메뉴 건너뛰기




Volumn 72, Issue 3, 2010, Pages 269-342

Particle Markov chain Monte Carlo methods

Author keywords

Bayesian inference; Markov chain Monte Carlo methods; Sequential Monte Carlo methods; State space models

Indexed keywords


EID: 77953523599     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2009.00736.x     Document Type: Article
Times cited : (1769)

References (151)
  • 1
    • 77954128675 scopus 로고    scopus 로고
    • The expected auxiliary variable method for Monte Carlo simulation
    • Department of Mathematics, University of Bristol, Bristol
    • Andrieu C, Berthelesen K, Doucet A, Roberts G O. The expected auxiliary variable method for Monte Carlo simulation. 2007, Department of Mathematics, University of Bristol, Bristol
    • (2007)
    • Andrieu, C.1    Berthelesen, K.2    Doucet, A.3    Roberts, G.O.4
  • 2
    • 85017310179 scopus 로고    scopus 로고
    • Sequential Markov chain Monte Carlo for Bayesian model selection
    • New York, Institute of Electrical and Electronics Engineers
    • Andrieu C, De Freitas J F G, Doucet A. Sequential Markov chain Monte Carlo for Bayesian model selection. Proc. Wrkshp Higher Order Statistics, Caesarea 1999, 130-134. New York, Institute of Electrical and Electronics Engineers
    • (1999) Proc. Wrkshp Higher Order Statistics, Caesarea , pp. 130-134
    • Andrieu, C.1    De Freitas, J.F.G.2    Doucet, A.3
  • 3
    • 60149103563 scopus 로고    scopus 로고
    • The pseudo-marginal approach for efficient computation
    • Andrieu C, Roberts G O. The pseudo-marginal approach for efficient computation. Ann. Statist. 2009, 37:697-725.
    • (2009) Ann. Statist. , vol.37 , pp. 697-725
    • Andrieu, C.1    Roberts, G.O.2
  • 4
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive MCMC
    • Andrieu C, Thoms J. A tutorial on adaptive MCMC. Statist. Comput. 2008, 18:343-373.
    • (2008) Statist. Comput. , vol.18 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 5
    • 0035648379 scopus 로고    scopus 로고
    • Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion)
    • Barndorff-Nielsen O E, Shephard N. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion). J. R. Statist. Soc. B 2001a, 63:167-241.
    • (2001) J. R. Statist. Soc. B , vol.63 , pp. 167-241
    • Barndorff-Nielsen, O.E.1    Shephard, N.2
  • 7
    • 0043210659 scopus 로고    scopus 로고
    • Estimation of population growth or decline in genetically monitored populations
    • Beaumont M A. Estimation of population growth or decline in genetically monitored populations. Genetics 2003, 164:1139-1160.
    • (2003) Genetics , vol.164 , pp. 1139-1160
    • Beaumont, M.A.1
  • 8
    • 77954125482 scopus 로고    scopus 로고
    • Particle filter estimation of duration-type models
    • Department of Statistics, Warwick University, Coventry
    • Belmonte M A G, Papaspiliopoulos O, Pitt M K. Particle filter estimation of duration-type models. Technical Report 2008, Department of Statistics, Warwick University, Coventry
    • (2008) Technical Report
    • Belmonte, M.A.G.1    Papaspiliopoulos, O.2    Pitt, M.K.3
  • 10
    • 0032626544 scopus 로고    scopus 로고
    • An improved particle filter for non-linear problems
    • Carpenter J, Clifford P, Fearnhead P. An improved particle filter for non-linear problems. IEE Proc. F 1999, 46:2-7.
    • (1999) IEE Proc. F , vol.46 , pp. 2-7
    • Carpenter, J.1    Clifford, P.2    Fearnhead, P.3
  • 11
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter C K, Kohn R. On Gibbs sampling for state space models. Biometrika 1994, 81:541-553.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 12
    • 77954111363 scopus 로고    scopus 로고
    • A non asymptotic variance theorem for unnormalized Feynman-Kac particle models
    • Institut National de Recherche en Informatique et Automatique Bordeaux Sud-Ouest, Talence
    • Cérou F, Del Moral P, Guyader A. A non asymptotic variance theorem for unnormalized Feynman-Kac particle models. Technical Report 2008, Institut National de Recherche en Informatique et Automatique Bordeaux Sud-Ouest, Talence
    • (2008) Technical Report
    • Cérou, F.1    Del Moral, P.2    Guyader, A.3
  • 13
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • Chopin N. A sequential particle filter method for static models. Biometrika 2002, 89:539-552.
    • (2002) Biometrika , vol.89 , pp. 539-552
    • Chopin, N.1
  • 15
    • 39049133413 scopus 로고    scopus 로고
    • Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models
    • Creal D D. Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models. Computnl Statist. Data Anal. 2008, 52:2863-2876.
    • (2008) Computnl Statist. Data Anal. , vol.52 , pp. 2863-2876
    • Creal, D.D.1
  • 19
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: fifteen years later
    • Crisan D, Rozovsky B. eds, Cambridge, Cambridge University Press
    • Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering 2009, Crisan D, Rozovsky B. eds, Cambridge, Cambridge University Press
    • (2009) Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.M.2
  • 20
    • 0036929961 scopus 로고    scopus 로고
    • MCMC, sufficient statistics and particle filters
    • Fearnhead P. MCMC, sufficient statistics and particle filters. J. Computnl Graph. Statist. 2002, 11:848-862.
    • (2002) J. Computnl Graph. Statist. , vol.11 , pp. 848-862
    • Fearnhead, P.1
  • 22
    • 80054702212 scopus 로고    scopus 로고
    • Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models
    • to be published
    • Flury T, Shephard N. Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econometr. Theor. 2010, to be published
    • (2010) Econometr. Theor.
    • Flury, T.1    Shephard, N.2
  • 23
    • 33947226734 scopus 로고    scopus 로고
    • Waste-recycling Monte Carlo
    • Frenkel D. Waste-recycling Monte Carlo. Lect. Notes Phys. 2006, 703:127-138.
