메뉴 건너뛰기




Volumn 49, Issue 1, 2013, Pages 70-81

Identification of Hammerstein-Wiener models

Author keywords

Block oriented models; Dynamic systems; Expectation maximization algorithm; Hammerstein; Maximum Likelihood; Monte Carlo method; Nonlinear models; Particle methods; Smoothing; System identification; Wiener

Indexed keywords

BLOCK-ORIENTED MODELS; EXPECTATION-MAXIMIZATION ALGORITHMS; HAMMERSTEIN; NON-LINEAR MODEL; PARTICLE METHODS; SMOOTHING; WIENER;

EID: 84871271512     PISSN: 00051098     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.automatica.2012.09.018     Document Type: Article
Times cited : (276)

References (45)
  • 3
    • 0036568296 scopus 로고    scopus 로고
    • Identification of linear systems with hard input nonlinearities of known structure
    • E. Bai Identification of linear systems with hard input nonlinearities of known structure Automatica 38 5 2002 853 860
    • (2002) Automatica , vol.38 , Issue.5 , pp. 853-860
    • Bai, E.1
  • 4
    • 0036604581 scopus 로고    scopus 로고
    • A blind approach to Hammerstein-Wiener model identification
    • E. Bai A blind approach to Hammerstein-Wiener model identification Automatica 38 6 2002 967 979
    • (2002) Automatica , vol.38 , Issue.6 , pp. 967-979
    • Bai, E.1
  • 5
    • 84871290518 scopus 로고    scopus 로고
    • Asymptotic properties of least-squares estimates of Hammerstein-Weiner model structures
    • Department of Electrical and Computer Engineering. University of Newcastle
    • Bauer, Dietmar, & Ninness, Brett (1999). Asymptotic properties of least-squares estimates of Hammerstein-Weiner model structures. Technical Report EE9947. Department of Electrical and Computer Engineering. University of Newcastle.
    • (1999) Technical Report EE9947
    • Dietmar, B.1    Brett, N.2
  • 7
    • 0019899613 scopus 로고
    • Identification of systems containing linear dynamic and static nonlinear elements
    • S.A. Billings, and S.Y. Fakhouri Identification of systems containing linear dynamic and static nonlinear elements Automatica 18 1 1982 15 26
    • (1982) Automatica , vol.18 , Issue.1 , pp. 15-26
    • Billings, S.A.1    Fakhouri, S.Y.2
  • 8
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman Hinging hyperplanes for regression, classification, and function approximation IEEE Transactions on Information Theory 39 3 1993 999 1013
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 999-1013
    • Breiman, L.1
  • 12
    • 0036475678 scopus 로고    scopus 로고
    • Special issue on Monte Carlo methods for statistical signal processing
    • Guest Eds
    • P.M. Djurić, and S.J. Godsill Special issue on Monte Carlo methods for statistical signal processing IEEE Transactions on Signal Processing 50 2 2002 Guest Eds
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2
    • Djurić, P.M.1    Godsill, S.J.2
  • 14
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • D. Crisan, B. Rozovsky, Oxford University Press
    • A. Doucet, and A. Johansen A tutorial on particle filtering and smoothing: fifteen years later D. Crisan, B. Rozovsky, The Oxford handbook of nonlinear filtering 2011 Oxford University Press
    • (2011) The Oxford Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.2
  • 15
    • 82655181336 scopus 로고    scopus 로고
    • Sequential Monte Carlo smoothing for general state space hidden Markov models
    • R. Douc, A. Garivier, E. Moulines, and J. Olsson Sequential Monte Carlo smoothing for general state space hidden Markov models Annals of Applied Probability 21 6 2011 2109 2145
    • (2011) Annals of Applied Probability , vol.21 , Issue.6 , pp. 2109-2145
    • Douc, R.1    Garivier, A.2    Moulines, E.3    Olsson, J.4
  • 16
    • 49349102500 scopus 로고    scopus 로고
    • Limit theorems for weighted samples with applications to sequential Monte Carlo methods
    • Randal Douc, and Eric Moulines Limit theorems for weighted samples with applications to sequential Monte Carlo methods The Annals of Statistics 36 5 2008 2344 2376
    • (2008) The Annals of Statistics , vol.36 , Issue.5 , pp. 2344-2376
    • Douc, R.1    Moulines, E.2
  • 17
    • 23744482704 scopus 로고    scopus 로고
    • Robust maximum-likelihood estimation of multivariable dynamic systems
    • S.H. Gibson, and B. Ninness Robust maximum-likelihood estimation of multivariable dynamic systems Automatica 41 10 2005 1667 1682
    • (2005) Automatica , vol.41 , Issue.10 , pp. 1667-1682
    • Gibson, S.H.1    Ninness, B.2
  • 19
    • 55249097118 scopus 로고    scopus 로고
    • Maximum likelihood identification of Wiener models
    • A. Hagenblad, L. Ljung, and A.G. Wills Maximum likelihood identification of Wiener models Automatica 44 11 2008 2697 2705
    • (2008) Automatica , vol.44 , Issue.11 , pp. 2697-2705
    • Hagenblad, A.1    Ljung, L.2    Wills, A.G.3
  • 20
    • 0005312764 scopus 로고
    • Asymptotic properties of prediction error estimators in approximate system identification
    • A.J. Heunis Asymptotic properties of prediction error estimators in approximate system identification Stochastics 24 1988 1 43
    • (1988) Stochastics , vol.24 , pp. 1-43
    • Heunis, A.J.1
  • 21
    • 77957564431 scopus 로고    scopus 로고
