메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1-232

Bayesian filtering and smoothing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84926148250     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781139344203     Document Type: Book
Times cited : (880)

References (182)
  • 2
    • 0000243874 scopus 로고
    • Random sampling approach to state estimation in switching environments
    • Akashi, H. and Kumamoto, H. 1977. Random sampling approach to state estimation in switching environments. Automatica, 13(4), 429–434.
    • (1977) Automatica , vol.13 , Issue.4 , pp. 429-434
    • Akashi, H.1    Kumamoto, H.2
  • 4
    • 84898966727 scopus 로고    scopus 로고
    • Rao-blackwellised particle filtering via data augmentation
    • Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds.), MIT Press
    • Andrieu, C., De Freitas, N., and Doucet, A. 2002. Rao-Blackwellised particle filtering via data augmentation. In: Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds.), Advances in Neural Information Processing Systems 14. MIT Press.
    • (2002) Advances in Neural Information Processing Systems 14
    • Andrieu, C.1    De Freitas, N.2    Doucet, A.3
  • 5
    • 10944251332 scopus 로고    scopus 로고
    • Particle methods for change detection, system identification, and control
    • Andrieu, C., Doucet, A., Singh, S., and Tadic, V. 2004. Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 92(3), 423–438.
    • (2004) Proceedings of the IEEE , vol.92 , Issue.3 , pp. 423-438
    • Andrieu, C.1    Doucet, A.2    Singh, S.3    Tadic, V.4
  • 6
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive mcmc
    • Andrieu, C. and Thoms, J. 2008. A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343–373.
    • (2008) Statistics and Computing , vol.18 , Issue.4 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 9
    • 80052751526 scopus 로고    scopus 로고
    • Cubature kalman smoothers
    • Arasaratnam, I. and Haykin, S. 2011. Cubature Kalman smoothers. Automatica, 47(10), 2245–2250.
    • (2011) Automatica , vol.47 , Issue.10 , pp. 2245-2250
    • Arasaratnam, I.1    Haykin, S.2
  • 10
    • 44849126898 scopus 로고    scopus 로고
    • Discrete-time nonlinear filtering algorithms using gauss–hermite quadrature
    • Arasaratnam, I., Haykin, S., and Elliott, R. J. 2007. Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. Proceedings of the IEEE, 95(5), 953–977.
    • (2007) Proceedings of the IEEE , vol.95 , Issue.5 , pp. 953-977
    • Arasaratnam, I.1    Haykin, S.2    Elliott, R.J.3
  • 11
    • 77956781868 scopus 로고    scopus 로고
    • Cubature kalman filtering for continuous-discrete systems: Theory and simulations
    • Arasaratnam, I., Haykin, S., and Hurd, T. R. 2010. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing, 58(10), 4977–4993.
    • (2010) IEEE Transactions on Signal Processing , vol.58 , Issue.10 , pp. 4977-4993
    • Arasaratnam, I.1    Haykin, S.2    Hurd, T.R.3
  • 14
    • 33845270980 scopus 로고    scopus 로고
    • Expectation correction for smoothed inference in switching linear dynamical systems
    • Barber, D. 2006. Expectation correction for smoothed inference in switching linear dynamical systems. The Journal of Machine Learning Research, 7, 2515–2540.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 2515-2540
    • Barber, D.1
  • 15
    • 84923510314 scopus 로고    scopus 로고
    • Approximate inference in switching linear dynamical systems using gaussian mixtures
    • Chapter 8, pages 166–181 of: Barber, D., Cemgil, A. T., and Chiappa, S. (eds.), Cambridge University Press
    • Barber, D. 2011. Approximate inference in switching linear dynamical systems using Gaussian mixtures. Chapter 8, pages 166–181 of: Barber, D., Cemgil, A. T., and Chiappa, S. (eds.), Bayesian Time Series Models. Cambridge University Press.
    • (2011) Bayesian Time Series Models
    • Barber, D.1
  • 26
    • 33746101155 scopus 로고
    • On the estimation of state variables and parameters for noisy dynamic systems
    • Cox, H. 1964. On the estimation of state variables and parameters for noisy dynamic systems. IEEE Transactions on Automatic Control, 9(1), 5–12.
