-
1
-
-
67650383738
-
Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix
-
COI: 1:STN:280:DC%2BD1MvptFWgsg%3D%3D, PID: 19303469
-
Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage. 2009;17(8):971–9.
-
(2009)
Osteoarthritis Cartilage
, vol.17
, Issue.8
, pp. 971-979
-
-
Loeser, R.F.1
-
2
-
-
84865392943
-
Joint aging and chondrocyte cell death
-
PID: 20671988
-
Grogan SP, D’Lima DD. Joint aging and chondrocyte cell death. Int J Clin Rheumtol. 2010;5(2):199–214.
-
(2010)
Int J Clin Rheumtol
, vol.5
, Issue.2
, pp. 199-214
-
-
Grogan, S.P.1
D’Lima, D.D.2
-
3
-
-
80053900670
-
Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA
-
COI: 1:CAS:528:DC%2BC3MXht1Oqt77P, PID: 21808292
-
Lotz MK, Carames B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol. 2011;7(10):579–87.
-
(2011)
Nat Rev Rheumatol
, vol.7
, Issue.10
, pp. 579-587
-
-
Lotz, M.K.1
Carames, B.2
-
4
-
-
77649128750
-
Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis
-
COI: 1:CAS:528:DC%2BC3cXhtFaltLvM, PID: 20187128
-
Carames B, et al. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62(3):791–801.
-
(2010)
Arthritis Rheum
, vol.62
, Issue.3
, pp. 791-801
-
-
Carames, B.1
-
5
-
-
84861994775
-
Effects of aging on articular cartilage homeostasis
-
COI: 1:CAS:528:DC%2BC38Xmt1Oitr0%3D, PID: 22487298
-
Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone. 2012;51(2):241–8.
-
(2012)
Bone
, vol.51
, Issue.2
, pp. 241-248
-
-
Lotz, M.1
Loeser, R.F.2
-
6
-
-
84881519849
-
The age-related changes in cartilage and osteoarthritis
-
PID: 23971049
-
Li Y, Wei X, Zhou J, et al. The age-related changes in cartilage and osteoarthritis. Biomed Res Int. 2013;2013:916530.
-
(2013)
Biomed Res Int
, vol.2013
, pp. 916530
-
-
Li, Y.1
Wei, X.2
Zhou, J.3
-
7
-
-
85010642174
-
Cartilage tissue engineering: the role of extracellular matrix (ECM) and novel strategies
-
Andrades JA, (ed), InTech, Croatia:
-
García-Carvajal ZY, Garciadiego-Cazares D, Parra-Cid C, et al. Cartilage tissue engineering: the role of extracellular matrix (ECM) and novel strategies. In: Andrades JA, editor. Regenerative medicine and tissue engineering. Croatia: InTech; 2013. pp. 365–97.
-
(2013)
Regenerative medicine and tissue engineering
, pp. 365-397
-
-
García-Carvajal, Z.Y.1
Garciadiego-Cazares, D.2
Parra-Cid, C.3
-
8
-
-
77951666929
-
Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of Osteoarthritis within an experimental model
-
COI: 1:CAS:528:DC%2BC3cXksVemsbs%3D, PID: 20091349
-
Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A, et al. Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of Osteoarthritis within an experimental model. Apoptosis. 2010;15(5):631–8.
-
(2010)
Apoptosis
, vol.15
, Issue.5
, pp. 631-638
-
-
Almonte-Becerril, M.1
Navarro-Garcia, F.2
Gonzalez-Robles, A.3
-
10
-
-
0035076295
-
Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis
-
COI: 1:CAS:528:DC%2BD3MXhsValtLw%3D, PID: 11178118
-
Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3(2):107–13.
-
(2001)
Arthritis Res
, vol.3
, Issue.2
, pp. 107-113
-
-
Sandell, L.J.1
Aigner, T.2
-
11
-
-
51449085299
-
The role of autophagy in mammalian development: cell makeover rather than cell death
-
COI: 1:CAS:528:DC%2BD1cXhtFOit7vN, PID: 18804433
-
Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008;15(3):344–57.
