Unscented filtering and nonlinear estimation
-
Julier, S. J. and Uhlmann, J. K. 2004. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.
-
(2004)
Proceedings of the IEEE
, vol.92
, Issue.3
, pp. 401-422
-
-
Julier, S.J.1
Uhlmann, J.K.2
-
75
-
-
0029199714
-
A new approach for filtering nonlinear systems
-
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 1995. A new approach for filtering nonlinear systems. Pages 1628–1632 of: Proceedings of the 1995 American Control, Conference, Seattle, Washington.
-
(1995)
Proceedings of the 1995 American Control, Conference, Seattle, Washington
, pp. 1628-1632
-
-
Julier, S.J.1
Uhlmann, J.K.2
Durrant-Whyte, H.F.3
-
76
-
-
0033723743
-
A new method for the nonlinear transformation of means and covariances in filters and estimators
-
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477–482.
-
(2000)
IEEE Transactions on Automatic Control
, vol.45
, Issue.3
, pp. 477-482
-
-
Julier, S.J.1
Uhlmann, J.K.2
Durrant-Whyte, H.F.3
-
79
-
-
0000011589
-
Contributions to the theory of optimal control
-
Kalman, R. E. 1960a. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana, 5(1), 102–119.
-
(1960)
Boletin De La Sociedad Matematica Mexicana
, vol.5
, Issue.1
, pp. 102-119
-
-
Kalman, R.E.1
-
81
-
-
85024423711
-
New results in linear filtering and prediction theory
-
Kalman, R. E. and Bucy, R. S. 1961. New results in linear filtering and prediction theory. Transactions of the ASME, Journal of Basic Engineering, 83(3), 95–108.
-
(1961)
Transactions of the ASME, Journal of Basic Engineering
, vol.83
, Issue.3
, pp. 95-108
-
-
Kalman, R.E.1
Bucy, R.S.2
-
82
-
-
79952129627
-
An overview of sequential monte carlo methods for parameter estimation in general state-space models
-
Kantas, N., Doucet, A., Singh, S., and Maciejowski, J. 2009. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In: Proceedings IFAC Symposium on System Identification (SYSID).
-
(2009)
Proceedings IFAC Symposium on System Identification (SYSID)
-
-
Kantas, N.1
Doucet, A.2
Singh, S.3
Maciejowski, J.4
-
85
-
-
0015050287
-
On the stability of fixed-lag smoothing algorithms
-
Kelly, C. N. and Anderson, B. D. O. 1971. On the stability of fixed-lag smoothing algorithms. Journal of Franklin Institute, 291(4), 271–281.
-
(1971)
Journal of Franklin Institute
, vol.291
, Issue.4
, pp. 271-281
-
-
Kelly, C.N.1
Anderson, B.2
-
86
-
-
0002634803
-
Dynamic linear models with markov-switching
-
Kim, C.-J. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics, 60, 1–22.
-
(1994)
Journal of Econometrics
, vol.60
, pp. 1-22
-
-
Kim, C.-J.1
-
87
-
-
84950459387
-
Non-gaussian state-space modeling of nonstationary time series
-
Kitagawa, G. 1987. Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association, 82(400), 1032–1041.
-
(1987)
Journal of the American Statistical Association
, vol.82
, Issue.400
, pp. 1032-1041
-
-
Kitagawa, G.1
-
88
-
-
0001361993
-
The two-filter formula for smoothing and an implementation of the gaussian-sum smoother
-
Kitagawa, G. 1994. The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4), 605–623.
-
(1994)
Annals of the Institute of Statistical Mathematics
, vol.46
, Issue.4
, pp. 605-623
-
-
Kitagawa, G.1
-
89
-
-
0030304310
-
Monte carlo filter and smoother for non-gaussian nonlinear state space models
-
Kitagawa, G. 1996. Monte Carlo filter and smoother for Non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 1–25.
-
(1996)
Journal of Computational and Graphical Statistics
, vol.5
, Issue.1
, pp. 1-25
-
-
Kitagawa, G.1
-
91
-
-
0036687287
-
Comment on “a new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors’ reply]
-
Lefebvre, T., Bruyninckx, H., and Schutter, J. D. 2002. Comment on “A new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors’ reply]. IEEE Transactions on Automatic Control, 47(8), 1406–1409.