    • (1964) IEEE Transactions on Automatic Control , vol.9 , Issue.1 , pp. 5-12
    • Cox, H.1
  • 28
    • 84863334462 scopus 로고    scopus 로고
    • A survey of sequentialmonte carlo methods for economics and finance
    • Creal, D. 2012. A survey of sequentialMonte Carlo methods for economics and finance. Econometric Reviews, 31(3), 245–296.
    • (2012) Econometric Reviews , vol.31 , Issue.3 , pp. 245-296
    • Creal, D.1
  • 29
    • 0036504051 scopus 로고    scopus 로고
    • A survey of convergence results on particle filtering for practitioners
    • Crisan, D. and Doucet, A. 2002. A survey of convergence results on particle filtering for practitioners. IEEE Transactions on Signal Processing, 50(3), 736–746.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.3 , pp. 736-746
    • Crisan, D.1    Doucet, A.2
  • 36
    • 82655181336 scopus 로고    scopus 로고
    • Sequential monte carlo smoothing for general state space hidden markov models
    • Douc, R., Garivier, A., Moulines, E., and Olsson, J. 2011. Sequential Monte Carlo smoothing for general state space hidden Markov models. Annals of Applied Probability, 21(6), 2109–2145.
    • (2011) Annals of Applied Probability , vol.21 , Issue.6 , pp. 2109-2145
    • Douc, R.1    Garivier, A.2    Moulines, E.3    Olsson, J.4
  • 37
    • 0001460136 scopus 로고    scopus 로고
    • On sequential monte carlo sampling methods for bayesian filtering
    • Doucet, A., Godsill, S. J., and Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197–208.
    • (2000) Statistics and Computing , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 40
    • 0036929961 scopus 로고    scopus 로고
    • Markov chain monte carlo, sufficient statistics, and particle filters
    • Fearnhead, P. 2002. Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11(4), 848–862.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , Issue.4 , pp. 848-862
    • Fearnhead, P.1
  • 43
    • 0014550620 scopus 로고
    • The optimum linear smoother as a combination of two optimum linear filters
    • Fraser, D. and Potter, J. 1969. The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automatic Control, 14(4), 387–390.
    • (1969) IEEE Transactions on Automatic Control , vol.14 , Issue.4 , pp. 387-390
    • Fraser, D.1    Potter, J.2
  • 51
    • 0000223746 scopus 로고
    • Calculation of gauss quadrature rules
    • Golub, G. H. and Welsch, J. H. 1969. Calculation of Gauss quadrature rules. Mathematics of Computation, 23(106), 221–230.
    • (1969) Mathematics of Computation , vol.23 , Issue.106 , pp. 221-230
    • Golub, G.H.1    Welsch, J.H.2
  • 55
    • 0024125912 scopus 로고
    • Application of fixed point smoothing to the calibration, alignment and navigation data of inertial navigation systems
    • Grewal, M. S., Miyasako, R. S., and Smith, J. M. 1988. Application of fixed point smoothing to the calibration, alignment and navigation data of inertial navigation systems. Pages 476–479 of: Position Location and Navigation Symposium.
    • (1988) Position Location and Navigation Symposium , pp. 476-479
    • Grewal, M.S.1    Miyasako, R.S.2    Smith, J.M.3
  • 57
    • 0016333007 scopus 로고
    • Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations
    • Gupta, N. and Mehra, R. 1974. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations. IEEE Transactions on Automatic Control, 19(6), 774–783.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 774-783
    • Gupta, N.1    Mehra, R.2
  • 58
    • 84855949070 scopus 로고    scopus 로고
    • Some relations between extended and unscented kalman filters
    • Gustafsson, F. and Hendeby, G. 2012. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 60(2), 545–555.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , Issue.2 , pp. 545-555
    • Gustafsson, F.1    Hendeby, G.2
  • 59
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk metropolis algorithm
    • Haario, H., Saksman, E., and Tamminen, J. 1999. Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics, 14(3), 375–395.