    • A kernel based approach to structured nonlinear system identification part i: Algorithms. part ii: Convergence and consistency
    • Newcastle. March
    • Hsu, K.; Vincent, T.; Poolla, K. (2006). A kernel based approach to structured nonlinear system identification part i: algorithms. part ii: convergence and consistency. In Proceedings of IFAC symposium on system identification. Newcastle. March.
    • (2006) Proceedings of IFAC Symposium on System Identification
    • Hsu, K.1    Vincent, T.2    Poolla, K.3
  • 23
    • 0031120493 scopus 로고    scopus 로고
    • Identification of Wiener-type nonlinear systems in a noisy environment
    • A.D. Kalafatis, L. Wang, and W.R. Cluett Identification of Wiener-type nonlinear systems in a noisy environment International Journal of Control 66 1997 923 941
    • (1997) International Journal of Control , vol.66 , pp. 923-941
    • Kalafatis, A.D.1    Wang, L.2    Cluett, W.R.3
  • 25
    • 0018021189 scopus 로고
    • Convergence analysis of parametric identification methods
    • L. Ljung Convergence analysis of parametric identification methods IEEE Transactions on Automatic Control AC-23 5 1978 770 783
    • (1978) IEEE Transactions on Automatic Control , vol.23 , Issue.5 , pp. 770-783
    • Ljung, L.1
  • 26
    • 0013048672 scopus 로고    scopus 로고
    • Identification for control - What is there to learn?
    • Y. Yamamoto, S. Hara, Springer lecture notes in control and information sciences Springer Verlag Berlin
    • Lennart Ljung Identification for control - what is there to learn? Y. Yamamoto, S. Hara, Learning, control and hybrid systems Springer lecture notes in control and information sciences vol. 241 1998 Springer Verlag Berlin 207 221
    • (1998) Learning, Control and Hybrid Systems , vol.241 , pp. 207-221
    • Ljung, L.1
  • 28
    • 77950627896 scopus 로고    scopus 로고
    • Issues in sampling and estimating continuous-time models with stochastic disturbances
    • 10.1016/j.automatica.2010.02.011 Available online 15th March 2010
    • Lennart Ljung, and Adrian Wills Issues in sampling and estimating continuous-time models with stochastic disturbances Automatica 2010 10.1016/j.automatica.2010.02.011 Available online 15th March 2010
    • (2010) Automatica
    • Ljung, L.1    Wills, A.2
  • 30
    • 82055201757 scopus 로고
    • In iterative method for the identification of nonlinear systems using a Hammerstein model
    • K.S. Narendra, and P.G. Gallman In iterative method for the identification of nonlinear systems using a Hammerstein model IEEE Transactions on Automatic Control 11 7 1966 546 550
    • (1966) IEEE Transactions on Automatic Control , vol.11 , Issue.7 , pp. 546-550
    • Narendra, K.S.1    Gallman, P.G.2
  • 33
  • 36
    • 78650803456 scopus 로고    scopus 로고
    • System identification of nonlinear state-space models
    • T.B. Schön, A.G. Wills, and B. Ninness System identification of nonlinear state-space models Automatica 37 1 2011 39 49
    • (2011) Automatica , vol.37 , Issue.1 , pp. 39-49
    • Schön, T.B.1    Wills, A.G.2    Ninness, B.3
  • 40
    • 0030197651 scopus 로고    scopus 로고
    • Identifying MIMO Wiener systems using subspace model identification methods
    • D. Westwick, and M. Verhaegen Identifying MIMO Wiener systems using subspace model identification methods Signal Processing 52 1996 235 258
    • (1996) Signal Processing , vol.52 , pp. 235-258
    • Westwick, D.1    Verhaegen, M.2
  • 41
    • 0004016821 scopus 로고
    • Radiation Lab MIT 1942. restricted, report V-16. no. 129. (p. 112). Declassified Jul 1946. Published as rep. no. PB-1-58087. US Dept. Commerce
    • Wiener, N. (1942). Response of a nonlinear system to noise. Technical report. Radiation Lab MIT 1942. restricted, report V-16. no. 129. (p. 112). Declassified Jul 1946. Published as rep. no. PB-1-58087. US Dept. Commerce.
    • (1942) Response of A Nonlinear System to Noise. Technical Report
    • Wiener, N.1
  • 42
    • 0027625657 scopus 로고
    • Recursive prediction error identification using the nonlinear Wiener model
    • T. Wigren Recursive prediction error identification using the nonlinear Wiener model Automatica 29 4 1993 1011 1025
    • (1993) Automatica , vol.29 , Issue.4 , pp. 1011-1025
    • Wigren, T.1
  • 43
    • 79960916347 scopus 로고    scopus 로고
    • Lecture notes in control and information sciences Springer (Chapter Wiener system identification using the maximum likelihood method)
    • A.G. Wills, and L. Ljung Block-oriented nonlinear system identification Lecture notes in control and information sciences vol. 404 2010 Springer (Chapter Wiener system identification using the maximum likelihood method)
    • (2010) Block-oriented Nonlinear System Identification , vol.404
    • Wills, A.G.1    Ljung, L.2
  • 44
    • 59649084670 scopus 로고    scopus 로고
    • Maximum likelihood estimation of state space models from frequency domain data
    • A.G. Wills, B. Ninness, and S.H. Gibson Maximum likelihood estimation of state space models from frequency domain data IEEE Transactions on Automatic Control 54 1 2009 19 33
    • (2009) IEEE Transactions on Automatic Control , vol.54 , Issue.1 , pp. 19-33
    • Wills, A.G.1    Ninness, B.2    Gibson, S.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.