-
(2002)
IEEE Transactions on Automatic Control
, vol.47
, Issue.8
, pp. 1406-1409
-
-
Lefebvre, T.1
Bruyninckx, H.2
Schutter, J.D.3
-
92
-
-
0011655890
-
Nonlinear smoothing theory
-
Leondes, C. T., Peller, J. B., and Stear, E. B. 1970. Nonlinear smoothing theory. IEEE Transactions on Systems Science and Cybernetics, 6(1), 63–71.
-
(1970)
IEEE Transactions on Systems Science and Cybernetics
, vol.6
, Issue.1
, pp. 63-71
-
-
Leondes, C.T.1
Peller, J.B.2
Stear, E.B.3
-
93
-
-
33749188082
-
Dynamic magnetic resonance inverse imaging of human brain function
-
Lin, F.-H., Wald, L. L., Ahlfors, S. P., Hämäläinen, M. S., Kwong, K. K., and Belliveau, J. W. 2006. Dynamic magnetic resonance inverse imaging of human brain function. Magnetic Resonance in Medicine, 56(4), 787–802.
-
(2006)
Magnetic Resonance in Medicine
, vol.56
, Issue.4
, pp. 787-802
-
-
Lin, F.-H.1
Wald, L.L.2
Ahlfors, S.P.3
Hämäläinen, M.S.4
Kwong, K.K.5
Belliveau, J.W.6
-
100
-
-
84878570315
-
Parameter estimation in stochastic differential equations with markov chain monte carlo and non-linear kalman filtering
-
Mbalawata, I. S., Särkkä, S., and Haario, H. 2013. Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 1195–1223.
-
(2013)
Computational Statistics
, vol.28
, Issue.3
, pp. 1195-1223
-
-
Mbalawata, I.S.1
Särkkä, S.2
Haario, H.3
-
103
-
-
0009441338
-
Discrete-time fixed-lag smoothing algorithms
-
Moore, J. B. 1973. Discrete-time fixed-lag smoothing algorithms. Automatica, 9(2), 163–174.
-
(1973)
Automatica
, vol.9
, Issue.2
, pp. 163-174
-
-
Moore, J.B.1
-
104
-
-
0015617075
-
Fixed-lag smoothing of nonlinear systems with discrete measurement
-
Moore, J. B. and Tam, P. 1973. Fixed-lag smoothing of nonlinear systems with discrete measurement. Information Sciences, 6, 151–160.
-
(1973)
Information Sciences
, vol.6
, pp. 151-160
-
-
Moore, J.B.1
Tam, P.2
-
105
-
-
0018026986
-
Square-root algorithms for the continuoustime linear least-square estimation problem
-
Morf, M., Lévy, B., and Kailath, T. 1978. Square-root algorithms for the continuoustime linear least-square estimation problem. IEEE Transactions on Automatic Control, 23(5), 907–911.
-
(1978)
IEEE Transactions on Automatic Control
, vol.23
, Issue.5
, pp. 907-911
-
-
Morf, M.1
Lévy, B.2
Kailath, T.3
-
107
-
-
79951655062
-
Particle smoothing in continuous time: A fast approach via density estimation
-
Murray, L. and Storkey, A. 2011. Particle smoothing in continuous time: a fast approach via density estimation. IEEE Transactions on Signal Processing, 59(3), 1017–1026.
-
(2011)
IEEE Transactions on Signal Processing
, vol.59
, Issue.3
, pp. 1017-1026
-
-
Murray, L.1
Storkey, A.2
-
108
-
-
85057196821
-
Mcmc using hamiltonian dynamics
-
Chapter 5 of: Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (eds.), Chapman & Hall/CRC
-
Neal, R. M. 2011. MCMC using Hamiltonian dynamics. Chapter 5 of: Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (eds.), Handbook of Markov ChainMonte Carlo. Chapman & Hall/CRC.
-
(2011)
Handbook of Markov Chainmonte Carlo
-
-
Neal, R.M.1
-
109
-
-
0004283231
-
-
Jordan, M. I. (ed.), MIT Press
-
Neal, R. and Hinton, G. 1999. A view of the EM algorithm that justifies incremental, sparse, and other variants. Pages 355–370 of: Jordan, M. I. (ed.), Learning in Graphical Models. MIT Press.