    • (1999) Computational Statistics , vol.14 , Issue.3 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 60
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive metropolis algorithm
    • Haario, H., Saksman, E., and Tamminen, J. 2001. An adaptive Metropolis algorithm. Bernoulli, 7(2), 223–242.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 62
    • 1842452806 scopus 로고    scopus 로고
    • Keep it simple: A case for using classical minimum norm estimation in the analysis of eeg and meg data
    • Hauk, O. 2004. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. NeuroImage, 21(4), 1612–1621.
    • (2004) Neuroimage , vol.21 , Issue.4 , pp. 1612-1621
    • Hauk, O.1
  • 65
    • 79551666736 scopus 로고    scopus 로고
    • State space regularization in the nonstationary inverse problem for diffuse optical tomography
    • 025009
    • Hiltunen, P., Särkkä, S., Nissilä, I., Lajunen, A., and Lampinen, J. 2011. State space regularization in the nonstationary inverse problem for diffuse optical tomography. Inverse Problems, 27, 025009.
    • (2011) Inverse Problems , vol.27
    • Hiltunen, P.1    Särkkä, S.2    Nissilä, I.3    Lajunen, A.4    Lampinen, J.5
  • 66
    • 84916593381 scopus 로고
    • A bayesian approach to problems in stochastic estimation and control
    • Ho, Y. C. and Lee, R. C. K. 1964. A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, 9(4), 333–339.
    • (1964) IEEE Transactions on Automatic Control , vol.9 , Issue.4 , pp. 333-339
    • Ho, Y.C.1    Lee, R.2
  • 67
    • 41849123126 scopus 로고    scopus 로고
    • A basic convergence result for particle filtering
    • Hu, X., Schön, T., and Ljung, L. 2008. A basic convergence result for particle filtering. IEEE Transactions on Signal Processing, 56(4), 1337–1348.
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.4 , pp. 1337-1348
    • Hu, X.1    Schön, T.2    Ljung, L.3
  • 68
    • 79959253281 scopus 로고    scopus 로고
    • A general convergence result for particle filtering
    • Hu, X., Schön, T., and Ljung, L. 2011. A general convergence result for particle filtering. IEEE Transactions on Signal Processing, 59(7), 3424–3429.
    • (2011) IEEE Transactions on Signal Processing , vol.59 , Issue.7 , pp. 3424-3429
    • Hu, X.1    Schön, T.2    Ljung, L.3
  • 70
    • 0034186948 scopus 로고    scopus 로고
    • Gaussian filters for nonlinear filtering problems
    • Ito, K. and Xiong, K. 2000. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 45(5), 910–927.
    • (2000) IEEE Transactions on Automatic Control , vol.45 , Issue.5 , pp. 910-927
    • Ito, K.1    Xiong, K.2
  • 71
  • 74
    • 21244437999 scopus 로고    scopus 로고
    • Unscented filtering and nonlinear estimation
    • Julier, S. J. and Uhlmann, J. K. 2004. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.
    • (2004) Proceedings of the IEEE , vol.92 , Issue.3 , pp. 401-422
    • Julier, S.J.1    Uhlmann, J.K.2
  • 76
    • 0033723743 scopus 로고    scopus 로고
    • A new method for the nonlinear transformation of means and covariances in filters and estimators
    • Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477–482.
    • (2000) IEEE Transactions on Automatic Control , vol.45 , Issue.3 , pp. 477-482
    • Julier, S.J.1    Uhlmann, J.K.2    Durrant-Whyte, H.F.3
  • 79
    • 0000011589 scopus 로고
    • Contributions to the theory of optimal control
    • Kalman, R. E. 1960a. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana, 5(1), 102–119.
    • (1960) Boletin De La Sociedad Matematica Mexicana , vol.5 , Issue.1 , pp. 102-119
    • Kalman, R.E.1
  • 85
    • 0015050287 scopus 로고
    • On the stability of fixed-lag smoothing algorithms
    • Kelly, C. N. and Anderson, B. D. O. 1971. On the stability of fixed-lag smoothing algorithms. Journal of Franklin Institute, 291(4), 271–281.
    • (1971) Journal of Franklin Institute , vol.291 , Issue.4 , pp. 271-281
    • Kelly, C.N.1    Anderson, B.2
  • 86
    • 0002634803 scopus 로고
    • Dynamic linear models with markov-switching
    • Kim, C.-J. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics, 60, 1–22.