    • (2006) Lect. Notes Phys. , vol.703 , pp. 127-138
    • Frenkel, D.1
  • 24
    • 84981426681 scopus 로고
    • Data augmentation and dynamic linear models
    • Frühwirth-Schnatter S. Data augmentation and dynamic linear models. J. Time Ser. Anal. 1994, 15:183-202.
    • (1994) J. Time Ser. Anal. , vol.15 , pp. 183-202
    • Frühwirth-Schnatter, S.1
  • 25
    • 59849095122 scopus 로고    scopus 로고
    • Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law
    • Frühwirth-Schnatter S, Sögner L. Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law. Ann. Inst. Statist. Math. 2008, 61:159-179.
    • (2008) Ann. Inst. Statist. Math. , vol.61 , pp. 159-179
    • Frühwirth-Schnatter, S.1    Sögner, L.2
  • 26
    • 34250159095 scopus 로고    scopus 로고
    • Stochastic volatility modelling in continuous time with general marginal distributions: inference, prediction and model selection
    • Gander M P S, Stephens D A. Stochastic volatility modelling in continuous time with general marginal distributions: inference, prediction and model selection. J. Statist. Planng Inf. 2007, 137:3068-3081.
    • (2007) J. Statist. Planng Inf. , vol.137 , pp. 3068-3081
    • Gander, M.P.S.1    Stephens, D.A.2
  • 27
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • Gilks W R, Berzuini C. Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Statist. Soc. B 2001, 63:127-146.
    • (2001) J. R. Statist. Soc. B , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 28
    • 0027580559 scopus 로고
    • Novel approach to nonlinear non-Gaussian Bayesian state estimation
    • Gordon N J, Salmond D, Smith A F M. Novel approach to nonlinear non-Gaussian Bayesian state estimation. IEE Proc. F 1993, 40:107-113.
    • (1993) IEE Proc. F , vol.40 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.2    Smith, A.F.M.3
  • 29
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Computnl Graph. Statist. 1996, 5:1-25.
    • (1996) J. Computnl Graph. Statist. , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 32
    • 0442309554 scopus 로고    scopus 로고
    • The use of multiple-try method and local optimization in Metropolis sampling
    • Liu J S, Liang F, Wong W H. The use of multiple-try method and local optimization in Metropolis sampling. J. Am. Statist. Ass. 2000, 95:121-134.
    • (2000) J. Am. Statist. Ass. , vol.95 , pp. 121-134
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 33
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • Mengersen K L, Tweedie R. Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 1996, 24:101-121.
    • (1996) Ann. Statist. , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.2
  • 34
    • 33745612435 scopus 로고    scopus 로고
    • An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants
    • Møller J, Pettitt A N, Berthelsen K K, Reeves R W. An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 2006, 93:451-458.
    • (2006) Biometrika , vol.93 , pp. 451-458
    • Møller, J.1    Pettitt, A.N.2    Berthelsen, K.K.3    Reeves, R.W.4
  • 35
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: auxiliary particle filter
    • Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filter. J. Am. Statist. Ass. 1999, 94:590-599.
    • (1999) J. Am. Statist. Ass. , vol.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 36
    • 2442549612 scopus 로고    scopus 로고
    • Bayesian inference for non-Gaussian Ornstein-Unhlenbeck stochastic volatility processes
    • Roberts G O, Papaspiliopoulos O, Dellaportas P. Bayesian inference for non-Gaussian Ornstein-Unhlenbeck stochastic volatility processes. J. R. Statist. Soc. B 2004, 66:369-393.
    • (2004) J. R. Statist. Soc. B , vol.66 , pp. 369-393
    • Roberts, G.O.1    Papaspiliopoulos, O.2    Dellaportas, P.3
  • 37
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • Shephard N, Pitt M K. Likelihood analysis of non-Gaussian measurement time series. Biometrika 1997, 84:653-667.
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 38
    • 78650612270 scopus 로고
    • Configurational-bias Monte Carlo: a new sampling scheme for flexible chains
    • Siepmann J I, Frenkel D. Configurational-bias Monte Carlo: a new sampling scheme for flexible chains. Molec. Phys. 1992, 75:59-70.
    • (1992) Molec. Phys. , vol.75 , pp. 59-70
    • Siepmann, J.I.1    Frenkel, D.2
  • 39
    • 0036475891 scopus 로고    scopus 로고
    • Particle filters in state space models with the presence of unknown static parameters
    • Storvik G. Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 2002, 50:281-289.