-
(1999)
A view of the em algorithm that justifies incremental, sparse, and other variants
, pp. 355-370
-
-
Neal, R.1
Hinton, G.2
-
110
-
-
73049086204
-
Bayesian system identification via markov chain monte carlo techniques
-
Ninness, B. and Henriksen, S. 2010. Bayesian system identification via Markov chain Monte Carlo techniques. Automatica, 46(1), 40–51.
-
(2010)
Automatica
, vol.46
, Issue.1
, pp. 40-51
-
-
Ninness, B.1
Henriksen, S.2
-
111
-
-
79953146436
-
Estimation of general nonlinear statespace systems
-
Ninness, B., Wills, A., and Schön, T. B. 2010. Estimation of general nonlinear statespace systems. Pages 6371–6376 of: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, USA.
-
(2010)
Proceedings of the 49Th IEEE Conference on Decision and Control (CDC), Atlanta, USA
, pp. 6371-6376
-
-
Ninness, B.1
Wills, A.2
Schön, T.B.3
-
112
-
-
0034326226
-
New developments in state estimation for nonlinear systems
-
Nørgaard, M., Poulsen, N. K., and Ravn, O. 2000. New developments in state estimation for nonlinear systems. Automatica, 36(11), 1627–1638.
-
(2000)
Automatica
, vol.36
, Issue.11
, pp. 1627-1638
-
-
Nørgaard, M.1
Poulsen, N.K.2
Ravn, O.3
-
115
-
-
34247192555
-
State-space models: From the em algorithm to a gradient approach
-
Olsson, R., Petersen, K., and Lehn-Schiøler, T. 2007. State-space models: from the EM algorithm to a gradient approach. Neural Computation, 19(4), 1097–1111.
-
(2007)
Neural Computation
, vol.19
, Issue.4
, pp. 1097-1111
-
-
Olsson, R.1
Petersen, K.2
Lehn-Schiøler, T.3
-
118
-
-
79952176832
-
Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
-
Poyiadjis, G., Doucet, A., and Singh, S. 2011. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika, 98(1), 65–80.
-
(2011)
Biometrika
, vol.98
, Issue.1
, pp. 65-80
-
-
Poyiadjis, G.1
Doucet, A.2
Singh, S.3
-
123
-
-
84937741903
-
Solutions to the linear smoothing problem
-
Rauch, H. E. 1963. Solutions to the linear smoothing problem. IEEE Transactions on Automatic Control, 8(4), 371–372.
-
(1963)
IEEE Transactions on Automatic Control
, vol.8
, Issue.4
, pp. 371-372
-
-
Rauch, H.E.1
-
124
-
-
21644483999
-
Maximum likelihood estimates of linear dynamic systems
-
Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 1445–1450.
-
(1965)
AIAA Journal
, vol.3
, Issue.8
, pp. 1445-1450
-
-
Rauch, H.E.1
Tung, F.2
Striebel, C.T.3
-
126
-
-
0013037129
-
Optimal scaling for various metropolis– hastings algorithms
-
Roberts, G. O. and Rosenthal, J. S. 2001. Optimal scaling for various Metropolis– Hastings algorithms. Statistical Science, 16(4), 351–367.
-
(2001)
Statistical Science
, vol.16
, Issue.4
, pp. 351-367
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
127
-
-
1842702843
-
Learning nonlinear dynamical systems using the expectation–maximization algorithm
-
Chapter 6, pages, Haykin, S. (ed.), Wiley-Interscience
-
Roweis, S. and Ghahramani, Z. 2001. Learning nonlinear dynamical systems using the expectation–maximization algorithm. Chapter 6, pages 175–220 of: Haykin, S. (ed.), Kalman Filtering and Neural Networks. Wiley-Interscience.
-
(2001)
Kalman Filtering and Neural Networks
, pp. 175-220
-
-
Roweis, S.1
Ghahramani, Z.2
-
129
-
-
79952388623
-
Marginalized particle filters for bayesian estimation of gaussian noise parameters
-
Saha, S., Ozkan, E., Gustafsson, F., and Smidl, V. 2010. Marginalized particle filters for Bayesian estimation of Gaussian noise parameters. Pages 1–8 of: 13th Conference on Information Fusion (FUSION).