-
(2008)
Dev Cell
, vol.15
, Issue.3
, pp. 344-357
-
-
Cecconi, F.1
Levine, B.2
-
13
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
COI: 1:CAS:528:DC%2BC3MXjvFOhsr0%3D, PID: 21189453
-
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7(3):279–96.
-
(2011)
Autophagy
, vol.7
, Issue.3
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
14
-
-
69449087583
-
Evolution of Atg1 function and regulation
-
COI: 1:CAS:528:DC%2BD1MXhtFaitLrL, PID: 19411825
-
Chan EY, Tooze SA. Evolution of Atg1 function and regulation. Autophagy. 2009;5(6):758–65.
-
(2009)
Autophagy
, vol.5
, Issue.6
, pp. 758-765
-
-
Chan, E.Y.1
Tooze, S.A.2
-
15
-
-
34548482499
-
siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
-
COI: 1:CAS:528:DC%2BD2sXpsFWlsbk%3D, PID: 17595159
-
Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem. 2007;282(35):25464–74.
-
(2007)
J Biol Chem
, vol.282
, Issue.35
, pp. 25464-25474
-
-
Chan, E.Y.1
Kir, S.2
Tooze, S.A.3
-
16
-
-
39049194057
-
The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, AUTOPHAGY, and tumor suppressor function
-
COI: 1:CAS:528:DC%2BD2MXos1ensLc%3D, PID: 16874027
-
Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, AUTOPHAGY, and tumor suppressor function. Autophagy. 2005;1(1):46–52.
-
(2005)
Autophagy
, vol.1
, Issue.1
, pp. 46-52
-
-
Furuya, N.1
Yu, J.2
Byfield, M.3
Pattingre, S.4
Levine, B.5
-
17
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
COI: 1:CAS:528:DC%2BD3cXovFaiurk%3D, PID: 11060023
-
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–8.
-
(2000)
EMBO J
, vol.19
, Issue.21
, pp. 5720-5728
-
-
Kabeya, Y.1
Mizushima, N.2
Ueno, T.3
-
18
-
-
0038753871
-
The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair
-
Martin JA, Buckwalter JA. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am. 2003; 85-A (Suppl 2):106–10.
-
J Bone Joint Surg Am. 2003; 85-A (Suppl
, vol.2
, pp. 106-110
-
-
Martin, J.A.1
Buckwalter, J.A.2
-
19
-
-
0021723671
-
Intracellular determinants of cell aging
-
COI: 1:STN:280:DyaL2M7gvFOguw%3D%3D, PID: 6521502
-
Hayflick L. Intracellular determinants of cell aging. Mech Ageing Dev. 1984;28(2–3):177–85.
-
(1984)
Mech Ageing Dev
, vol.28
, Issue.2-3
, pp. 177-185
-
-
Hayflick, L.1
-
20
-
-
0035071327
-
Telomere erosion and senescence in human articular cartilage chondrocytes
-
COI: 1:STN:280:DC%2BD3M3js12hsQ%3D%3D, PID: 11283188
-
Martin JA, Buckwalter JA. Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci. 2001;56(4):B172–9.
-
(2001)
J Gerontol A Biol Sci Med Sci
, vol.56
, Issue.4
, pp. 172-179
-
-
Martin, J.A.1
Buckwalter, J.A.2
-
21
-
-
34548186667
-
Cellular senescence: when bad things happen to good cells
-
COI: 1:CAS:528:DC%2BD2sXpsVartLg%3D, PID: 17667954
-
Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, Issue.9
, pp. 729-740
-
-
Campisi, J.1
d’Adda di Fagagna, F.2
-
22
-
-
0031602467
-
Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation
-
COI: 1:STN:280:DyaK1c3jt12nsw%3D%3D, PID: 9571450
-
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.