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 281-289
    • Storvik, G.1
  • 40
    • 77954128675 scopus 로고    scopus 로고
    • The expected auxiliary variable method for Monte Carlo simulation
    • Department of Mathematics, University of Bristol, Bristol
    • Andrieu C, Berthelesen K, Doucet A, Roberts G O. The expected auxiliary variable method for Monte Carlo simulation. Working Paper 2007, Department of Mathematics, University of Bristol, Bristol
    • (2007) Working Paper
    • Andrieu, C.1    Berthelesen, K.2    Doucet, A.3    Roberts, G.O.4
  • 41
    • 84865013099 scopus 로고    scopus 로고
    • Posterior sampling in the presence of unknown normalising constants: an adaptive pseudo-marginal approach
    • To be published
    • Andrieu C, Berthelsen K K, Doucet A, Roberts G O. Posterior sampling in the presence of unknown normalising constants: an adaptive pseudo-marginal approach. 2008, To be published
    • (2008)
    • Andrieu, C.1    Berthelsen, K.K.2    Doucet, A.3    Roberts, G.O.4
  • 42
    • 85017310179 scopus 로고    scopus 로고
    • Sequential Markov chain Monte Carlo for Bayesian model selection
    • New York, Institute of Electrical and Electronics Engineers
    • Andrieu C, De Freitas J F G, Doucet A. Sequential Markov chain Monte Carlo for Bayesian model selection. Proc. IEEE Wrkshp Higher Order Statistics, Caesarea 1999, 130-134. New York, Institute of Electrical and Electronics Engineers
    • (1999) Proc. IEEE Wrkshp Higher Order Statistics, Caesarea , pp. 130-134
    • Andrieu, C.1    De Freitas, J.F.G.2    Doucet, A.3
  • 43
    • 77954098346 scopus 로고    scopus 로고
    • On the Multiple-Try Metropolis-Hastings algorithm
    • To be published
    • Andrieu C, Doucet A, Lee A. On the Multiple-Try Metropolis-Hastings algorithm. 2010, To be published
    • (2010)
    • Andrieu, C.1    Doucet, A.2    Lee, A.3
  • 44
    • 33847199764 scopus 로고    scopus 로고
    • On-line parameter estimation in general state-space models
    • New York, Institute of Electrical and Electronics Engineers
    • Andrieu C, Doucet A, Tadić V B. On-line parameter estimation in general state-space models. Proc. 44th IEEE Conf. Decision and Control 2005, 332-337. New York, Institute of Electrical and Electronics Engineers
    • (2005) Proc. 44th IEEE Conf. Decision and Control , pp. 332-337
    • Andrieu, C.1    Doucet, A.2    Tadić, V.B.3
  • 45
    • 2442578536 scopus 로고    scopus 로고
    • Controlled Markov chain Monte Carlo methods for optimal sampling. Technical Report 0125
    • Université Paris Dauphine, Paris
    • Andrieu C, Robert C. Controlled Markov chain Monte Carlo methods for optimal sampling. Technical Report 0125. 2001, Université Paris Dauphine, Paris
    • (2001)
    • Andrieu, C.1    Robert, C.2
  • 46
    • 60149103563 scopus 로고    scopus 로고
    • The pseudo-marginal approach for efficient computation
    • Andrieu C, Roberts G O. The pseudo-marginal approach for efficient computation. Ann. Statist. 2009, 37:697-725.
    • (2009) Ann. Statist. , vol.37 , pp. 697-725
    • Andrieu, C.1    Roberts, G.O.2
  • 47
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive MCMC
    • Andrieu C, Thoms J. A tutorial on adaptive MCMC. Statist. Comput. 2008, 18:343-373.
    • (2008) Statist. Comput. , vol.18 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 48
    • 0043210659 scopus 로고    scopus 로고
    • Estimation of population growth or decline in genetically monitored populations
    • Beaumont M A. Estimation of population growth or decline in genetically monitored populations. Genetics 2003, 164:1139-1160.
    • (2003) Genetics , vol.164 , pp. 1139-1160
    • Beaumont, M.A.1
  • 50
    • 77954125482 scopus 로고    scopus 로고
    • Particle filter estimation of duration-type models. Technical Report
    • Department of Statistics, Warwick University, Coventry
    • Belmonte M A G, Papaspiliopoulos O, Pitt M K. Particle filter estimation of duration-type models. Technical Report. 2008, Department of Statistics, Warwick University, Coventry
    • (2008)
    • Belmonte, M.A.G.1    Papaspiliopoulos, O.2    Pitt, M.K.3
  • 51
    • 41549140160 scopus 로고    scopus 로고
    • Bayesian inference for a discretely observed stochastic-kinetic model
    • Boys R J, Wilkinson D J, Kirkwood T B L. Bayesian inference for a discretely observed stochastic-kinetic model. Statist. Comput. 2008, 18:125-135.
    • (2008) Statist. Comput. , vol.18 , pp. 125-135
    • Boys, R.J.1    Wilkinson, D.J.2    Kirkwood, T.B.L.3
  • 55
    • 0034269446 scopus 로고    scopus 로고
    • Adaptive Joint Detection and Decoding in flat-fading channels via mixture Kalman filtering
    • Chen R, Wang X, Liu J. Adaptive Joint Detection and Decoding in flat-fading channels via mixture Kalman filtering. IEEE Trans. Inform. Theor. 2000, 46:2079-2094.
    • (2000) IEEE Trans. Inform. Theor. , vol.46 , pp. 2079-2094
    • Chen, R.1    Wang, X.2    Liu, J.3
  • 56
    • 16244405590 scopus 로고    scopus 로고
    • Stopping-time resampling for sequential Monte Carlo methods
    • Chen Y, Xie J, Liu J S. Stopping-time resampling for sequential Monte Carlo methods. J. R. Statist. Soc. B 2005, 67:199-217.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 199-217
    • Chen, Y.1    Xie, J.2    Liu, J.S.3
  • 57
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • Chib S. Marginal likelihood from the Gibbs output. J. Am. Statist. Ass. 1995, 90:1313-1321.
    • (1995) J. Am. Statist. Ass. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 58
    • 33847367249 scopus 로고    scopus 로고
    • Inference and model choice for sequentially ordered hidden Markov models
    • Chopin N. Inference and model choice for sequentially ordered hidden Markov models. J. R. Statist. Soc. B 2007, 69:269-284.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 269-284
    • Chopin, N.1
  • 59
    • 63549109661 scopus 로고    scopus 로고
    • Contemplating Evidence: properties, extensions of, and alternatives to Nested Sampling
    • in the press
    • Chopin N, Robert C P. Contemplating Evidence: properties, extensions of, and alternatives to Nested Sampling. Biometrika 2010, 97. in the press
    • (2010) Biometrika , vol.97
    • Chopin, N.1    Robert, C.P.2
  • 60
    • 64549161037 scopus 로고    scopus 로고
    • Particle filtering for continuous-time hidden Markov models
    • Chopin N, Varini E. Particle filtering for continuous-time hidden Markov models. ESAIM Proc. 2007, 19:12-17.