    • (1994) Journal of Econometrics , vol.60 , pp. 1-22
    • Kim, C.-J.1
  • 87
    • 84950459387 scopus 로고
    • Non-gaussian state-space modeling of nonstationary time series
    • Kitagawa, G. 1987. Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association, 82(400), 1032–1041.
    • (1987) Journal of the American Statistical Association , vol.82 , Issue.400 , pp. 1032-1041
    • Kitagawa, G.1
  • 88
    • 0001361993 scopus 로고
    • The two-filter formula for smoothing and an implementation of the gaussian-sum smoother
    • Kitagawa, G. 1994. The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4), 605–623.
    • (1994) Annals of the Institute of Statistical Mathematics , vol.46 , Issue.4 , pp. 605-623
    • Kitagawa, G.1
  • 89
    • 0030304310 scopus 로고    scopus 로고
    • Monte carlo filter and smoother for non-gaussian nonlinear state space models
    • Kitagawa, G. 1996. Monte Carlo filter and smoother for Non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 1–25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 91
    • 0036687287 scopus 로고    scopus 로고
    • Comment on “a new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors’ reply]
    • Lefebvre, T., Bruyninckx, H., and Schutter, J. D. 2002. Comment on “A new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors’ reply]. IEEE Transactions on Automatic Control, 47(8), 1406–1409.
    • (2002) IEEE Transactions on Automatic Control , vol.47 , Issue.8 , pp. 1406-1409
    • Lefebvre, T.1    Bruyninckx, H.2    Schutter, J.D.3
  • 100
    • 84878570315 scopus 로고    scopus 로고
    • Parameter estimation in stochastic differential equations with markov chain monte carlo and non-linear kalman filtering
    • Mbalawata, I. S., Särkkä, S., and Haario, H. 2013. Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 1195–1223.
    • (2013) Computational Statistics , vol.28 , Issue.3 , pp. 1195-1223
    • Mbalawata, I.S.1    Särkkä, S.2    Haario, H.3
  • 103
    • 0009441338 scopus 로고
    • Discrete-time fixed-lag smoothing algorithms
    • Moore, J. B. 1973. Discrete-time fixed-lag smoothing algorithms. Automatica, 9(2), 163–174.
    • (1973) Automatica , vol.9 , Issue.2 , pp. 163-174
    • Moore, J.B.1
  • 104
    • 0015617075 scopus 로고
    • Fixed-lag smoothing of nonlinear systems with discrete measurement
    • Moore, J. B. and Tam, P. 1973. Fixed-lag smoothing of nonlinear systems with discrete measurement. Information Sciences, 6, 151–160.
    • (1973) Information Sciences , vol.6 , pp. 151-160
    • Moore, J.B.1    Tam, P.2
  • 105
    • 0018026986 scopus 로고
    • Square-root algorithms for the continuoustime linear least-square estimation problem
    • Morf, M., Lévy, B., and Kailath, T. 1978. Square-root algorithms for the continuoustime linear least-square estimation problem. IEEE Transactions on Automatic Control, 23(5), 907–911.
    • (1978) IEEE Transactions on Automatic Control , vol.23 , Issue.5 , pp. 907-911
    • Morf, M.1    Lévy, B.2    Kailath, T.3
  • 107
    • 79951655062 scopus 로고    scopus 로고
    • Particle smoothing in continuous time: A fast approach via density estimation
    • Murray, L. and Storkey, A. 2011. Particle smoothing in continuous time: a fast approach via density estimation. IEEE Transactions on Signal Processing, 59(3), 1017–1026.
    • (2011) IEEE Transactions on Signal Processing , vol.59 , Issue.3 , pp. 1017-1026
    • Murray, L.1    Storkey, A.2
  • 108
    • 85057196821 scopus 로고    scopus 로고
    • Mcmc using hamiltonian dynamics
    • Chapter 5 of: Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (eds.), Chapman & Hall/CRC
    • Neal, R. M. 2011. MCMC using Hamiltonian dynamics. Chapter 5 of: Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (eds.), Handbook of Markov ChainMonte Carlo. Chapman & Hall/CRC.