-
(1998)
Instr Course Lect
, vol.47
, pp. 487-504
-
-
Buckwalter, J.A.1
Mankin, H.J.2
-
23
-
-
0033732110
-
Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes
-
COI: 1:CAS:528:DC%2BD3cXot1yhtLc%3D, PID: 11121681
-
Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000;35(8):927–45.
-
(2000)
Exp Gerontol
, vol.35
, Issue.8
, pp. 927-945
-
-
Toussaint, O.1
Medrano, E.E.2
von Zglinicki, T.3
-
24
-
-
0035975713
-
Mitochondrial DNA mutations, oxidative stress, and aging
-
COI: 1:CAS:528:DC%2BD3MXlvFWlt70%3D, PID: 11511398
-
Golden TR, Melov S. Mitochondrial DNA mutations, oxidative stress, and aging. Mech Ageing Dev. 2001;122(14):1577–89.
-
(2001)
Mech Ageing Dev
, vol.122
, Issue.14
, pp. 1577-1589
-
-
Golden, T.R.1
Melov, S.2
-
25
-
-
50549087736
-
Growth stimulation leads to cellular senescence when the cell cycle is blocked
-
COI: 1:CAS:528:DC%2BD1cXhsFWgtL3K, PID: 18948731
-
Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle. 2008;7(21):3355–61.
-
(2008)
Cell Cycle
, vol.7
, Issue.21
, pp. 3355-3361
-
-
Demidenko, Z.N.1
Blagosklonny, M.V.2
-
26
-
-
79951912532
-
Four faces of cellular senescence
-
COI: 1:CAS:528:DC%2BC3MXislGjs7o%3D, PID: 21321098
-
Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192(4):547–56.
-
(2011)
J Cell Biol
, vol.192
, Issue.4
, pp. 547-556
-
-
Rodier, F.1
Campisi, J.2
-
27
-
-
0016724057
-
Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
-
Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–6.
-
(1975)
J Antibiot (Tokyo)
, vol.28
, Issue.10
, pp. 721-726
-
-
Vézina, C.1
Kudelski, A.2
Sehgal, S.N.3
-
28
-
-
0025635897
-
The cytosolic-binding protein for the immunosuppressant FK-506 is both a ubiquitous and highly conserved peptidyl-prolyl cis-trans isomerase
-
COI: 1:CAS:528:DyaK3cXmtVCmu7c%3D, PID: 1701173
-
Siekierka JJ, Wiederrecht G, Greulich H, Boulton D, Hung SH, Cryan J, Hodges PJ, Sigal NH. The cytosolic-binding protein for the immunosuppressant FK-506 is both a ubiquitous and highly conserved peptidyl-prolyl cis-trans isomerase. J Biol Chem. 1990;265(34):21011–5.
-
(1990)
J Biol Chem
, vol.265
, Issue.34
, pp. 21011-21015
-
-
Siekierka, J.J.1
Wiederrecht, G.2
Greulich, H.3
Boulton, D.4
Hung, S.H.5
Cryan, J.6
Hodges, P.J.7
Sigal, N.H.8
-
29
-
-
0026799412
-
Characterization of high molecular weight FK-506 binding activities reveals a novel FK-506-binding protein as well as a protein complex
-
COI: 1:CAS:528:DyaK38Xls1emsbs%3D, PID: 1383226
-
Wiederrecht G, Hung S, Chan HK, et al. Characterization of high molecular weight FK-506 binding activities reveals a novel FK-506-binding protein as well as a protein complex. J Biol Chem. 1992;267(30):21753–60.
-
(1992)
J Biol Chem
, vol.267
, Issue.30
, pp. 21753-21760
-
-
Wiederrecht, G.1
Hung, S.2
Chan, H.K.3
-
30
-
-
0026012156
-
FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaK3MXlslKgsr8%3D, PID: 1705713
-
Heitman J, Movva NR, Hiestand PC, Hall MN. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in saccharomyces cerevisiae. Proc Natl Acad Sci. 1991;88:1948–52.