-
(2010)
13Th Conference on Information Fusion (FUSION)
, pp. 1-8
-
-
Saha, S.1
Ozkan, E.2
Gustafsson, F.3
Smidl, V.4
-
132
-
-
34648837231
-
On unscented kalman filtering for state estimation of continuous-time nonlinear systems
-
Särkkä, S. 2007. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 52(9), 1631–1641.
-
(2007)
IEEE Transactions on Automatic Control
, vol.52
, Issue.9
, pp. 1631-1641
-
-
Särkkä, S.1
-
133
-
-
42649142602
-
Unscented rauch-tung-striebel smoother
-
Särkkä, S. 2008. Unscented Rauch-Tung-Striebel smoother. IEEE Transactions on Automatic Control, 53(3), 845–849.
-
(2008)
IEEE Transactions on Automatic Control
, vol.53
, Issue.3
, pp. 845-849
-
-
Särkkä, S.1
-
134
-
-
69249221260
-
Continuous-time and continuous-discrete-time unscented rauch- tung-striebel smoothers
-
Särkkä, S. 2010. Continuous-time and continuous-discrete-time unscented Rauch- Tung-Striebel smoothers. Signal Processing, 90(1), 225–235.
-
(2010)
Signal Processing
, vol.90
, Issue.1
, pp. 225-235
-
-
Särkkä, S.1
-
135
-
-
84867628750
-
Linear operators and stochastic partial differential equations in gaussian process regression
-
Särkkä, S. 2011. Linear operators and stochastic partial differential equations in Gaussian process regression. In: Proceedings of ICANN.
-
(2011)
Proceedings of ICANN
-
-
Särkkä, S.1
-
136
-
-
77955394237
-
On gaussian optimal smoothing of non-linear state space models
-
Särkkä, S. and Hartikainen, J. 2010a. On Gaussian optimal smoothing of non-linear state space models. IEEE Transactions on Automatic Control, 55(8), 1938–1941.
-
(2010)
IEEE Transactions on Automatic Control
, vol.55
, Issue.8
, pp. 1938-1941
-
-
Särkkä, S.1
Hartikainen, J.2
-
138
-
-
84926196477
-
Infinite-dimensional kalman filtering approach to spatio-temporal gaussian process regression
-
Särkkä, S. and Hartikainen, J. 2012. Infinite-dimensional Kalman filtering approach to spatio-temporal Gaussian process regression. In: Proceedings of AISTATS 2012.
-
(2012)
Proceedings of AISTATS 2012
-
-
Särkkä, S.1
Hartikainen, J.2
-
139
-
-
63449123513
-
Recursive noise adaptive kalman filtering by variational bayesian approximations
-
Särkkä, S. and Nummenmaa, A. 2009. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Transactions on Automatic Control, 54(3), 596–600.
-
(2009)
IEEE Transactions on Automatic Control
, vol.54
, Issue.3
, pp. 596-600
-
-
Särkkä, S.1
Nummenmaa, A.2
-
140
-
-
84867687753
-
Gaussian filtering and smoothing for continuousdiscrete dynamic systems
-
Särkkä, S. and Sarmavuori, J. 2013. Gaussian filtering and smoothing for continuousdiscrete dynamic systems. Signal Processing, 93(2), 500–510.
-
(2013)
Signal Processing
, vol.93
, Issue.2
, pp. 500-510
-
-
Särkkä, S.1
Sarmavuori, J.2
-
141
-
-
84867671771
-
On continuous-discrete cubature kalman filtering
-
Särkkä, S. and Solin, A. 2012. On continuous-discrete cubature Kalman filtering. Pages 1210–1215 of: Proceedings of SYSID2012.
-
(2012)
Proceedings of SYSID
, vol.2012
, pp. 1210-1215
-
-
Särkkä, S.1
Solin, A.2
-
142
-
-
80051698157
-
Application of girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems
-
Särkkä, S. and Sottinen, T. 2008. Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems. Bayesian Analysis, 3(3), 555–584.
-
(2008)
Bayesian Analysis
, vol.3
, Issue.3
, pp. 555-584
-
-
Särkkä, S.1
Sottinen, T.2
-
143
-
-
34249654189
-
Cats benchmark time series prediction by kalman smoother with cross-validated noise density
-
Särkkä, S., Vehtari, A., and Lampinen, J. 2007a. CATS benchmark time series prediction by Kalman smoother with cross-validated noise density. Neurocomputing, 70(13–15), 2331–2341.