    • (2011) Handbook of Markov Chainmonte Carlo
    • Neal, R.M.1
  • 110
    • 73049086204 scopus 로고    scopus 로고
    • Bayesian system identification via markov chain monte carlo techniques
    • Ninness, B. and Henriksen, S. 2010. Bayesian system identification via Markov chain Monte Carlo techniques. Automatica, 46(1), 40–51.
    • (2010) Automatica , vol.46 , Issue.1 , pp. 40-51
    • Ninness, B.1    Henriksen, S.2
  • 112
    • 0034326226 scopus 로고    scopus 로고
    • New developments in state estimation for nonlinear systems
    • Nørgaard, M., Poulsen, N. K., and Ravn, O. 2000. New developments in state estimation for nonlinear systems. Automatica, 36(11), 1627–1638.
    • (2000) Automatica , vol.36 , Issue.11 , pp. 1627-1638
    • Nørgaard, M.1    Poulsen, N.K.2    Ravn, O.3
  • 115
    • 34247192555 scopus 로고    scopus 로고
    • State-space models: From the em algorithm to a gradient approach
    • Olsson, R., Petersen, K., and Lehn-Schiøler, T. 2007. State-space models: from the EM algorithm to a gradient approach. Neural Computation, 19(4), 1097–1111.
    • (2007) Neural Computation , vol.19 , Issue.4 , pp. 1097-1111
    • Olsson, R.1    Petersen, K.2    Lehn-Schiøler, T.3
  • 118
    • 79952176832 scopus 로고    scopus 로고
    • Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
    • Poyiadjis, G., Doucet, A., and Singh, S. 2011. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika, 98(1), 65–80.
    • (2011) Biometrika , vol.98 , Issue.1 , pp. 65-80
    • Poyiadjis, G.1    Doucet, A.2    Singh, S.3
  • 120
    • 4944245981 scopus 로고    scopus 로고
    • On the use and misuse of particle filtering in digital communications
    • Punskaya, E., Doucet, A., and Fitzgerald, W. J. 2002. On the use and misuse of particle filtering in digital communications. In: Proceedings of EUSIPCO.
    • (2002) Proceedings of EUSIPCO
    • Punskaya, E.1    Doucet, A.2    Fitzgerald, W.J.3
  • 123
    • 84937741903 scopus 로고
    • Solutions to the linear smoothing problem
    • Rauch, H. E. 1963. Solutions to the linear smoothing problem. IEEE Transactions on Automatic Control, 8(4), 371–372.
    • (1963) IEEE Transactions on Automatic Control , vol.8 , Issue.4 , pp. 371-372
    • Rauch, H.E.1
  • 124
    • 21644483999 scopus 로고
    • Maximum likelihood estimates of linear dynamic systems
    • Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 1445–1450.
    • (1965) AIAA Journal , vol.3 , Issue.8 , pp. 1445-1450
    • Rauch, H.E.1    Tung, F.2    Striebel, C.T.3
  • 126
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various metropolis– hastings algorithms
    • Roberts, G. O. and Rosenthal, J. S. 2001. Optimal scaling for various Metropolis– Hastings algorithms. Statistical Science, 16(4), 351–367.
    • (2001) Statistical Science , vol.16 , Issue.4 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 127
    • 1842702843 scopus 로고    scopus 로고
    • Learning nonlinear dynamical systems using the expectation–maximization algorithm
    • Chapter 6, pages, Haykin, S. (ed.), Wiley-Interscience
    • Roweis, S. and Ghahramani, Z. 2001. Learning nonlinear dynamical systems using the expectation–maximization algorithm. Chapter 6, pages 175–220 of: Haykin, S. (ed.), Kalman Filtering and Neural Networks. Wiley-Interscience.
    • (2001) Kalman Filtering and Neural Networks , pp. 175-220
    • Roweis, S.1    Ghahramani, Z.2
  • 130
    • 84870485756 scopus 로고    scopus 로고
    • Moment estimation using a marginalized transform
    • Sandblom, F. and Svensson, L. 2012. Moment estimation using a marginalized transform. IEEE Transactions on Signal Processing, 60(12), 6138–6150.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , Issue.12 , pp. 6138-6150
    • Sandblom, F.1    Svensson, L.2
  • 132
    • 34648837231 scopus 로고    scopus 로고
    • On unscented kalman filtering for state estimation of continuous-time nonlinear systems
    • Särkkä, S. 2007. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 52(9), 1631–1641.
