메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages 2515-2540

Expectation correction for smoothed inference in switching linear dynamical systems

Author keywords

Expectation correction; Expectation propagation; Gaussian sum smoother; Switching Kalman filter; Switching linear dynamical system

Indexed keywords

APPROXIMATION THEORY; GAUSSIAN NOISE (ELECTRONIC); MATHEMATICAL MODELS; SIGNAL FILTERING AND PREDICTION;

EID: 33845270980     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (90)

References (38)
  • 1
    • 0015385037 scopus 로고
    • Nonlinear bayesian estimation using gaussian sum approximations
    • D. L. Alspach and H. W. Sorenson. Nonlinear bayesian estimation using gaussian sum approximations. IEEE Transactions on Automatic Control, 17(4):439-448, 1972.
    • (1972) IEEE Transactions on Automatic Control , vol.17 , Issue.4 , pp. 439-448
    • Alspach, D.L.1    Sorenson, H.W.2
  • 4
    • 0000761439 scopus 로고    scopus 로고
    • Markov chain Monte Carlo in conditionally Gaussian state space models
    • C. Carter and R. Kohn. Markov chain Monte Carlo in conditionally Gaussian state space models. Biometrika, 83:589-601, 1996.
    • (1996) Biometrika , vol.83 , pp. 589-601
    • Carter, C.1    Kohn, R.2
  • 9
    • 0001646121 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Z. Ghahramani and G. E. Hinton. Variational learning for switching state-space models. Neural Computation, 12(4):963-996, 1998.
    • (1998) Neural Computation , vol.12 , Issue.4 , pp. 963-996
    • Ghahramani, Z.1    Hinton, G.E.2
  • 11
    • 27344435412 scopus 로고    scopus 로고
    • Expectation propagation for approximate inference in dynamic Bayesian networks
    • A. Darwiche and N. Friedman, editors
    • T. Heskes and O. Zoeter. Expectation propagation for approximate inference in dynamic Bayesian networks. In A. Darwiche and N. Friedman, editors, Uncertainty in Artificial Intelligence, pages 216-223, 2002.
    • (2002) Uncertainty in Artificial Intelligence , pp. 216-223
    • Heskes, T.1    Zoeter, O.2
  • 12
    • 33749044832 scopus 로고    scopus 로고
    • A variational approach to Bayesian logistic regression problems and their extensions
    • T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their extensions. In Artificial Intelligence and Statistics, 1996.
    • (1996) Artificial Intelligence and Statistics
    • Jaakkola, T.1    Jordan, M.2
  • 15
    • 0002634803 scopus 로고
    • Dynamic linear models with Markov-switching
    • C-J. Kim. Dynamic linear models with Markov-switching. Journal of Econometrics, 60:1-22, 1994.
    • (1994) Journal of Econometrics , vol.60 , pp. 1-22
    • Kim, C.-J.1
  • 17
    • 0001361993 scopus 로고
    • The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother
    • G. Kitagawa. The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4):605-623, 1994.
    • (1994) Annals of the Institute of Statistical Mathematics , vol.46 , Issue.4 , pp. 605-623
    • Kitagawa, G.1
  • 18
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1): 1-25, 1996.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 19
    • 0041377763 scopus 로고    scopus 로고
    • Stable local computation with conditional Gaussian distributions
    • S. Lauritzen and F. Jensen. Stable local computation with conditional Gaussian distributions. Statistics and Computing, 11:191-203, 2001.
    • (2001) Statistics and Computing , vol.11 , pp. 191-203
    • Lauritzen, S.1    Jensen, F.2
  • 20
    • 84950442428 scopus 로고
    • Propagation of probabilities, means, and variances in mixed graphical association models
    • S. L. Lauritzen. Propagation of probabilities, means, and variances in mixed graphical association models. Journal of the American Statistical Association, 87(420): 1098-1108, 1992.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.420 , pp. 1098-1108
    • Lauritzen, S.L.1
  • 29
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. of the IEEE, 77(2):257-286, 1989.
    • (1989) Proc. of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 31
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11(2):305-345, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 36
    • 0001560241 scopus 로고
    • Numerical aspects of different Kalman filter implementations
    • M. Verhaegen and P. Van Dooren. Numerical aspects of different Kalman filter implementations. IEEE Transactions of Automatic Control, 31(10):907-917, 1986.
    • (1986) IEEE Transactions of Automatic Control , vol.31 , Issue.10 , pp. 907-917
    • Verhaegen, M.1    Van Dooren, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.