-
(1991)
Proc Natl Acad Sci
, vol.88
, pp. 1948-1952
-
-
Heitman, J.1
Movva, N.R.2
Hiestand, P.C.3
Hall, M.N.4
-
31
-
-
0028825698
-
TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin
-
COI: 1:CAS:528:DyaK2MXpsFShsbw%3D, PID: 7499212
-
Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem. 1995;270(46):27531–7.
-
(1995)
J Biol Chem
, vol.270
, Issue.46
, pp. 27531-27537
-
-
Lorenz, M.C.1
Heitman, J.2
-
32
-
-
0028598672
-
RAPT1, a mammalian homolog of yeast TOR, interacts with the FKBP12/rapamycin complex
-
COI: 1:CAS:528:DyaK2MXivVCrt7w%3D, PID: 7809080
-
Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast TOR, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci. 1994;91:12574–8.
-
(1994)
Proc Natl Acad Sci
, vol.91
, pp. 12574-12578
-
-
Chiu, M.I.1
Katz, H.2
Berlin, V.3
-
33
-
-
0028950217
-
Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells
-
COI: 1:CAS:528:DyaK2MXjtFKrsrw%3D, PID: 7822316
-
Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815–22.
-
(1995)
J Biol Chem
, vol.270
, Issue.2
, pp. 815-822
-
-
Sabers, C.J.1
Martin, M.M.2
Brunn, G.J.3
Williams, J.M.4
Dumont, F.J.5
Wiederrecht, G.6
Abraham, R.T.7
-
34
-
-
0028137771
-
TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast
-
COI: 1:CAS:528:DyaK2cXlslWltbw%3D, PID: 8186460
-
Helliwell SB, Wagner P, Kunz J, et al. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell. 1994;5(1):105–18.
-
(1994)
Mol Biol Cell
, vol.5
, Issue.1
, pp. 105-118
-
-
Helliwell, S.B.1
Wagner, P.2
Kunz, J.3
-
35
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, Have distinct roles in cell growth control
-
COI: 1:CAS:528:DC%2BD38XnvFSlt74%3D, PID: 12408816
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, Have distinct roles in cell growth control. Mol Cell. 2002;10:457–68.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
36
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
COI: 1:CAS:528:DC%2BD2cXmtVamsLs%3D, PID: 15268862
-
Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.
-
(2004)
Curr Biol
, vol.14
, Issue.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
-
37
-
-
4043171462
-
Upstream and downstream of mTOR
-
COI: 1:CAS:528:DC%2BD2cXmvFKqsLk%3D, PID: 15314020
-
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.
-
(2004)
Genes Dev
, vol.18
, Issue.16
, pp. 1926-1945
-
-
Hay, N.1
Sonenberg, N.2
-
38
-
-
80055027842
-
Mammalian target of rapamycin: a central node of complex signaling cascades
-
COI: 1:CAS:528:DC%2BC3MXpvVGjtbc%3D, PID: 21738819
-
Dobashi Y, Watanabe Y, Miwa C, et al. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol. 2011;4(5):476–95.
-
(2011)
Int J Clin Exp Pathol
, vol.4
, Issue.5
, pp. 476-495
-
-
Dobashi, Y.1
Watanabe, Y.2
Miwa, C.3
-
39
-
-
32044465506
-
TOR signaling in growth and metabolism
-
COI: 1:CAS:528:DC%2BD28Xhslaqs74%3D, PID: 16469695
-
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
40
-
-
0035664839
-
The TOR signal transduction cascade controls cellular differentiation in response to nutrients
-
COI: 1:CAS:528:DC%2BD3MXpt1Ghsr4%3D, PID: 11739804
-
Cutler NS, Pan X, Heitman J, et al. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell. 2001;12(12):4103–13.
-
(2001)
Mol Biol Cell
, vol.12
, Issue.12
, pp. 4103-4113
-
-
Cutler, N.S.1
Pan, X.2
Heitman, J.3
-
41
-
-
84922480855
-
Coromnas-Faja, Joven J, Cell cycle regulation by the nutrient-sensing mammalian target of rapamycin (mTOR) pathway
-
Springer, New York:
-
Cuyàs E, Coromnas-Faja, Joven J, et al. Cell cycle regulation by the nutrient-sensing mammalian target of rapamycin (mTOR) pathway. In: Noguchi E, Gadaleta MC, editors. Cell cycle control: mechanisms and protocols. Springer; New York; 2014. pp. 113–144.