    • (2007) ESAIM Proc. , vol.19 , pp. 12-17
    • Chopin, N.1    Varini, E.2
  • 61
    • 77954121386 scopus 로고    scopus 로고
    • Adaptive sequential Monte Carlo methods. PhD Thesis
    • Université Pierre et Marie Curie, Paris
    • Cornebise J. Adaptive sequential Monte Carlo methods. PhD Thesis. 2009, Université Pierre et Marie Curie, Paris
    • (2009)
    • Cornebise, J.1
  • 62
    • 77954100218 scopus 로고    scopus 로고
    • Auxiliary SMC samplers with applications to PRC and ABC. Working Paper
    • Statistical and Applied Mathematical Sciences Institute, Durham
    • Cornebise J. Auxiliary SMC samplers with applications to PRC and ABC. Working Paper. 2010, Statistical and Applied Mathematical Sciences Institute, Durham
    • (2010)
    • Cornebise, J.1
  • 63
    • 57849133035 scopus 로고    scopus 로고
    • Adaptive methods for sequential importance sampling with application to state space models
    • Cornebise J, Moulines E, Olsson J. Adaptive methods for sequential importance sampling with application to state space models. Statist. Comput. 2008, 18:461-480.
    • (2008) Statist. Comput. , vol.18 , pp. 461-480
    • Cornebise, J.1    Moulines, E.2    Olsson, J.3
  • 64
    • 77954110269 scopus 로고    scopus 로고
    • Adaptive sequential Monte Carlo by means of mixture of experts. Working Paper
    • Telecom ParisTech, Paris
    • Cornebise J, Moulines E, Olsson J. Adaptive sequential Monte Carlo by means of mixture of experts. Working Paper. 2010, Telecom ParisTech, Paris
    • (2010)
    • Cornebise, J.1    Moulines, E.2    Olsson, J.3
  • 65
    • 77954097579 scopus 로고    scopus 로고
    • Adaptive multiple importance sampling. Technical Report
    • arXiv.org:0907.1254, Ceremade, Université Paris Dauphine, Paris
    • Cornuet J-M, Marin J-M, Mira A, Robert C. Adaptive multiple importance sampling. Technical Report. 2009, arXiv.org:0907.1254, Ceremade, Université Paris Dauphine, Paris
    • (2009)
    • Cornuet, J.-M.1    Marin, J.-M.2    Mira, A.3    Robert, C.4
  • 66
    • 52949086769 scopus 로고    scopus 로고
    • Stability of the discrete time filter in terms of the tails of noise distributions
    • Crisan D, Heine K. Stability of the discrete time filter in terms of the tails of noise distributions. J. Lond. Math. Soc. 2008, 78:441-458.
    • (2008) J. Lond. Math. Soc. , vol.78 , pp. 441-458
    • Crisan, D.1    Heine, K.2
  • 67
    • 21644466625 scopus 로고    scopus 로고
    • Minimal entropy approximations and optimal algorithms
    • Crisan D, Lyons T. Minimal entropy approximations and optimal algorithms. Monte Carlo Meth. Appl. 2002, 8:343-355.
    • (2002) Monte Carlo Meth. Appl. , vol.8 , pp. 343-355
    • Crisan, D.1    Lyons, T.2
  • 70
    • 0041332886 scopus 로고    scopus 로고
    • On the stability of interacting processes with applications to filtering and genetic alogrithms
    • Del Moral P, Guionnet A. On the stability of interacting processes with applications to filtering and genetic alogrithms. Ann. Inst. H. Poincaré Probab. Statist. 2000, 37:155-194.
    • (2000) Ann. Inst. H. Poincaré Probab. Statist. , vol.37 , pp. 155-194
    • Del Moral, P.1    Guionnet, A.2
  • 71
    • 33747375485 scopus 로고    scopus 로고
    • Efficient block sampling strategies for sequential Monte Carlo methods
    • Doucet A, Briers M, Sénécal S. Efficient block sampling strategies for sequential Monte Carlo methods. J. Computnl Graph. Statist. 2006, 15:693-711.
    • (2006) J. Computnl Graph. Statist. , vol.15 , pp. 693-711
    • Doucet, A.1    Briers, M.2    Sénécal, S.3
  • 73
    • 77954135992 scopus 로고    scopus 로고
    • Optimization of the antithetic Gibbs sampler for Gaussian Markov random fields
    • Bethelehem J G, van der Heijden P G M. eds, New York, Springer
    • Dreesman J M. Optimization of the antithetic Gibbs sampler for Gaussian Markov random fields. Proc. 14th Symp. Computational Statistics, Utrecht 2000, 290-294. Bethelehem J Gvan der Heijden P G M. eds, New York, Springer
    • (2000) Proc. 14th Symp. Computational Statistics, Utrecht , pp. 290-294
    • Dreesman, J.M.1
  • 74
    • 0003838905 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods in filter theory. PhD Thesis
    • Oxford University, Oxford, (Available from .)
    • Fearnhead P. Sequential Monte Carlo methods in filter theory. PhD Thesis. 1998, Oxford University, Oxford, (Available from .)
    • (1998)
    • Fearnhead, P.1
  • 75
    • 77954125209 scopus 로고    scopus 로고
    • MCMC, sufficient statistics and particle filters
    • Fearnhead P. MCMC, sufficient statistics and particle filters. J. Computnl Graph. Statist. 2002, 14:848-862.
    • (2002) J. Computnl Graph. Statist. , vol.14 , pp. 848-862
    • Fearnhead, P.1
  • 76
    • 3843139378 scopus 로고    scopus 로고
    • Particle filters for mixture models with an unknown number of components
    • Fearnhead P. Particle filters for mixture models with an unknown number of components. Statist. Comput. 2004, 14:11-21.
    • (2004) Statist. Comput. , vol.14 , pp. 11-21
    • Fearnhead, P.1
  • 77
    • 41549102613 scopus 로고    scopus 로고
    • Computational methods for complex stochastic systems: a review of some alternatives to MCMC
    • Fearnhead P. Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Statist. Comput. 2008, 18:151-171.
    • (2008) Statist. Comput. , vol.18 , pp. 151-171
    • Fearnhead, P.1
  • 78
    • 0242550819 scopus 로고    scopus 로고
    • On-line inference for hidden Markov models via particle filters
    • Fearnhead P, Clifford P. On-line inference for hidden Markov models via particle filters. J. R. Statist. Soc. B 2003, 65:887-899.
