메뉴 건너뛰기




Volumn 62, Issue 3, 2000, Pages 493-508

Mixture Kalman filters

Author keywords

Conditional dynamic linear models; Dynamic systems; Fading channels; Sequential Monte Carlo methods; State space models; Target tracking

Indexed keywords


EID: 0034355022     PISSN: 13697412     EISSN: None     Source Type: Journal    
DOI: 10.1111/1467-9868.00246     Document Type: Article
Times cited : (503)

References (31)
  • 1
    • 0014738902 scopus 로고
    • On state estimation in switching environments
    • Ackerson, G. A. and Fu, K. S. (1970) On state estimation in switching environments. IEEE Trans. Autom. Control, 15, 10-17.
    • (1970) IEEE Trans. Autom. Control , vol.15 , pp. 10-17
    • Ackerson, G.A.1    Fu, K.S.2
  • 2
    • 0000243874 scopus 로고
    • Random sampling approach to state estimation in switching environments
    • Akashi, H. and Kumamoto, H. (1977) Random sampling approach to state estimation in switching environments. Automatica, 13, 429-434.
    • (1977) Automatica , vol.13 , pp. 429-434
    • Akashi, H.1    Kumamoto, H.2
  • 4
    • 0029289453 scopus 로고
    • A stochastic simulation Bayesian approach to multitarget tracking
    • Avitzour, D. (1995) A stochastic simulation Bayesian approach to multitarget tracking. IEE Proc. Radar, Sonar Navign, 142, 41-44.
    • (1995) IEE Proc. Radar, Sonar Navign , vol.142 , pp. 41-44
    • Avitzour, D.1
  • 6
    • 0031321240 scopus 로고    scopus 로고
    • Dynamic conditional independence models and Markov chain Monte Carlo methods
    • Berzuini, C., Best, N. G., Gilks, W. R. and Larizza, C. (1997) Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Am. Statist. Ass., 92, 1403-1412.
    • (1997) J. Am. Statist. Ass. , vol.92 , pp. 1403-1412
    • Berzuini, C.1    Best, N.G.2    Gilks, W.R.3    Larizza, C.4
  • 7
    • 84950445183 scopus 로고
    • A Monte Carlo approach to nonnormal and nonlinear state-space modeling
    • Carlin, B. P., Polson, N. G. and Stoffer, D. S. (1992) A Monte Carlo approach to nonnormal and nonlinear state-space modeling. J. Am. Statist. Ass., 87, 493-500.
    • (1992) J. Am. Statist. Ass. , vol.87 , pp. 493-500
    • Carlin, B.P.1    Polson, N.G.2    Stoffer, D.S.3
  • 9
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter, C. K. and Kohn, R. (1994) On Gibbs sampling for state space models. Biometrika, 81, 541-553.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 10
    • 0003206751 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • to be published
    • Doucet, A., Godsill, S. J. and Andrieu, C. (1999) On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput., to be published.
    • (1999) Statist. Comput.
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 11
    • 0003502435 scopus 로고
    • Boston: Massachusetts Institute of Technology Press
    • Gelb, A. (1974) Applied Optimal Estimation. Boston: Massachusetts Institute of Technology Press.
    • (1974) Applied Optimal Estimation
    • Gelb, A.1
  • 12
    • 0027580559 scopus 로고
    • A novel approach to nonlinear/non Gaussian Bayesian state estimation
    • Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993) A novel approach to nonlinear/non Gaussian Bayesian state estimation. IEE Proc. Radar Signal Process., 140, 107-113.
    • (1993) IEE Proc. Radar Signal Process. , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 13
    • 0032221057 scopus 로고    scopus 로고
    • Monte Carlo approximations for general state-space models
    • Hürzeler, M. and Künsch, H. R. (1998) Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist., 7, 175-193.
    • (1998) J. Comput. Graph. Statist. , vol.7 , pp. 175-193
    • Hürzeler, M.1    Künsch, H.R.2
  • 15
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E. (1960) A new approach to linear filtering and prediction problems. J. Basic Engng, 82, 35-45.
    • (1960) J. Basic Engng , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 16
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa, G. (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist., 5, 1-25.
    • (1996) J. Comput. Graph. Statist. , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 17
    • 84950943564 scopus 로고
    • Sequential imputations and Bayesian missing data problems
    • Kong, A., Liu, J. S. and Wong, W. H. (1994) Sequential imputations and Bayesian missing data problems. J. Am. Statist. Ass., 89, 278-288.
    • (1994) J. Am. Statist. Ass. , vol.89 , pp. 278-288
    • Kong, A.1    Liu, J.S.2    Wong, W.H.3
  • 18
    • 84950943371 scopus 로고
    • Blind deconvolution via sequential imputations
    • Liu, J. S. and Chen, R. (1995) Blind deconvolution via sequential imputations. J. Am. Statist. Ass., 90, 567-576.
    • (1995) J. Am. Statist. Ass. , vol.90 , pp. 567-576
    • Liu, J.S.1    Chen, R.2
  • 19
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • _ (1998) Sequential Monte Carlo methods for dynamic systems. J. Am. Statist. Ass., 93, 1032-1044.
    • (1998) J. Am. Statist. Ass. , vol.93 , pp. 1032-1044
  • 20
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • Liu, J. S., Wong, W. H. and Kong, A. (1994) Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika, 81, 27-40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 21
    • 0033466420 scopus 로고    scopus 로고
    • Sequential importance sampling for non-parametric Bayes models: The next generation
    • MacEachern, S. N., Clyde, M. A. and Liu, J. S. (1999) Sequential importance sampling for non-parametric Bayes models: the next generation. Can. J. Statist., 27, 251-267.
    • (1999) Can. J. Statist. , vol.27 , pp. 251-267
    • MacEachern, S.N.1    Clyde, M.A.2    Liu, J.S.3
  • 22
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • Pitt, M. K. and Shephard, N. (1999) Filtering via simulation: auxiliary particle filters. J. Am. Statist. Ass., 94, 590-599.
    • (1999) J. Am. Statist. Ass. , vol.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 23
    • 84950788916 scopus 로고
    • A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm
    • Rubin, D. B. (1987) A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. J. Am. Statist. Ass., 52, 543-546.
    • (1987) J. Am. Statist. Ass. , vol.52 , pp. 543-546
    • Rubin, D.B.1
  • 25
    • 0038853197 scopus 로고
    • Partial non-Gaussian state space
    • Shephard, N. (1994) Partial non-Gaussian state space. Biometrika, 81, 115-131.
    • (1994) Biometrika , vol.81 , pp. 115-131
    • Shephard, N.1
  • 27
    • 84904784061 scopus 로고
    • Applying the Monte Carlo method for optimum estimation in systems with random structure
    • Svetnik, V. B. (1986) Applying the Monte Carlo method for optimum estimation in systems with random structure. Autom. Remote Control, 47, 818-827.
    • (1986) Autom. Remote Control , vol.47 , pp. 818-827
    • Svetnik, V.B.1
  • 29
    • 0020178635 scopus 로고
    • Detection and estimation for abruptly changing systems
    • Tugnait, J. K. (1982) Detection and estimation for abruptly changing systems. Automatica, 18, 607-615.
    • (1982) Automatica , vol.18 , pp. 607-615
    • Tugnait, J.K.1
  • 30
    • 0000417862 scopus 로고
    • Mixture models, Monte Carlo, Bayesian updating and dynamic models
    • West, M. (1992) Mixture models, Monte Carlo, Bayesian updating and dynamic models. Comput. Sci. Statist., 24, 325-333.
    • (1992) Comput. Sci. Statist. , vol.24 , pp. 325-333
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.