메뉴 건너뛰기




Volumn 99, Issue 465, 2004, Pages 156-168

Monte carlo smoothing for nonlinear time series

Author keywords

Bayesian inference; Non Gaussian time series; Nonlinear time series; Particle filter; Sequential Monte Carlo; Statespace model

Indexed keywords


EID: 2142848605     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1198/016214504000000151     Document Type: Article
Times cited : (397)

References (41)
  • 1
    • 0007213733 scopus 로고    scopus 로고
    • Bayesian Inference on Latent Structure in Time Series (With discussion)
    • J. O. Berger, J.M. Bernardo, A. P. Dawid, and A. F.M. Smith, Oxford, U.K.: Oxford University Press
    • Aguilar, O., Huerta, G., Prado, R., and West, M. (1999), “Bayesian Inference on Latent Structure in Time Series” (with discussion), in Bayesian Statistics 6, eds. J. O. Berger, J.M. Bernardo, A. P. Dawid, and A. F.M. Smith, Oxford, U.K.: Oxford University Press, pp. 3–26.
    • (1999) In Bayesian Statistics 6 , pp. 3-26
    • Aguilar, O.1    Huerta, G.2    Prado, R.3    West, M.4
  • 2
    • 0003185780 scopus 로고    scopus 로고
    • Analysis of Hospital Quality Monitors Using Hierarchical Time Series Models
    • C. Gatsonis, R. E. Kass, B. Carlin, A. Carriquiry, A. Gelman, I. Verdinelli, and M. West, New York: Springer-Verlag
    • Aguilar, O., and West, M. (1998), “Analysis of Hospital Quality Monitors Using Hierarchical Time Series Models,” in Case Studies in Bayesian Statistics in Science and Technology, Vol. 4, eds. C. Gatsonis, R. E. Kass, B. Carlin, A. Carriquiry, A. Gelman, I. Verdinelli, and M. West, New York: Springer-Verlag, pp. 287–302.
    • (1998) Case Studies in Bayesian Statistics in Science and Technology , vol.4 , pp. 287-302
    • Aguilar, O.1    West, M.2
  • 3
    • 0034413190 scopus 로고    scopus 로고
    • Bayesian Dynamic Factor Models and Variance Matrix Discounting for Portfolio Allocation
    • Aguilar, O., and West, M. (2000), “Bayesian Dynamic Factor Models and Variance Matrix Discounting for Portfolio Allocation,” Journal of Business and Economic Statistics, 18, 338–357.
    • (2000) Journal of Business and Economic Statistics , vol.18 , pp. 338-357
    • Aguilar, O.1    West, M.2
  • 6
    • 0000193853 scopus 로고
    • On Gibbs Sampling for State-Space Models
    • Carter, C. K., and Kohn, R. (1994), “On Gibbs Sampling for State-Space Models,” Biometrika, 81, 541–553.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 7
    • 0001821084 scopus 로고    scopus 로고
    • Parficle Filters: A Theoretical Perspective
    • A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag
    • Crisan, D. (2001), “Parficle Filters: A Theoretical Perspective,” in Sequential Monte Carlo Methods in Practice, eds. A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Crisan, D.1
  • 8
    • 0001524126 scopus 로고    scopus 로고
    • Discrete Filtering Using Branching and Interacting Particle Systems
    • Crisan, D., Del Moral, P., and Lyons, T. (1999), “Discrete Filtering Using Branching and Interacting Particle Systems,” Markov Processes and Related Fields, 5, 293–318.
    • (1999) Markov Processes and Related Fields , vol.5 , pp. 293-318
    • Crisan, D.1    Del Moral, P.2    Lyons, T.3
  • 9
    • 0003924729 scopus 로고    scopus 로고
    • Technical Report CUED/F-INFENG/TR.381, Cambridge University, Engineering Dept
    • Crisan, D., and Doucet, A. (2000), “Convergence of Sequential Monte Carlo Methods,” Technical Report CUED/F-INFENG/TR.381, Cambridge University, Engineering Dept.
    • (2000) Convergence of Sequential Monte Carlo Methods
    • Crisan, D.1    Doucet, A.2
  • 10
    • 2142722841 scopus 로고    scopus 로고
    • A Particle Approximation of the Solution of the Kushner–Stratonovich Equation
    • Crisan, D., and Lyons, T. (1999), “A Particle Approximation of the Solution of the Kushner–Stratonovich Equation,” Probability Theory and Related Fields, 5, 293–318.