    • (2003) J. R. Statist. Soc. B , vol.65 , pp. 887-899
    • Fearnhead, P.1    Clifford, P.2
  • 79
    • 34547837455 scopus 로고    scopus 로고
    • On-line inference for multiple changepoint problems
    • Fearnhead P, Liu Z. On-line inference for multiple changepoint problems. J. R. Statist. Soc. B 2007, 69:589-605.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 589-605
    • Fearnhead, P.1    Liu, Z.2
  • 80
    • 30744444158 scopus 로고    scopus 로고
    • Estimating dynamic equilibrium economies: linear versus nonlinear likelihood
    • Fernandez-Villaverde J, Rubio-Ramírez J F. Estimating dynamic equilibrium economies: linear versus nonlinear likelihood. J. Appl. Econometr. 2005, 20:891-910.
    • (2005) J. Appl. Econometr. , vol.20 , pp. 891-910
    • Fernandez-Villaverde, J.1    Rubio-Ramírez, J.F.2
  • 82
    • 80054702212 scopus 로고    scopus 로고
    • Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models
    • to be published
    • Flury T, Shephard N. Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econometr. Theor. 2010, to be published
    • (2010) Econometr. Theor.
    • Flury, T.1    Shephard, N.2
  • 83
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • Gilks W R, Berzuini C. Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Statist. Soc. B 2001, 63:127-146.
    • (2001) J. R. Statist. Soc. B , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 84
    • 77954101819 scopus 로고    scopus 로고
    • Adaptive independent Metropolis-Hastings by fast estimation of mixture of normals
    • to be published
    • Giordani P, Kohn R. Adaptive independent Metropolis-Hastings by fast estimation of mixture of normals. J. Computnl Graph. Statist. 2008, to be published
    • (2008) J. Computnl Graph. Statist.
    • Giordani, P.1    Kohn, R.2
  • 85
    • 84860638192 scopus 로고    scopus 로고
    • Riemannian manifold Hamiltonian Monte Carlo. Technical Report Series 35
    • Department of Computing Science, University of Glasgow, Glasgow
    • Girolami M, Calderhead B, Chin S. Riemannian manifold Hamiltonian Monte Carlo. Technical Report Series 35. 2009, Department of Computing Science, University of Glasgow, Glasgow
    • (2009)
    • Girolami, M.1    Calderhead, B.2    Chin, S.3
  • 86
    • 0008782869 scopus 로고    scopus 로고
    • Improvement strategies for Monte Carlo particle filters
    • Doucet A, de Freitas J F G, Gordon N J. eds, New York, Springer
    • Godsill S J, Clapp T. Improvement strategies for Monte Carlo particle filters. Sequential Monte Carlo Methods in Practice 2001, 139-158. Doucet A, de Freitas J F GGordon N J. eds, New York, Springer
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 139-158
    • Godsill, S.J.1    Clapp, T.2
  • 87
    • 0141714748 scopus 로고    scopus 로고
    • Maximum a posteriori sequence estimation using Monte Carlo particle filters
    • Godsill S J, Doucet A, West M. Maximum a posteriori sequence estimation using Monte Carlo particle filters. Ann. Inst. Statist. Math. 2001, 53:82-96.
    • (2001) Ann. Inst. Statist. Math. , vol.53 , pp. 82-96
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 88
    • 2142848605 scopus 로고    scopus 로고
    • Monte Carlo smoothing for non-linear time series
    • Godsill S J, Doucet A, West M. Monte Carlo smoothing for non-linear time series. J. Am. Statist. Ass. 2004, 99:156-168.
    • (2004) J. Am. Statist. Ass. , vol.99 , pp. 156-168
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 89
    • 35549009345 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear multivariate diffusion models observed with error
    • Golightly A, Wilkinson D J. Bayesian inference for nonlinear multivariate diffusion models observed with error. Computnl Statist. Data Anal. 2008, 52:1674-1693.
    • (2008) Computnl Statist. Data Anal. , vol.52 , pp. 1674-1693
    • Golightly, A.1    Wilkinson, D.J.2
  • 91
    • 64149131309 scopus 로고    scopus 로고
    • Hot coupling: a particle approach to inference and normalization on pairwise undirected graph
    • Cambridge, MIT Press
    • Hamze F, de Freitas N. Hot coupling: a particle approach to inference and normalization on pairwise undirected graph. Proc. NIPS 2005, Cambridge, MIT Press
    • (2005) Proc. NIPS
    • Hamze, F.1    de Freitas, N.2
  • 92
    • 77954108653 scopus 로고    scopus 로고
    • Searching for the allee effect in latent state space models via adaptive particle Markov chain Monte Carlo. Working Paper
    • Department of Mathematics and Statistics, University of New South Wales, Sydney
    • Hayes K, Hosack G, Peters G. Searching for the allee effect in latent state space models via adaptive particle Markov chain Monte Carlo. Working Paper. 2010, Department of Mathematics and Statistics, University of New South Wales, Sydney
    • (2010)
    • Hayes, K.1    Hosack, G.2    Peters, G.3
  • 93
    • 74049096785 scopus 로고    scopus 로고
    • Plug-and-play inference for disease dynamics: measles in large and small towns as a case study
    • He D, Ionides E L, King A A. Plug-and-play inference for disease dynamics: measles in large and small towns as a case study. J. R. Soc. Interface 2010, 7:271-283.
    • (2010) J. R. Soc. Interface , vol.7 , pp. 271-283
    • He, D.1    Ionides, E.L.2    King, A.A.3
  • 95
    • 77954138728 scopus 로고    scopus 로고
    • Iterated filtering
    • (Available from .)
    • Ionides E L, Bhadra A, King A A. Iterated filtering. 2010, (Available from .)
    • (2010)
    • Ionides, E.L.1    Bhadra, A.2    King, A.A.3
  • 97
    • 34547863202 scopus 로고    scopus 로고
    • On population-based simulation for static inference
    • Jasra A, Stephens D A, Holmes C C. On population-based simulation for static inference. Statist. Comput. 2007, 17:263-279.
    • (2007) Statist. Comput. , vol.17 , pp. 263-279
    • Jasra, A.1    Stephens, D.A.2    Holmes, C.C.3
  • 99
    • 84964378472 scopus 로고    scopus 로고
    • SMCTC: Sequential Monte Carlo in C++
    • Johansen A M. SMCTC: Sequential Monte Carlo in C++. J. Statist. Softwr. 2009, 30:1-41.