-
(2014)
Cell cycle control: mechanisms and protocols
, pp. 113-144
-
-
Cuyàs, E.1
Noguchi, E.2
Gadaleta, M.C.3
-
42
-
-
34250788809
-
AKT/PKB signaling: navigating downstream
-
COI: 1:CAS:528:DC%2BD2sXotV2hs7g%3D, PID: 17604717
-
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74.
-
(2007)
Cell
, vol.129
, Issue.7
, pp. 1261-1274
-
-
Manning, B.D.1
Cantley, L.C.2
-
43
-
-
84907626815
-
The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration
-
COI: 1:CAS:528:DC%2BC2cXhs1Squ7rF, PID: 25173700
-
Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, et al. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal. 2014;26(12):2694–701.
-
(2014)
Cell Signal
, vol.26
, Issue.12
, pp. 2694-2701
-
-
Heras-Sandoval, D.1
Perez-Rojas, J.M.2
Hernandez-Damian, J.3
-
44
-
-
0031053586
-
Regulation of neuronal survival by the serine-threonine protein kinase Akt
-
COI: 1:CAS:528:DyaK2sXptV2msA%3D%3D, PID: 9005851
-
Dudek H, Datta SR, Franke TJ, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275(5300):661–5.
-
(1997)
Science
, vol.275
, Issue.5300
, pp. 661-665
-
-
Dudek, H.1
Datta, S.R.2
Franke, T.J.3
-
45
-
-
0035369623
-
Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway
-
COI: 1:CAS:528:DC%2BD3MXks1Oktbw%3D, PID: 11399427
-
Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol. 2001;11(3):297–305.
-
(2001)
Curr Opin Neurobiol
, vol.11
, Issue.3
, pp. 297-305
-
-
Brunet, A.1
Datta, S.R.2
Greenberg, M.E.3
-
46
-
-
1542328927
-
Structure, regulation and function of PKB/AKT—a major therapeutic target
-
Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochimica et Biophysica Acta. 2004;1697(1–2):3–16.
-
(2004)
Biochimica et Biophysica Acta
, vol.1697
, Issue.1-2
, pp. 3-16
-
-
Hanada, M.1
Feng, J.2
Hemmings, B.A.3
-
47
-
-
0037160104
-
Regulation of TSC2 by 14-3-3 binding
-
COI: 1:CAS:528:DC%2BD38Xosl2ntrY%3D, PID: 12364343
-
Li Y, Inoki K, Yeung R, Guan KL. Regulation of TSC2 by 14-3-3 binding. J Biol Chem. 2002;277(47):44593–6.
-
(2002)
J Biol Chem
, vol.277
, Issue.47
, pp. 44593-44596
-
-
Li, Y.1
Inoki, K.2
Yeung, R.3
Guan, K.L.4
-
48
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
COI: 1:CAS:528:DC%2BD2MXjsFKiu7o%3D, PID: 15854902
-
Long X, Lin Y, Ortiz-Vega S, et al. Rheb binds and regulates the mTOR kinase. Curr Biol. 2005;15(8):702–13.
-
(2005)
Curr Biol
, vol.15
, Issue.8
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
-
49
-
-
33750058023
-
Upstream of the mammalian target of rapamycin: do all roads pass through mTOR?
-
Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25(48):6347–60.
-
(2006)
Oncogene
, vol.25
, Issue.48
, pp. 6347-6360
-
-
Corradetti, M.N.1
Guan, K.L.2
-
50
-
-
84876488191
-
mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
COI: 1:CAS:528:DC%2BC3sXksVOitbc%3D, PID: 23524951
-
Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15(4):406–16.