-
(2007)
Neurocomputing
, vol.70
, Issue.1315
, pp. 2331-2341
-
-
Särkkä, S.1
Vehtari, A.2
Lampinen, J.3
-
144
-
-
33751003537
-
Rao-blackwellized particle filter for multiple target tracking
-
Särkkä, S., Vehtari, A., and Lampinen, J. 2007b. Rao-Blackwellized particle filter for multiple target tracking. Information Fusion Journal, 8(1), 2–15.
-
(2007)
Information Fusion Journal
, vol.8
, Issue.1
, pp. 2-15
-
-
Särkkä, S.1
Vehtari, A.2
Lampinen, J.3
-
145
-
-
84867094916
-
A backward-simulation based rao- blackwellized particle smoother for conditionally linear gaussian models
-
Särkkä, S., Bunch, P., and Godsill, S. J. 2012a. A backward-simulation based Rao- Blackwellized particle smoother for conditionally linear Gaussian models. Pages 506–511 of: Proceedings of SYSID 2012.
-
(2012)
Proceedings of SYSID 2012
, pp. 506-511
-
-
Särkkä, S.1
Bunch, P.2
Godsill, S.J.3
-
146
-
-
84857198770
-
Dynamic retrospective filtering of physiological noise in bold fmri: Drifter
-
Särkkä, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., Vanni, S., and Lin, F.-H. 2012b. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. NeuroImage, 60(2), 1517–1527.
-
(2012)
Neuroimage
, vol.60
, Issue.2
, pp. 1517-1527
-
-
Särkkä, S.1
Solin, A.2
Nummenmaa, A.3
Vehtari, A.4
Auranen, T.5
Vanni, S.6
Lin, F.-H.7
-
150
-
-
23844494086
-
Marginalized particle filters for mixed linear/nonlinear state-space models
-
Schön, T., Gustafsson, F., and Nordlund, P.-J. 2005. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7), 2279–2289.
-
(2005)
IEEE Transactions on Signal Processing
, vol.53
, Issue.7
, pp. 2279-2289
-
-
Schön, T.1
Gustafsson, F.2
Nordlund, P.-J.3
-
151
-
-
78650803456
-
System identification of nonlinear statespace models
-
Schön, T., Wills, A., and Ninness, B. 2011. System identification of nonlinear statespace models. Automatica, 47(1), 39–49.
-
(2011)
Automatica
, vol.47
, Issue.1
, pp. 39-49
-
-
Schön, T.1
Wills, A.2
Ninness, B.3
-
152
-
-
0024668601
-
A new method for evaluating the log-likelihood gradient, the hessian, and the fisher information matrix for linear dynamic systems
-
Segal, M. and Weinstein, E. 1989. A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems. IEEE Transactions on Information Theory, 35(3), 682–687.
-
(1989)
IEEE Transactions on Information Theory
, vol.35
, Issue.3
, pp. 682-687
-
-
Segal, M.1
Weinstein, E.2
-
154
-
-
84986753417
-
An approach to time series smoothing and forecasting using the em algorithm
-
Shumway, R. and Stoffer, D. 1982. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4), 253–264.
-
(1982)
Journal of Time Series Analysis
, vol.3
, Issue.4
, pp. 253-264
-
-
Shumway, R.1
Stoffer, D.2
-
156
-
-
38349047149
-
Nonlinear continuous time modeling approaches in panel research
-
Singer, H. 2008. Nonlinear continuous time modeling approaches in panel research. Statistica Neerlandica, 62(1), 29–57.
-
(2008)
Statistica Neerlandica
, vol.62
, Issue.1
, pp. 29-57
-
-
Singer, H.1
-
157
-
-
81355146431
-
Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms
-
Singer, H. 2011. Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms. AStA Advances in Statistical Analysis, 95(4), 375–413.
-
(2011)
Asta Advances in Statistical Analysis
, vol.95
, Issue.4
, pp. 375-413
-
-
Singer, H.1
-
158
-
-
64149083162
-
Obstacles to highdimensional particle filtering
-
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. 2008. Obstacles to highdimensional particle filtering. Monthly Weather Review, 136(12), 4629–4640.