    • (1999) Probability Theory and Related Fields , vol.5 , pp. 293-318
    • Crisan, D.1    Lyons, T.2
  • 11
    • 0011628998 scopus 로고    scopus 로고
    • The Scan Sampler for Time Series Models
    • De Jong, P. (1997), “The Scan Sampler for Time Series Models,” Biometrika, 84, 929–937.
    • (1997) Biometrika , vol.84 , pp. 929-937
    • De Jong, P.1
  • 12
    • 0001325243 scopus 로고
    • The Simulation Smoother for Time Series Models
    • De Jong, P., and Shephard, N. (1995), “The Simulation Smoother for Time Series Models,” Biometrika, 82, 339–350.
    • (1995) Biometrika , vol.82 , pp. 339-350
    • De Jong, P.1    Shephard, N.2
  • 13
    • 0032221182 scopus 로고    scopus 로고
    • Measure-Valued Processes and Interacting Particle Systems
    • Del Moral, P. (1998), “Measure-Valued Processes and Interacting Particle Systems,” The Annals of Applied Probability, 8, 438–495.
    • (1998) The Annals of Applied Probability , vol.8 , pp. 438-495
    • Del Moral, P.1
  • 15
    • 0001460136 scopus 로고    scopus 로고
    • On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
    • Doucet, A., Godsill, S. J., and Andrieu, C. (2000), “On Sequential Monte Carlo Sampling Methods for Bayesian Filtering,” Statistics and Computing, 10, 197–208.
    • (2000) Statistics and Computing , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 16
    • 0020171266 scopus 로고
    • Lattice Filters for Adaptive Processing
    • Friedlander, B. (1982), “Lattice Filters for Adaptive Processing,” Proceedings of the IEEE, 70(8), 829–867.
    • (1982) Proceedings of the IEEE , vol.70 , Issue.8 , pp. 829-867
    • Friedlander, B.1
  • 18
    • 85046909467 scopus 로고    scopus 로고
    • Following a Moving Target-Monte Carlo Inference for Dynamic Bayesian Models
    • Gilks, W. R., and Berzuini, C. (2000), “Following a Moving Target-Monte Carlo Inference for Dynamic Bayesian Models,” Journal of the Royal Statistical Society, Ser. B, 63, 1–20.
    • (2000) Journal of the Royal Statistical Society, Ser. B , vol.63 , pp. 1-20
    • Gilks, W.R.1    Berzuini, C.2
  • 19
    • 0008782869 scopus 로고    scopus 로고
    • Improvement Strategies for Monte Carlo Particle Filters
    • A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag
    • Godsill, S. J., and Clapp, T. C. (2001), “Improvement Strategies for Monte Carlo Particle Filters,” in Sequential Monte Carlo Methods in Practice, eds. A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Godsill, S.J.1    Clapp, T.C.2
  • 22
    • 0027580559 scopus 로고
    • Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation
    • Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993), “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation,” IEE Proceedings-F, 140, 107–113.
    • (1993) IEE Proceedings-F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 23
    • 0009309598 scopus 로고    scopus 로고
    • Bayesian Inference on Periodicities and Component Spectral Structure in Time Series
    • Huerta, G., and West, M. (1999a), “Bayesian Inference on Periodicities and Component Spectral Structure in Time Series,” Journal of Time Series Analysis, 20, 401–416.
    • (1999) Journal of Time Series Analysis , vol.20 , pp. 401-416
    • Huerta, G.1    West, M.2
  • 24
    • 0033476979 scopus 로고    scopus 로고
    • Priors and Component Structures in Autoregressive Time Series Models
    • Ser. B
    • Huerta, G., and West, M. (1999b), “Priors and Component Structures in Autoregressive Time Series Models,” Journal of the Royal Statistical Society, Ser. B, 61, 881–899.
    • (1999) Journal of the Royal Statistical Society , vol.61 , pp. 881-899
    • Huerta, G.1    West, M.2
  • 26
    • 0004694060 scopus 로고    scopus 로고
    • Approximating and Maximising the Likelihood for a General State Space Model
    • A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag
    • Hürzeler, M., and Künsch, H. R. (2001), “Approximating and Maximising the Likelihood for a General State Space Model,” in Sequential Monte Carlo in Practice, eds. A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag, pp. 159–176.
    • (2001) Sequential Monte Carlo in Practice , pp. 159-176
    • Hürzeler, M.1    Künsch, H.R.2
  • 27
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo Filter and Smoother for Nonlinear Non-Gaussian State-Space Models
    • Kitagawa, G. (1996), “Monte Carlo Filter and Smoother for Nonlinear Non-Gaussian State-Space Models,” Journal of Computational and Graphical Statistics, 5, 1–25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 29
    • 0001225908 scopus 로고    scopus 로고
    • Combined Parameter and State Estimation in Simulation-Based Filtering
    • A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag
    • Liu, J., and West, M. (2001), “Combined Parameter and State Estimation in Simulation-Based Filtering,” in Sequential Monte Carlo Methods in Practice, eds. A. Doucet, J. F. G. De Freitas, and N. J. Gordon, New York: Springer-Verlag, pp. 197–217.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 197-217
    • Liu, J.1    West, M.2
  • 32
    • 0033466420 scopus 로고    scopus 로고
    • Sequential Importance Sampling for Nonparametric Bayes Models: TheNext Generation
    • MacEachern, S. N., Clyde, M., and Liu, J. S. (1999), “Sequential Importance Sampling for Nonparametric Bayes Models: TheNext Generation,” Canadian Journal of Statistics, 27, 251–267.
    • (1999) Canadian Journal of Statistics , vol.27 , pp. 251-267
    • Maceachern, S.N.1    Clyde, M.2    Liu, J.S.3
  • 34
    • 0001981538 scopus 로고    scopus 로고
    • Time-Varying Covariances: A Factor Stochastic Volatility Approach (with discussion)
    • J. O. Berger, J. M. Bernardo, A. P. Dawid, and A. F. M. Smith, Oxford, U.K.: Oxford University Press
    • Pitt, M. K., and Shephard, N (1999b), “Time-Varying Covariances: A Factor Stochastic Volatility Approach” (with discussion), in Bayesian Statistics 6, eds. J. O. Berger, J. M. Bernardo, A. P. Dawid, and A. F. M. Smith, Oxford, U.K.: Oxford University Press, pp. 547–570.
    • (1999) In Bayesian Statistics 6 , pp. 547-570
    • Pitt, M.K.1    Shephard, N.2
  • 35
    • 1542742915 scopus 로고    scopus 로고
    • Evaluation and Comparison of EEG Traces: Latent Structure in Nonstationary Time Series
    • Prado, R., West, M., and Krystal, A. D. (1999), “Evaluation and Comparison of EEG Traces: Latent Structure in Nonstationary Time Series,” Journal of the American Statistical Association, 94, 1083–1095.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1083-1095
    • Prado, R.1    West, M.2    Krystal, A.D.3
  • 37
    • 0038853197 scopus 로고
    • Partial Non-Gaussian State Space
    • Shephard, N. (1994), “Partial Non-Gaussian State Space,” Biometrika, 81, 115–131.
    • (1994) Biometrika , vol.81 , pp. 115-131
    • Shephard, N.1
  • 38
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood Analysis of Non-Gaussian Measurement Time Series
    • Shephard, N., and Pitt, M. K. (1997), “Likelihood Analysis of Non-Gaussian Measurement Time Series,” Biometrika, 84, 653–667.
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 40
    • 0003115252 scopus 로고
    • Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models
    • J. H. Newton, Fairfax Station, VA: Interface Foundation of North America
    • West, M. (1993), “Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models,” in Computing Science and Statistics: Proceedings of the 24th Symposium on the Interface, ed. J. H. Newton, Fairfax Station, VA: Interface Foundation of North America, pp. 325–333.
    • (1993) Computing Science and Statistics: Proceedings of the 24Th Symposium on the Interface , pp. 325-333
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.