    • (2007) IEEE Transactions on Automatic Control , vol.52 , Issue.9 , pp. 1631-1641
    • Särkkä, S.1
  • 133
    • 42649142602 scopus 로고    scopus 로고
    • Unscented rauch-tung-striebel smoother
    • Särkkä, S. 2008. Unscented Rauch-Tung-Striebel smoother. IEEE Transactions on Automatic Control, 53(3), 845–849.
    • (2008) IEEE Transactions on Automatic Control , vol.53 , Issue.3 , pp. 845-849
    • Särkkä, S.1
  • 134
    • 69249221260 scopus 로고    scopus 로고
    • Continuous-time and continuous-discrete-time unscented rauch- tung-striebel smoothers
    • Särkkä, S. 2010. Continuous-time and continuous-discrete-time unscented Rauch- Tung-Striebel smoothers. Signal Processing, 90(1), 225–235.
    • (2010) Signal Processing , vol.90 , Issue.1 , pp. 225-235
    • Särkkä, S.1
  • 135
    • 84867628750 scopus 로고    scopus 로고
    • Linear operators and stochastic partial differential equations in gaussian process regression
    • Särkkä, S. 2011. Linear operators and stochastic partial differential equations in Gaussian process regression. In: Proceedings of ICANN.
    • (2011) Proceedings of ICANN
    • Särkkä, S.1
  • 136
    • 77955394237 scopus 로고    scopus 로고
    • On gaussian optimal smoothing of non-linear state space models
    • Särkkä, S. and Hartikainen, J. 2010a. On Gaussian optimal smoothing of non-linear state space models. IEEE Transactions on Automatic Control, 55(8), 1938–1941.
    • (2010) IEEE Transactions on Automatic Control , vol.55 , Issue.8 , pp. 1938-1941
    • Särkkä, S.1    Hartikainen, J.2
  • 138
    • 84926196477 scopus 로고    scopus 로고
    • Infinite-dimensional kalman filtering approach to spatio-temporal gaussian process regression
    • Särkkä, S. and Hartikainen, J. 2012. Infinite-dimensional Kalman filtering approach to spatio-temporal Gaussian process regression. In: Proceedings of AISTATS 2012.
    • (2012) Proceedings of AISTATS 2012
    • Särkkä, S.1    Hartikainen, J.2
  • 139
    • 63449123513 scopus 로고    scopus 로고
    • Recursive noise adaptive kalman filtering by variational bayesian approximations
    • Särkkä, S. and Nummenmaa, A. 2009. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Transactions on Automatic Control, 54(3), 596–600.
    • (2009) IEEE Transactions on Automatic Control , vol.54 , Issue.3 , pp. 596-600
    • Särkkä, S.1    Nummenmaa, A.2
  • 140
    • 84867687753 scopus 로고    scopus 로고
    • Gaussian filtering and smoothing for continuousdiscrete dynamic systems
    • Särkkä, S. and Sarmavuori, J. 2013. Gaussian filtering and smoothing for continuousdiscrete dynamic systems. Signal Processing, 93(2), 500–510.
    • (2013) Signal Processing , vol.93 , Issue.2 , pp. 500-510
    • Särkkä, S.1    Sarmavuori, J.2
  • 141
    • 84867671771 scopus 로고    scopus 로고
    • On continuous-discrete cubature kalman filtering
    • Särkkä, S. and Solin, A. 2012. On continuous-discrete cubature Kalman filtering. Pages 1210–1215 of: Proceedings of SYSID2012.
    • (2012) Proceedings of SYSID , vol.2012 , pp. 1210-1215
    • Särkkä, S.1    Solin, A.2
  • 142
    • 80051698157 scopus 로고    scopus 로고
    • Application of girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems
    • Särkkä, S. and Sottinen, T. 2008. Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems. Bayesian Analysis, 3(3), 555–584.