-
(2013)
Nat Cell Biol
, vol.15
, Issue.4
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
-
51
-
-
77952243626
-
Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer
-
COI: 1:CAS:528:DC%2BC3cXisFOksbo%3D, PID: 20190810
-
Sato T, Nakashima A, Guo L, et al. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene. 2010;29(18):2746–52.
-
(2010)
Oncogene
, vol.29
, Issue.18
, pp. 2746-2752
-
-
Sato, T.1
Nakashima, A.2
Guo, L.3
-
52
-
-
3342958797
-
The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins
-
COI: 1:CAS:528:DC%2BD2cXlvFKqsrw%3D, PID: 15249583
-
Harrington LS, Findlay GM, Gray A, et al. The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166(2):213–23.
-
(2004)
J Cell Biol
, vol.166
, Issue.2
, pp. 213-223
-
-
Harrington, L.S.1
Findlay, G.M.2
Gray, A.3
-
53
-
-
84903955288
-
mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis
-
COI: 1:CAS:528:DC%2BC2cXhsVWrtLbM, PID: 24948603
-
Chen J, Long F. mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development. 2014;141(14):2848–54.
-
(2014)
Development
, vol.141
, Issue.14
, pp. 2848-2854
-
-
Chen, J.1
Long, F.2
-
54
-
-
84907707647
-
Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development
-
COI: 1:CAS:528:DC%2BC2cXhslWhsLnN, PID: 25002119
-
Guan Y, Yang X, Yang W, et al. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. FASEB J. 2014;28(10):4470–81.
-
(2014)
FASEB J
, vol.28
, Issue.10
, pp. 4470-4481
-
-
Guan, Y.1
Yang, X.2
Yang, W.3
-
55
-
-
61349158509
-
Akt regulates skeletal development through GSK3, mTOR, and FoxOs
-
COI: 1:CAS:528:DC%2BD1MXivVentLc%3D, PID: 19389373
-
Rokutanda S, et al. Akt regulates skeletal development through GSK3, mTOR, and FoxOs. Develop Biol. 2009;328:78–93. doi:10.1016/j.ydbio.2009.01.009.
-
(2009)
Develop Biol
, vol.328
, pp. 78-93
-
-
Rokutanda, S.1
-
56
-
-
40849126775
-
mTOR signaling contributes to chondrocyte differentiation
-
COI: 1:CAS:528:DC%2BD1cXktlKksbs%3D, PID: 18265001
-
Phornphutkul C, Wu KY, Augeung V, et al. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn. 2008;237(3):702–12.
-
(2008)
Dev Dyn
, vol.237
, Issue.3
, pp. 702-712
-
-
Phornphutkul, C.1
Wu, K.Y.2
Augeung, V.3
-
57
-
-
77956226075
-
Rapamycin induces growth retardation by disrupting angiogenesis in the growth plate
-
COI: 1:CAS:528:DC%2BC3cXhtV2itr3N, PID: 20555322
-
Alvarez-Garcia O, Garcia-Lopez E, Loredo V, et al. Rapamycin induces growth retardation by disrupting angiogenesis in the growth plate. Kidney Int. 2010;78(6):561–8.
-
(2010)
Kidney Int
, vol.78
, Issue.6
, pp. 561-568
-
-
Alvarez-Garcia, O.1
Garcia-Lopez, E.2
Loredo, V.3
-
58
-
-
68849083243
-
The effect of rapamycin on bone growth in rabbits
-
COI: 1:CAS:528:DC%2BD1MXhtV2iurrN, PID: 19382193
-
Phornphutkul C, Lee M, Voigt C, et al. The effect of rapamycin on bone growth in rabbits. J Orthop Res. 2009;27(9):1157–61.
-
(2009)
J Orthop Res
, vol.27
, Issue.9
, pp. 1157-1161
-
-
Phornphutkul, C.1
Lee, M.2
Voigt, C.3
-
59
-
-
63049094292
-
Bone growth during rapamycin therapy in young rats
-
PID: 19144108
-
Sanchez CP, He YZ. Bone growth during rapamycin therapy in young rats. BMC Pediatr. 2009;9:3.