    • (2009) J. Statist. Softwr. , vol.30 , pp. 1-41
    • Johansen, A.M.1
  • 100
    • 77954113088 scopus 로고    scopus 로고
    • A Bayesian approach to state and parameter estimation in a phytoplankton-zooplankton model
    • to be published
    • Jones E, Parslow J, Murray L. A Bayesian approach to state and parameter estimation in a phytoplankton-zooplankton model. Aust. Meteorol. Oceanogr. J. 2009, to be published
    • (2009) Aust. Meteorol. Oceanogr. J.
    • Jones, E.1    Parslow, J.2    Murray, L.3
  • 102
    • 3042720018 scopus 로고    scopus 로고
    • Equation-free: the computer-assisted analysis of complex, multiscale systems
    • Kevrekidis I G, Gear C W, Hummer G. Equation-free: the computer-assisted analysis of complex, multiscale systems. Am. Inst. Chem. Engrs J. 2004, 50:1346-1354.
    • (2004) Am. Inst. Chem. Engrs J. , vol.50 , pp. 1346-1354
    • Kevrekidis, I.G.1    Gear, C.W.2    Hummer, G.3
  • 103
    • 77954094761 scopus 로고    scopus 로고
    • Model comparison in cosmology. Technical Report
    • Institut d'Astrophysique de Paris, Paris
    • Kilbinger M, Wraith D, Robert C, Benabed K. Model comparison in cosmology. Technical Report. 2009, Institut d'Astrophysique de Paris, Paris
    • (2009)
    • Kilbinger, M.1    Wraith, D.2    Robert, C.3    Benabed, K.4
  • 104
    • 80052326283 scopus 로고    scopus 로고
    • Pomp: statistical inference for partially observed Markov processes
    • (Available from .)
    • King A A, Ionides E L, Bretó C M. pomp: statistical inference for partially observed Markov processes. 2008, (Available from .)
    • (2008)
    • King, A.A.1    Ionides, E.L.2    Bretó, C.M.3
  • 105
  • 107
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Computnl Graph. Statist. 1996, 5:1-25.
    • (1996) J. Computnl Graph. Statist. , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 108
    • 84950943564 scopus 로고
    • Sequential imputation and Bayesian missing data problems
    • Kong A, Liu J S, Wong W. Sequential imputation and Bayesian missing data problems. J. Am. Statist. Ass. 1994, 89:590-599.
    • (1994) J. Am. Statist. Ass. , vol.89 , pp. 590-599
    • Kong, A.1    Liu, J.S.2    Wong, W.3
  • 109
    • 30344486983 scopus 로고    scopus 로고
    • Recursive Monte Carlo filters: algorithms and theoretical analysis
    • Künsch H R. Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Statist. 2005, 33:1983-2021.
    • (2005) Ann. Statist. , vol.33 , pp. 1983-2021
    • Künsch, H.R.1
  • 110
    • 77954101005 scopus 로고    scopus 로고
    • Simulating events of unknown probabilites via reverse time martingales
    • To be published
    • Łatuszyński K, Kosmidis I, Papaspiliopoulos O, Roberts G O. Simulating events of unknown probabilites via reverse time martingales. 2009, To be published
    • (2009)
    • Łatuszyński, K.1    Kosmidis, I.2    Papaspiliopoulos, O.3    Roberts, G.O.4
  • 111
    • 77954135581 scopus 로고    scopus 로고
    • Towards smooth particle filters for likelihood estimation with multivariate latent variables. Master's Thesis
    • Department of Computer Science, University of British Columbia, Vancouver
    • Lee A. Towards smooth particle filters for likelihood estimation with multivariate latent variables. Master's Thesis. 2008, Department of Computer Science, University of British Columbia, Vancouver
    • (2008)
    • Lee, A.1
  • 112
    • 77949888228 scopus 로고    scopus 로고
    • On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods
    • , arXiv:0905.2441v3 [stat.CO], Oxford-Man Institute, Oxford
    • Lee A, Yau C, Giles M B, Doucet A, Holmes C C. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. 2009, arXiv:0905.2441v3 [stat.CO], Oxford-Man Institute, Oxford
    • (2009)
    • Lee, A.1    Yau, C.2    Giles, M.B.3    Doucet, A.4    Holmes, C.C.5
  • 113
    • 0038648513 scopus 로고    scopus 로고
    • A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudomixing signals
    • LeGland F, Oudjane N. A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudomixing signals. Stochast. Process. Appl. 2003, 106:279-316.
    • (2003) Stochast. Process. Appl. , vol.106 , pp. 279-316
    • LeGland, F.1    Oudjane, N.2
  • 114
    • 78649397261 scopus 로고    scopus 로고
    • On generating Monte Carlo samples of continuous diffusion bridges. J. Am. Statist. Ass.
    • to be published
    • Lin M, Chen R, Mykland P. On generating Monte Carlo samples of continuous diffusion bridges. J. Am. Statist. Ass. 2010, to be published
    • (2010)
    • Lin, M.1    Chen, R.2    Mykland, P.3
  • 116
    • 0442309554 scopus 로고    scopus 로고
    • The use of multiple-try method and local optimization in Metropolis sampling
    • Liu J S, Liang F, Wong W H. The use of multiple-try method and local optimization in Metropolis sampling. J. Am. Statist. Ass. 2000, 95:121-134.
    • (2000) J. Am. Statist. Ass. , vol.95 , pp. 121-134
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 117
    • 0001225908 scopus 로고    scopus 로고
    • Combining parameter and state estimation in simulation-based filtering
    • Doucet A, de Freitas J F G, Gordon N J. eds, New York, Springer
    • Liu J, West M. Combining parameter and state estimation in simulation-based filtering. Sequential Monte Carlo Methods in Practice 2001, 197-224. Doucet A, de Freitas J F GGordon N J. eds, New York, Springer
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 197-224
    • Liu, J.1    West, M.2
  • 118
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes H F, West M. Bayesian model assessment in factor analysis. Statist. Sin. 2004, 14:41-67.