    • (2008) Bayesian Analysis , vol.3 , Issue.3 , pp. 555-584
    • Särkkä, S.1    Sottinen, T.2
  • 143
    • 34249654189 scopus 로고    scopus 로고
    • Cats benchmark time series prediction by kalman smoother with cross-validated noise density
    • Särkkä, S., Vehtari, A., and Lampinen, J. 2007a. CATS benchmark time series prediction by Kalman smoother with cross-validated noise density. Neurocomputing, 70(13–15), 2331–2341.
    • (2007) Neurocomputing , vol.70 , Issue.1315 , pp. 2331-2341
    • Särkkä, S.1    Vehtari, A.2    Lampinen, J.3
  • 144
    • 33751003537 scopus 로고    scopus 로고
    • Rao-blackwellized particle filter for multiple target tracking
    • Särkkä, S., Vehtari, A., and Lampinen, J. 2007b. Rao-Blackwellized particle filter for multiple target tracking. Information Fusion Journal, 8(1), 2–15.
    • (2007) Information Fusion Journal , vol.8 , Issue.1 , pp. 2-15
    • Särkkä, S.1    Vehtari, A.2    Lampinen, J.3
  • 145
    • 84867094916 scopus 로고    scopus 로고
    • A backward-simulation based rao- blackwellized particle smoother for conditionally linear gaussian models
    • Särkkä, S., Bunch, P., and Godsill, S. J. 2012a. A backward-simulation based Rao- Blackwellized particle smoother for conditionally linear Gaussian models. Pages 506–511 of: Proceedings of SYSID 2012.
    • (2012) Proceedings of SYSID 2012 , pp. 506-511
    • Särkkä, S.1    Bunch, P.2    Godsill, S.J.3
  • 146
    • 84857198770 scopus 로고    scopus 로고
    • Dynamic retrospective filtering of physiological noise in bold fmri: Drifter
    • Särkkä, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., Vanni, S., and Lin, F.-H. 2012b. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. NeuroImage, 60(2), 1517–1527.
    • (2012) Neuroimage , vol.60 , Issue.2 , pp. 1517-1527
    • Särkkä, S.1    Solin, A.2    Nummenmaa, A.3    Vehtari, A.4    Auranen, T.5    Vanni, S.6    Lin, F.-H.7
  • 150
    • 23844494086 scopus 로고    scopus 로고
    • Marginalized particle filters for mixed linear/nonlinear state-space models
    • Schön, T., Gustafsson, F., and Nordlund, P.-J. 2005. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7), 2279–2289.
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.7 , pp. 2279-2289
    • Schön, T.1    Gustafsson, F.2    Nordlund, P.-J.3
  • 151
    • 78650803456 scopus 로고    scopus 로고
    • System identification of nonlinear statespace models
    • Schön, T., Wills, A., and Ninness, B. 2011. System identification of nonlinear statespace models. Automatica, 47(1), 39–49.
    • (2011) Automatica , vol.47 , Issue.1 , pp. 39-49
    • Schön, T.1    Wills, A.2    Ninness, B.3
  • 152
    • 0024668601 scopus 로고
    • A new method for evaluating the log-likelihood gradient, the hessian, and the fisher information matrix for linear dynamic systems
    • Segal, M. and Weinstein, E. 1989. A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems. IEEE Transactions on Information Theory, 35(3), 682–687.
    • (1989) IEEE Transactions on Information Theory , vol.35 , Issue.3 , pp. 682-687
    • Segal, M.1    Weinstein, E.2
  • 154
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the em algorithm
    • Shumway, R. and Stoffer, D. 1982. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4), 253–264.
    • (1982) Journal of Time Series Analysis , vol.3 , Issue.4 , pp. 253-264
    • Shumway, R.1    Stoffer, D.2
  • 156
    • 38349047149 scopus 로고    scopus 로고
    • Nonlinear continuous time modeling approaches in panel research
    • Singer, H. 2008. Nonlinear continuous time modeling approaches in panel research. Statistica Neerlandica, 62(1), 29–57.
    • (2008) Statistica Neerlandica , vol.62 , Issue.1 , pp. 29-57
    • Singer, H.1
  • 157
    • 81355146431 scopus 로고    scopus 로고
    • Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms
    • Singer, H. 2011. Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms. AStA Advances in Statistical Analysis, 95(4), 375–413.