-
(2009)
BMC Pediatr
, vol.9
, pp. 3
-
-
Sanchez, C.P.1
He, Y.Z.2
-
60
-
-
0035929234
-
Immunosuppressant rapamycin inhibits protein kinase C alpha and p38 mitogen-activated protein kinase leading to the inhibition of chondrogenesis
-
COI: 1:CAS:528:DC%2BD3MXmvVyrsr4%3D, PID: 11567647
-
Oh CD, Kim SJ, Ju JW, et al. Immunosuppressant rapamycin inhibits protein kinase C alpha and p38 mitogen-activated protein kinase leading to the inhibition of chondrogenesis. Eur J Pharmacol. 2001;427(3):175–85.
-
(2001)
Eur J Pharmacol
, vol.427
, Issue.3
, pp. 175-185
-
-
Oh, C.D.1
Kim, S.J.2
Ju, J.W.3
-
61
-
-
84921710835
-
Shi Y, mTORC2 signaling promotes skeletal growth and bone formation in mice
-
Chen J, Holguin N, Shi Y, et al. mTORC2 signaling promotes skeletal growth and bone formation in mice. J Bone Miner Res. Epub 4 Sep 2014.
-
(2014)
J Bone Miner Res. Epub
, pp. 4
-
-
Chen, J.1
Holguin, N.2
-
62
-
-
84963768482
-
The importance of the mTOR regulatory network in chondrocyte biology and osteoarthritis
-
Tchetina EV. The importance of the mTOR regulatory network in chondrocyte biology and osteoarthritis. EMJ Rheumatol. 2014;1:84–95.
-
(2014)
EMJ Rheumatol
, vol.1
, pp. 84-95
-
-
Tchetina, E.V.1
-
63
-
-
84903187199
-
Differences in mammalian target of rapamycin gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity
-
PID: 23864948
-
Tchetina EV, Poole AR, Zaitseva EM, et al. Differences in mammalian target of rapamycin gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity. Arthritis. 2013;2013:461486.
-
(2013)
Arthritis
, vol.2013
, pp. 461486
-
-
Tchetina, E.V.1
Poole, A.R.2
Zaitseva, E.M.3
-
64
-
-
84935036182
-
-
Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis, Ann Rheum Dis:
-
Zhang Y, Vasheghani F, Li YH, et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis. 2014. doi:10.1136/annrheumdis-2013-204599.
-
(2014)
et al
-
-
Zhang, Y.1
Vasheghani, F.2
Li, Y.H.3
-
65
-
-
84861830188
-
Autophagy modulates osteoarthritis-related gene expression in human chondrocytes
-
COI: 1:CAS:528:DC%2BC38XnsFOltLY%3D, PID: 22147463
-
Sasaki H, Takayama K, Matsushita T, et al. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum. 2012;64(6):1920–8.
-
(2012)
Arthritis Rheum
, vol.64
, Issue.6
, pp. 1920-1928
-
-
Sasaki, H.1
Takayama, K.2
Matsushita, T.3
-
66
-
-
84861981732
-
Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection
-
COI: 1:CAS:528:DC%2BC38XmvVygur0%3D, PID: 22034068
-
Carames B, Taniguchi N, Seino D, et al. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum. 2012;64(4):1182–92.
-
(2012)
Arthritis Rheum
, vol.64
, Issue.4
, pp. 1182-1192
-
-
Carames, B.1
Taniguchi, N.2
Seino, D.3
-
67
-
-
84908234297
-
Defective autophagy in chondrocytes with Kashin-Beck disease but higher than osteoarthritis
-
COI: 1:STN:280:DC%2BC2M%2FmtFWntw%3D%3D, PID: 25168363
-
Wu C, Zheng J, Yao X, et al. Defective autophagy in chondrocytes with Kashin-Beck disease but higher than osteoarthritis. Osteoarthritis Cartilage. 2014;22(11):1936–46.
