메뉴 건너뛰기




Volumn 62, Issue 1, 2010, Pages 61-89

Smoothing algorithms for state-space models

Author keywords

Non linear diffusion; Parameter estimation; Rao blackwellisation; Sequential monte carlo; State space models; Two filter smoothing

Indexed keywords

BAYESIAN FILTERS; CLOSED FORM; CLOSED-FORM EXPRESSION; HIDDEN MARKOV PROCESS; INFORMATION FILTER; NON-LINEAR NON-GAUSSIAN; NONLINEAR DIFFUSION; NUMERICAL TECHNIQUES; PROBABILITY MEASURES; RAOBLACKWELLISATION; RECURSIONS; SEQUENTIAL MONTE CARLO; SMOOTHING ALGORITHMS; SMOOTHING FORMULAS; STATE-SPACE MODELS;

EID: 77950691868     PISSN: 00203157     EISSN: 15729052     Source Type: Journal    
DOI: 10.1007/s10463-009-0236-2     Document Type: Article
Times cited : (222)

References (23)
  • 1
    • 0036436369 scopus 로고    scopus 로고
    • Particle filtering for partially observed gaussian state-space models
    • Andrieu, C., Doucet, A. (2002). Particle filtering for partially observed Gaussian state-space models. Journal of the Royal Statistical Society B, 64, 4, 827-836.
    • (2002) Journal of the Royal Statistical Society B , vol.64 , Issue.4 , pp. 827-836
    • Andrieu, C.1    Doucet, A.2
  • 2
    • 0022663639 scopus 로고
    • Two-filter formula for discrete-time non-linear bayesian smoothing
    • Bresler, Y. (1986). Two-filter formula for discrete-time non-linear Bayesian smoothing. International Journal of Control, 43, 2, 629-641.
    • (1986) International Journal of Control , vol.43 , Issue.2 , pp. 629-641
    • Bresler, Y.1
  • 5
    • 0033075216 scopus 로고    scopus 로고
    • Simulation-based methods for blind maximumlikelihood filter identification
    • Cappé O., Doucet, A., Moulines, E., Lavielle, M. (1999). Simulation-based methods for blind maximumlikelihood filter identification. Signal Processing, 73, 1, 3-25.
    • (1999) Signal Processing , vol.73 , Issue.1 , pp. 3-25
    • Cappé, O.1    Doucet, A.2    Moulines, E.3    Lavielle, M.4
  • 7
    • 0011628998 scopus 로고    scopus 로고
    • The scan sampler
    • de Jong, P. (1997). The scan sampler. Biometrika, 84, 929-937.
    • (1997) Biometrika , vol.84 , pp. 929-937
    • De Jong, P.1
  • 9
    • 0035369663 scopus 로고    scopus 로고
    • Iterative algorithms for state estimation of jump Markov linear systems
    • DOI 10.1109/78.923304, PII S1053587X01038910
    • Doucet, A., Andrieu, C. (2001). Iterative algorithms for state estimation of jump Markov linear systems. IEEE Transactions on Signal Processing, 49, 6, 1216-1227 (Pubitemid 32512282)
    • (2001) IEEE Transactions on Signal Processing , vol.49 , Issue.6 , pp. 1216-1227
    • Doucet, A.1    Andrieu, C.2
  • 10
    • 0001460136 scopus 로고    scopus 로고
    • On sequential monte carlo sampling methods for bayesian filtering
    • Doucet, A., Godsill, S. J., Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197-208.
    • (2000) Statistics and Computing , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 11
    • 0003665481 scopus 로고    scopus 로고
    • Doucet, A., de Freitas, J. F. G., Gordon, N. J. (Eds.), New York: Springer
    • Doucet, A., de Freitas, J. F. G., Gordon, N. J. (Eds.) (2001). Sequential Monte Carlo methods in practice. New York: Springer.
    • (2001) Sequential Monte Carlo Methods in Practice
  • 13
    • 70350499301 scopus 로고    scopus 로고
    • A sequential smoothing algorithm with linear computational cost
    • Department of Statistics, Lancaster University
    • Fearnhead, P.,Wyncoll, D., Tawn, J. (2008b). A sequential smoothing algorithm with linear computational cost. Technical report, Department of Statistics, Lancaster University.
    • (2008) Technical Report
    • Fearnhead, P.1    Wyncoll, D.2    Tawn, J.3
  • 17
    • 84950459387 scopus 로고
    • Non-gaussian state-space modeling of nonstationary time series
    • Kitagawa, G. (1987). Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association, 82, 1032-1063.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 18
    • 0001361993 scopus 로고
    • The two-filter formula for smoothing and an implementation of the gaussian-sum smoother
    • Kitagawa, G. (1994). The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46, 4, 605-623.
    • (1994) Annals of the Institute of Statistical Mathematics , vol.46 , Issue.4 , pp. 605-623
    • Kitagawa, G.1
  • 19
    • 0030304310 scopus 로고    scopus 로고
    • Monte carlo filter and smoother for non-Gaussian non-linear state space models
    • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian non-linear state space models. Journal of Computational and Graphical Statistics, 5, 1-25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 20
    • 0042564253 scopus 로고    scopus 로고
    • Monte carlo smoothing and self-organizing state-space model
    • A. Doucet, J. F. G. de Freitas, N. J. Gordon (Eds.), New York: Springer
    • Kitagawa, G., Sato, S. (2001).Monte Carlo smoothing and self-organizing state-space model. In A. Doucet, J. F. G. de Freitas, N. J. Gordon (Eds.), Sequential Monte Carlo methods in practice (pp. 177-195). New York: Springer.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 177-195
    • Kitagawa, G.1    Sato, S.2
  • 23
    • 0002174025 scopus 로고
    • A solution of the smoothing problem for linear dynamic systems
    • Mayne, D. Q. (1966). A solution of the smoothing problem for linear dynamic systems, Automatica, 4, 73-92.
    • (1966) Automatica , vol.4 , pp. 73-92
    • Mayne, D.Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.