    • (2011) Asta Advances in Statistical Analysis , vol.95 , Issue.4 , pp. 375-413
    • Singer, H.1
  • 161
    • 0036475891 scopus 로고    scopus 로고
    • Particle filters in state space models with the presence of unknown static parameters
    • Storvik, G. 2002. Particle filters in state space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing, 50(2), 281–289.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 281-289
    • Storvik, G.1
  • 163
    • 50549214278 scopus 로고
    • Partial differential equations for the conditional distribution of a markov process given noisy observations
    • Striebel, C. T. 1965. Partial differential equations for the conditional distribution of a Markov process given noisy observations. Journal of Mathematical Analysis and Applications, 11, 151–159.
    • (1965) Journal of Mathematical Analysis and Applications , vol.11 , pp. 151-159
    • Striebel, C.T.1
  • 164
    • 49549170739 scopus 로고
    • Fixed-lag demodulation of discrete noisy measurements of fm signals
    • Tam, P., Tam, D., and Moore, J. 1973. Fixed-lag demodulation of discrete noisy measurements of FM signals. Automatica, 9(6), 725–729.
    • (1973) Automatica , vol.9 , Issue.6 , pp. 725-729
    • Tam, P.1    Tam, D.2    Moore, J.3
  • 173
    • 84863557597 scopus 로고    scopus 로고
    • Robust adaptive metropolis algorithm with coerced acceptance rate
    • Vihola, M. 2012. Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and Computing, 22(5), 997–1008.
    • (2012) Statistics and Computing , vol.22 , Issue.5 , pp. 997-1008
    • Vihola, M.1
  • 174
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • Viterbi, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2).
    • (1967) IEEE Transactions on Information Theory , vol.13 , Issue.2
    • Viterbi, A.J.1
  • 178
    • 84871271512 scopus 로고    scopus 로고
    • Identification of hammerstein–wiener models
    • Wills, A., Schön, T. B., Ljung, L., and Ninness, B. 2013. Identification of Hammerstein–Wiener models. Automatica, 49(1), 70–81.
    • (2013) Automatica , vol.49 , Issue.1 , pp. 70-81
    • Wills, A.1    Schön, T.B.2    Ljung, L.3    Ninness, B.4
  • 179
    • 18844439909 scopus 로고    scopus 로고
    • Unscented kalman filtering for additive noise case: Augmented versus nonaugmented
    • Wu, Y., Hu, D., Wu, M., and Hu, X. 2005. Unscented Kalman filtering for additive noise case: augmented versus nonaugmented. IEEE Signal Processing Letters, 12(5), 357–360.
    • (2005) IEEE Signal Processing Letters , vol.12 , Issue.5 , pp. 357-360
    • Wu, Y.1    Hu, D.2    Wu, M.3    Hu, X.4
  • 180
    • 33746568533 scopus 로고    scopus 로고
    • A numerical-integration perspective on gaussian filters
    • Wu, Y., Hu, D., Wu, M., and Hu, X. 2006. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 54(8), 2910–2921.
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.8 , pp. 2910-2921
    • Wu, Y.1    Hu, D.2    Wu, M.3    Hu, X.4
  • 181
    • 27844550751 scopus 로고    scopus 로고
    • Novel approximations for inference in nonlinear dynamical systems using expectation propagation
    • Ypma, A. and Heskes, T. 2005. Novel approximations for inference in nonlinear dynamical systems using expectation propagation. Neurocomputing, 69(1), 85–99.
    • (2005) Neurocomputing , vol.69 , Issue.1 , pp. 85-99
    • Ypma, A.1    Heskes, T.2
  • 182
    • 84923499857 scopus 로고    scopus 로고
    • Expectation propagation and generalized ep methods for inference in switching linear dynamical systems
    • Chapter 7, Cambridge University Press
    • Zoeter, O. and Heskes, T. 2011. Expectation propagation and generalized EP methods for inference in switching linear dynamical systems. Chapter 7, pages 141–165 of: Bayesian Time Series Models. Cambridge University Press.
    • (2011) Bayesian Time Series Models , pp. 141-165
    • Zoeter, O.1    Heskes, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.