메뉴 건너뛰기




Volumn 10, Issue 3, 2000, Pages 197-208

On sequential Monte Carlo sampling methods for Bayesian filtering

Author keywords

Bayesian filtering; Importance sampling; Nonlinear non Gaussian state space models; Particle filtering; Rao Blackwellised estimates; Sequential Monte Carlo methods

Indexed keywords


EID: 0001460136     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1008935410038     Document Type: Article
Times cited : (4015)

References (41)
  • 1
    • 0043048581 scopus 로고
    • Construction of discrete-time nonlinear filter by Monte Carlo methods with variance-reducing techniques
    • in Japanese
    • Akashi H. and Kumamoto H. 1975. Construction of discrete-time nonlinear filter by Monte Carlo methods with variance-reducing techniques. Systems and Control 19: 211-221 (in Japanese).
    • (1975) Systems and Control , vol.19 , pp. 211-221
    • Akashi, H.1    Kumamoto, H.2
  • 2
    • 0000243874 scopus 로고
    • Random sampling approach to state estimation in switching environments
    • Akashi H. and Kumamoto H. 1977. Random sampling approach to state estimation in switching environments. Automatica 13: 429-434.
    • (1977) Automatica , vol.13 , pp. 429-434
    • Akashi, H.1    Kumamoto, H.2
  • 5
    • 0032063451 scopus 로고    scopus 로고
    • Switching state-space models: Likelihood function, filtering and smoothing
    • Billio M. and Monfort A. 1998. Switching state-space models: Likelihood function, filtering and smoothing. Journal of Statistical Planning and Inference 68: 65-103.
    • (1998) Journal of Statistical Planning and Inference , vol.68 , pp. 65-103
    • Billio, M.1    Monfort, A.2
  • 7
    • 0002205556 scopus 로고    scopus 로고
    • Rao-Blackwellisation of sampling schemes
    • Casella G. and Robert C.P. 1996. Rao-Blackwellisation of sampling schemes. Biometrika 83: 81-94.
    • (1996) Biometrika , vol.83 , pp. 81-94
    • Casella, G.1    Robert, C.P.2
  • 8
    • 0003923940 scopus 로고    scopus 로고
    • Predictive updating methods with application to Bayesian classification
    • Chen R. and Liu J.S. 1996. Predictive updating methods with application to Bayesian classification. Journal of the Royal Statistical Society B 58: 397-415.
    • (1996) Journal of the Royal Statistical Society B , vol.58 , pp. 397-415
    • Chen, R.1    Liu, J.S.2
  • 9
    • 0001364414 scopus 로고    scopus 로고
    • Fixed-lag smoothing using sequential importance sampling
    • Bernardo J.M., Berger J.O., Dawid A.P., and Smith A.F.M. (Eds.), Oxford University Press
    • Clapp T.C. and Godsill S.J. 1999. Fixed-lag smoothing using sequential importance sampling. In: Bernardo J.M., Berger J.O., Dawid A.P., and Smith A.F.M. (Eds.), Bayesian Statistics, Vol. 6, Oxford University Press, pp. 743-752.
    • (1999) Bayesian Statistics , vol.6 , pp. 743-752
    • Clapp, T.C.1    Godsill, S.J.2
  • 11
    • 0003838908 scopus 로고    scopus 로고
    • Technical Report, University of Cambridge, Dept. of Engineering, CUED-F-ENG-TR310. Available on the MCMC preprint service
    • Doucet A. 1998. On sequential simulation-based methods for Bayesian filtering. Technical Report, University of Cambridge, Dept. of Engineering, CUED-F-ENG-TR310. Available on the MCMC preprint service at http: //www.stats.bris.ac.uk/MCMC/.
    • (1998) On Sequential Simulation-based Methods for Bayesian Filtering
    • Doucet, A.1
  • 12
    • 0001667705 scopus 로고
    • Bayesian inference in Econometrics models using Monte Carlo integration
    • Geweke J. 1989. Bayesian inference in Econometrics models using Monte Carlo integration. Econometrica 57: 1317-1339.
    • (1989) Econometrica , vol.57 , pp. 1317-1339
    • Geweke, J.1
  • 15
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon N.J., Salmond D.J., and Smith A.F.M. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE-Proceedings-F 140: 107-113.
    • (1993) IEE-Proceedings-F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 16
    • 0039816272 scopus 로고
    • Monte Carlo techniques for prediction and filtering of non-linear stochastic processes
    • Handschin J.E. 1970. Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica 6: 555-563.
    • (1970) Automatica , vol.6 , pp. 555-563
    • Handschin, J.E.1
  • 17
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering
    • Handschin J.E. and Mayne D.Q. 1969. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. International Journal of Control 9: 547-559.
    • (1969) International Journal of Control , vol.9 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 20
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of nonstationary time series
    • Kitagawa G. 1987. Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association 82: 1032-1063.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 21