    • (2004) Statist. Sin. , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 120
    • 14544267663 scopus 로고    scopus 로고
    • Fast simulation of new coins from old
    • Nacu S, Peres Y. Fast simulation of new coins from old. Ann. Appl. Probab. 2005, 15:93-115.
    • (2005) Ann. Appl. Probab. , vol.15 , pp. 93-115
    • Nacu, S.1    Peres, Y.2
  • 121
    • 0037591475 scopus 로고
    • Bayesian learning via stochastic dynamics
    • Neal R M. Bayesian learning via stochastic dynamics. Adv. Neur. Inform. Process. Syst. 1993, 5:475-482.
    • (1993) Adv. Neur. Inform. Process. Syst. , vol.5 , pp. 475-482
    • Neal, R.M.1
  • 122
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • Neal R M. Annealed importance sampling. Statist. Comput. 2001, 11:125-139.
    • (2001) Statist. Comput. , vol.11 , pp. 125-139
    • Neal, R.M.1
  • 123
    • 77954112834 scopus 로고    scopus 로고
    • Channel tracking for relay networks via adaptive particle MCMC. Working Paper
    • University of New South Wales, Sydney
    • Nevat I, Peters G, Doucet A. Channel tracking for relay networks via adaptive particle MCMC. Working Paper. 2010, University of New South Wales, Sydney
    • (2010)
    • Nevat, I.1    Peters, G.2    Doucet, A.3
  • 124
    • 20444395499 scopus 로고    scopus 로고
    • Stability and uniform particle approximation of non-linear filters in case of non ergodic signals
    • Oudjane N, Rubenthaler S. Stability and uniform particle approximation of non-linear filters in case of non ergodic signals. Stochast. Anal. Appl. 2005, 23:421-448.
    • (2005) Stochast. Anal. Appl. , vol.23 , pp. 421-448
    • Oudjane, N.1    Rubenthaler, S.2
  • 125
    • 2442627902 scopus 로고    scopus 로고
    • Non-centered parameterisations for hierarchical models and data augmentation (with discussion)
    • Bernardo J M, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A F M, West M. eds, Oxford, Oxford University Press
    • Papaspiliopoulos O, Roberts G O, Sköld M. Non-centered parameterisations for hierarchical models and data augmentation (with discussion). Bayesian Statistics 7 2003, 307-327. Bernardo J M, Bayarri M, Berger JDawid AHeckerman DSmith A F MWest M. eds, Oxford, Oxford University Press
    • (2003) Bayesian Statistics 7 , pp. 307-327
    • Papaspiliopoulos, O.1    Roberts, G.O.2    Sköld, M.3
  • 126
    • 77954111844 scopus 로고    scopus 로고
    • Online calibration and filtering for multi factor commodity models with seasonality: incorporating futures and options contracts. Working Paper
    • Department of Mathematics and Statistics, University of New South Wales, Sydney
    • Peters G, Briers M, Shevchenko P, Doucet A. Online calibration and filtering for multi factor commodity models with seasonality: incorporating futures and options contracts. Working Paper. 2010, Department of Mathematics and Statistics, University of New South Wales, Sydney
    • (2010)
    • Peters, G.1    Briers, M.2    Shevchenko, P.3    Doucet, A.4
  • 127
    • 79956089114 scopus 로고    scopus 로고
    • Likelihood-free Bayesian inference for α-stable models. Technical Report
    • Department of Mathematics and Statistics, University of New South Wales, Sydney
    • Peters G, Fan Y, Sisson S. Likelihood-free Bayesian inference for α-stable models. Technical Report. 2009, Department of Mathematics and Statistics, University of New South Wales, Sydney
    • (2009)
    • Peters, G.1    Fan, Y.2    Sisson, S.3
  • 128
    • 77952092714 scopus 로고    scopus 로고
    • On sequential Monte Carlo, partial rejection control and approximate Bayesian computation. Technical Report
    • Department of Mathematics and Statistics, University of New South Wales, Sydney
    • Peters G, Fan Y, Sisson S. On sequential Monte Carlo, partial rejection control and approximate Bayesian computation. Technical Report. 2010, Department of Mathematics and Statistics, University of New South Wales, Sydney
    • (2010)
    • Peters, G.1    Fan, Y.2    Sisson, S.3
  • 129
    • 0007186644 scopus 로고    scopus 로고
    • Smooth particle filters for likelihood evaluation and maximisation. Economics Research Paper Series 651
    • Department of Economics, Warwick University, Coventry, (Available from .)
    • Pitt M K. Smooth particle filters for likelihood evaluation and maximisation. Economics Research Paper Series 651. 2002, Department of Economics, Warwick University, Coventry, (Available from .)
    • (2002)
    • Pitt, M.K.1
  • 130
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: auxiliary particle filters
    • Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters. J. Am. Statist. Ass. 1999, 94:590-599.
    • (1999) J. Am. Statist. Ass. , vol.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 131
    • 77954107827 scopus 로고    scopus 로고
    • Approximate Bayesian computation under model uncertainty, with an application to stochastic processes of network evolution
    • Imperial College London, London, To be published
    • Ratmann O. Approximate Bayesian computation under model uncertainty, with an application to stochastic processes of network evolution. 2010, Imperial College London, London, To be published
    • (2010)
    • Ratmann, O.1
  • 132
    • 77954123771 scopus 로고    scopus 로고
    • Discussion on 'Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations' (by H. Rue, S. Martino and N. Chopin)
    • Roberts G O. Discussion on 'Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations' (by H. Rue, S. Martino and N. Chopin). J. R. Statist. Soc. B 2009, 71:353-355.
    • (2009) J. R. Statist. Soc. B , vol.71 , pp. 353-355
    • Roberts, G.O.1
  • 133
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • Roberts G O, Rosenthal J S. Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 2001, 16:351-367.
    • (2001) Statist. Sci. , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 134
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive MCMC
    • Roberts G O, Rosenthal J S. Coupling and ergodicity of adaptive MCMC. J. Appl. Probab. 2007, 44:458-475.