-
(2008)
Monthly Weather Review
, vol.136
, Issue.12
, pp. 4629-4640
-
-
Snyder, C.1
Bengtsson, T.2
Bickel, P.3
Anderson, J.4
-
161
-
-
0036475891
-
Particle filters in state space models with the presence of unknown static parameters
-
Storvik, G. 2002. Particle filters in state space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing, 50(2), 281–289.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.2
, pp. 281-289
-
-
Storvik, G.1
-
163
-
-
50549214278
-
Partial differential equations for the conditional distribution of a markov process given noisy observations
-
Striebel, C. T. 1965. Partial differential equations for the conditional distribution of a Markov process given noisy observations. Journal of Mathematical Analysis and Applications, 11, 151–159.
-
(1965)
Journal of Mathematical Analysis and Applications
, vol.11
, pp. 151-159
-
-
Striebel, C.T.1
-
164
-
-
49549170739
-
Fixed-lag demodulation of discrete noisy measurements of fm signals
-
Tam, P., Tam, D., and Moore, J. 1973. Fixed-lag demodulation of discrete noisy measurements of FM signals. Automatica, 9(6), 725–729.
-
(1973)
Automatica
, vol.9
, Issue.6
, pp. 725-729
-
-
Tam, P.1
Tam, D.2
Moore, J.3
-
170
-
-
0141714747
-
The unscented particle filter
-
Van der Merwe, R., De Freitas, N., Doucet, A., and Wan, E. 2001. The unscented particle filter. Pages 584–590 of: Advances in Neural Information Processing Systems13.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 584-590
-
-
Van Der Merwe, R.1
De Freitas, N.2
Doucet, A.3
Wan, E.4
-
173
-
-
84863557597
-
Robust adaptive metropolis algorithm with coerced acceptance rate
-
Vihola, M. 2012. Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and Computing, 22(5), 997–1008.
-
(2012)
Statistics and Computing
, vol.22
, Issue.5
, pp. 997-1008
-
-
Vihola, M.1
-
174
-
-
84935113569
-
Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
-
Viterbi, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2).
-
(1967)
IEEE Transactions on Information Theory
, vol.13
, Issue.2
-
-
Viterbi, A.J.1
-
178
-
-
84871271512
-
Identification of hammerstein–wiener models
-
Wills, A., Schön, T. B., Ljung, L., and Ninness, B. 2013. Identification of Hammerstein–Wiener models. Automatica, 49(1), 70–81.
-
(2013)
Automatica
, vol.49
, Issue.1
, pp. 70-81
-
-
Wills, A.1
Schön, T.B.2
Ljung, L.3
Ninness, B.4
-
179
-
-
18844439909
-
Unscented kalman filtering for additive noise case: Augmented versus nonaugmented
-
Wu, Y., Hu, D., Wu, M., and Hu, X. 2005. Unscented Kalman filtering for additive noise case: augmented versus nonaugmented. IEEE Signal Processing Letters, 12(5), 357–360.
-
(2005)
IEEE Signal Processing Letters
, vol.12
, Issue.5
, pp. 357-360
-
-
Wu, Y.1
Hu, D.2
Wu, M.3
Hu, X.4
-
180
-
-
33746568533
-
A numerical-integration perspective on gaussian filters
-
Wu, Y., Hu, D., Wu, M., and Hu, X. 2006. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 54(8), 2910–2921.
-
(2006)
IEEE Transactions on Signal Processing
, vol.54
, Issue.8
, pp. 2910-2921
-
-
Wu, Y.1
Hu, D.2
Wu, M.3
Hu, X.4
-
181
-
-
27844550751
-
Novel approximations for inference in nonlinear dynamical systems using expectation propagation
-
Ypma, A. and Heskes, T. 2005. Novel approximations for inference in nonlinear dynamical systems using expectation propagation. Neurocomputing, 69(1), 85–99.
-
(2005)
Neurocomputing
, vol.69
, Issue.1
, pp. 85-99
-
-
Ypma, A.1
Heskes, T.2
-
182
-
-
84923499857
-
Expectation propagation and generalized ep methods for inference in switching linear dynamical systems
-
Chapter 7, Cambridge University Press
-
Zoeter, O. and Heskes, T. 2011. Expectation propagation and generalized EP methods for inference in switching linear dynamical systems. Chapter 7, pages 141–165 of: Bayesian Time Series Models. Cambridge University Press.
-
(2011)
Bayesian Time Series Models
, pp. 141-165
-
-
Zoeter, O.1
Heskes, T.2
|