    • 0001627420 scopus 로고    scopus 로고
    • Smoothness Priors Analysis of Time Series
    • Springer
    • Kitagawa G. and Gersch G. 1996. Smoothness Priors Analysis of Time Series. Springer. Lecture Notes in Statistics, Vol. 116.
    • (1996) Lecture Notes in Statistics , vol.116
    • Kitagawa, G.1    Gersch, G.2
  • 23
    • 21344458535 scopus 로고    scopus 로고
    • Metropolized independent sampling with comparison to rejection sampling and importance sampling
    • Liu J.S. 1996. Metropolized independent sampling with comparison to rejection sampling and importance sampling. Statistics and Computing 6: 113-119.
    • (1996) Statistics and Computing , vol.6 , pp. 113-119
    • Liu, J.S.1
  • 26
    • 0033466420 scopus 로고    scopus 로고
    • Sequential importance sampling for nonparametric Bayes models: The next generation
    • MacEachern S.N., Clyde M., and Liu J.S. 1999. Sequential importance sampling for nonparametric Bayes models: The next generation. Canadian Journal of Statistics 27: 251-267.
    • (1999) Canadian Journal of Statistics , vol.27 , pp. 251-267
    • MacEachern, S.N.1    Clyde, M.2    Liu, J.S.3
  • 27
    • 0000507270 scopus 로고
    • Monte Carlo integration in general dynamic models
    • Müller P. 1991. Monte Carlo integration in general dynamic models. Contemporary Mathematics 115: 145-163.
    • (1991) Contemporary Mathematics , vol.115 , pp. 145-163
    • Müller, P.1
  • 28
    • 0040408818 scopus 로고
    • Posterior integration in dynamic models
    • Müller P. 1992. Posterior integration in dynamic models. Computing Science and Statistics 24: 318-324.
    • (1992) Computing Science and Statistics , vol.24 , pp. 318-324
    • Müller, P.1
  • 31
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distributions
    • Bernardo J.M., DeGroot M.H., Lindley D.V., and Smith A.F.M. (Eds.), Oxford University Press
    • Rubin D.B. 1988. Using the SIR algorithm to simulate posterior distributions. In: Bernardo J.M., DeGroot M.H., Lindley D.V., and Smith A.F.M. (Eds.), Bayesian Statistics, Vol. 3, Oxford University Press. 395-402.
    • (1988) Bayesian Statistics , vol.3 , pp. 395-402
    • Rubin, D.B.1
  • 32
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling-resampling perspective
    • Smith A.F.M. and Gelfand A.E. 1992. Bayesian statistics without tears: A sampling-resampling perspective. The American Statistician 46: 84-88.
    • (1992) The American Statistician , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 33
    • 0042046815 scopus 로고
    • The use of Bayesian belief networks to fuse continuous and discrete information for target recognition, tracking and situation assessment
    • Stewart L. and McCarty P. 1992. The use of Bayesian belief networks to fuse continuous and discrete information for target recognition, tracking and situation assessment. Proceeding Conference SPIE 1699: 177-185.
    • (1992) Proceeding Conference SPIE , vol.1699 , pp. 177-185
    • Stewart, L.1    McCarty, P.2
  • 34
    • 84904784061 scopus 로고
    • Applying the Monte Carlo method for optimum estimation in systems with random disturbances
    • Svetnik V.B. 1986. Applying the Monte Carlo method for optimum estimation in systems with random disturbances. Automation and Remote Control 47: 818-825.
    • (1986) Automation and Remote Control , vol.47 , pp. 818-825
    • Svetnik, V.B.1
  • 36
    • 84986393031 scopus 로고
    • Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration
    • Tanizaki H. and Mariano R.S. 1994. Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration. Journal of Applied Econometrics 9: 163-179.
    • (1994) Journal of Applied Econometrics , vol.9 , pp. 163-179
    • And, T.H.1    Mariano, R.S.2
  • 37
    • 0001359360 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian state-space modeling with Monte-Carlo simulations
    • Tanizaki H. and Mariano R.S. 1998. Nonlinear and non-Gaussian state-space modeling with Monte-Carlo simulations. Journal of Econometrics 83: 263-290.
    • (1998) Journal of Econometrics , vol.83 , pp. 263-290
    • Tanizaki, H.1    Mariano, R.S.2
  • 38
    • 0020178635 scopus 로고
    • Detection and Estimation for abruptly changing systems
    • Tugnait J.K. 1982. Detection and Estimation for abruptly changing systems. Automatica 18: 607-615.
    • (1982) Automatica , vol.18 , pp. 607-615
    • Tugnait, J.K.1
  • 39
    • 0000417862 scopus 로고
    • Mixtures models, Monte Carlo, Bayesian updating and dynamic models
    • West M. 1993. Mixtures models, Monte Carlo, Bayesian updating and dynamic models. Computer Science and Statistics 24: 325-333.
    • (1993) Computer Science and Statistics , vol.24 , pp. 325-333
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.