    • (2007) J. Appl. Probab. , vol.44 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 136
    • 15244341043 scopus 로고    scopus 로고
    • Langevin diffusions and Metropolis-Hastings algorithms
    • Roberts G, Stramer O. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl. Probab. 2003, 4:337-358.
    • (2003) Methodol. Comput. Appl. Probab. , vol.4 , pp. 337-358
    • Roberts, G.1    Stramer, O.2
  • 137
    • 84950788916 scopus 로고
    • A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when the fraction of missing information is modest: the SIR algorithm (discussion of Tanner and Wong)
    • Rubin D B. A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when the fraction of missing information is modest: the SIR algorithm (discussion of Tanner and Wong). J. Am. Statist. Ass. 1987, 82:543-546.
    • (1987) J. Am. Statist. Ass. , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 138
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
    • Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Statist. Soc. B 2009, 71:319-392.
    • (2009) J. R. Statist. Soc. B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 139
    • 78650612270 scopus 로고
    • Configurational-bias Monte Carlo: a new sampling scheme for flexible chains
    • Siepmann J I, Frenkel D. Configurational-bias Monte Carlo: a new sampling scheme for flexible chains. Molec. Phys. 1992, 75:59.
    • (1992) Molec. Phys. , vol.75 , pp. 59
    • Siepmann, J.I.1    Frenkel, D.2
  • 140
    • 77954103963 scopus 로고    scopus 로고
    • Particle filtering within adaptive Metropolis Hastings sampling
    • (Available from .)
    • Silva R S, Kohn R, Giordani P, Pitt M K. Particle filtering within adaptive Metropolis Hastings sampling. 2009, (Available from .)
    • (2009)
    • Silva, R.S.1    Kohn, R.2    Giordani, P.3    Pitt, M.K.4
  • 141
    • 35148901361 scopus 로고    scopus 로고
    • Nested sampling for general Bayesian computation
    • Skilling J. Nested sampling for general Bayesian computation. Bayesn Anal. 2006, 4:833-860.
    • (2006) Bayesn Anal. , vol.4 , pp. 833-860
    • Skilling, J.1
  • 142
    • 0036475891 scopus 로고    scopus 로고
    • Particle filters for state-space models with the presence of unknown static parameters
    • Storvik G. Particle filters for state-space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 2002, 50:281-289.
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 281-289
    • Storvik, G.1
  • 143
    • 33646029123 scopus 로고    scopus 로고
    • Sequential Monte Carlo for Bayesian matching of objects with occlusions
    • Tamminen T, Lampinen J. Sequential Monte Carlo for Bayesian matching of objects with occlusions. IEEE Trans. Pattn Anal. Mach. Intell. 2006, 28:930-941.
    • (2006) IEEE Trans. Pattn Anal. Mach. Intell. , vol.28 , pp. 930-941
    • Tamminen, T.1    Lampinen, J.2
  • 144
    • 70449576065 scopus 로고    scopus 로고
    • Incremental Bayesian learning of feature points from natural images
    • Washington DC, Institute of Electrical and Electronics Engineers Computer Society
    • Toivanen M, Lampinen J. Incremental Bayesian learning of feature points from natural images. Proc. Computer Vision and Pattern Recognition Wrkshp, Miami 2009a, 39-46. Washington DC, Institute of Electrical and Electronics Engineers Computer Society
    • (2009) Proc. Computer Vision and Pattern Recognition Wrkshp, Miami , pp. 39-46
    • Toivanen, M.1    Lampinen, J.2
  • 145
    • 77950325425 scopus 로고    scopus 로고
    • Incremental object matching with Bayesian methods and particle filters
    • Washington DC, Institute of Electrical and Electronics Engineers Computer Society
    • Toivanen M, Lampinen J. Incremental object matching with Bayesian methods and particle filters. Proc. Digital Image Computing: Techniques and Applications 2009b, 111-118. Washington DC, Institute of Electrical and Electronics Engineers Computer Society
    • (2009) Proc. Digital Image Computing: Techniques and Applications , pp. 111-118
    • Toivanen, M.1    Lampinen, J.2
  • 146
    • 80053054547 scopus 로고    scopus 로고
    • Bayesian online learning of corresponding points of objects with sequential Monte Carlo
    • Toivanen M, Lampinen J. Bayesian online learning of corresponding points of objects with sequential Monte Carlo. Int. J. Computnl Intell. 2009c, 5:318-324.
    • (2009) Int. J. Computnl Intell. , vol.5 , pp. 318-324
    • Toivanen, M.1    Lampinen, J.2
  • 147
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M P. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 2008, 6:187-202.
    • (2008) J. R. Soc. Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.5
  • 148
    • 33646816059 scopus 로고    scopus 로고
    • On-line Bayesian estimation of hidden Markov models with unknown transition matrix and applications to IEEE 802.11 networks
    • New York, Institute of Electrical and Electronics Engineers
    • Vercauteren T, Toledo A, Wang X. On-line Bayesian estimation of hidden Markov models with unknown transition matrix and applications to IEEE 802.11 networks. Proc IEEE ICASSP 2005, 13-16. vol. IV, New York, Institute of Electrical and Electronics Engineers
    • (2005) Proc IEEE ICASSP , vol.4 , pp. 13-16
    • Vercauteren, T.1    Toledo, A.2    Wang, X.3
  • 149
    • 33845452219 scopus 로고    scopus 로고
    • On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models
    • Wang G. On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models. Ecol. Modllng 2007, 200:521-528.
    • (2007) Ecol. Modllng , vol.200 , pp. 521-528
    • Wang, G.1
  • 150
    • 0036475194 scopus 로고    scopus 로고
    • Delayed pilot sampling for mixture Kalman filter with application in fading channels
    • Wang X, Chen R, Guo D. Delayed pilot sampling for mixture Kalman filter with application in fading channels. IEEE Trans. Signal Process. 2002, 50:241-264.
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 241-264
    • Wang, X.1    Chen, R.2    Guo, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.