-
(2014)
Osteoarthritis Cartilage
, vol.22
, Issue.11
, pp. 1936-1946
-
-
Wu, C.1
Zheng, J.2
Yao, X.3
-
68
-
-
84892187515
-
The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis
-
COI: 1:CAS:528:DC%2BC3sXhvFymtrvK, PID: 24126970
-
Chang J, Wang W, Zhang H, et al. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int J Mol Med. 2013;32(6):1311–8.
-
(2013)
Int J Mol Med
, vol.32
, Issue.6
, pp. 1311-1318
-
-
Chang, J.1
Wang, W.2
Zhang, H.3
-
69
-
-
84907266449
-
Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model
-
COI: 1:CAS:528:DC%2BC2cXhsFWit7jI, PID: 25236536
-
Matsuzaki T, Matsushita T, Tabata Y, et al. Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials. 2014;35(37):9904–11.
-
(2014)
Biomaterials
, vol.35
, Issue.37
, pp. 9904-9911
-
-
Matsuzaki, T.1
Matsushita, T.2
Tabata, Y.3
-
70
-
-
84924287483
-
Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis
-
PID: 25403236
-
Takayama K, Kawakami Y, Kobayashi M, et al. Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis. Arthritis Res Ther. 2014;16(6):482.
-
(2014)
Arthritis Res Ther
, vol.16
, Issue.6
, pp. 482
-
-
Takayama, K.1
Kawakami, Y.2
Kobayashi, M.3
-
71
-
-
84857910484
-
Autophagy activation by rapamycin reduces severity of experimental osteoarthritis
-
COI: 1:CAS:528:DC%2BC38XnsFGjs70%3D, PID: 22084394
-
Carames B, Hasegawa A, Taniguchi N, et al. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis. 2012;71(4):575–81.
-
(2012)
Ann Rheum Dis
, vol.71
, Issue.4
, pp. 575-581
-
-
Carames, B.1
Hasegawa, A.2
Taniguchi, N.3
-
72
-
-
78650983649
-
Role of proinflammatory cytokines in the pathophysiology of osteoarthritis
-
COI: 1:CAS:528:DC%2BC3MXht1Ghsg%3D%3D, PID: 21119608
-
Kapoor M, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42.
-
(2011)
Nat Rev Rheumatol
, vol.7
, Issue.1
, pp. 33-42
-
-
Kapoor, M.1
-
73
-
-
84899689924
-
Autophagy in human articular chondrocytes is cytoprotective following glucocorticoid stimulation
-
COI: 1:CAS:528:DC%2BC2cXptlSjt7s%3D, PID: 24691715
-
Liu N, et al. Autophagy in human articular chondrocytes is cytoprotective following glucocorticoid stimulation. Mol Med Rep. 2014;9(6):2166–72.
-
(2014)
Mol Med Rep
, vol.9
, Issue.6
, pp. 2166-2172
-
-
Liu, N.1
-
74
-
-
84905179075
-
Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice
-
COI: 1:CAS:528:DC%2BC2cXhslylu7zE, PID: 23852692
-
Huang MJ, et al. Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice. Ann Rheum Dis. 2014;73(9):1719–27.
-
(2014)
Ann Rheum Dis
, vol.73
, Issue.9
, pp. 1719-1727
-
-
Huang, M.J.1
-
75
-
-
84905577960
-
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis
-
COI: 1:STN:280:DC%2BC2cfpvVOjtA%3D%3D, PID: 24999110
-
Weng T, et al. Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis. Osteoarthritis Cartilage. 2014;22(8):1197–205.
-
(2014)
Osteoarthritis Cartilage
, vol.22
, Issue.8
, pp. 1197-1205
-
-
Weng, T.1
-
76
-
-
84905182019
-
Disruption of phosphoinositide-specific phospholipases Cgamma1 contributes to extracellular matrix synthesis of human osteoarthritis chondrocytes
-
COI: 1:CAS:528:DC%2BC2cXhslyqurrN, PID: 25073093
-
Zeng G, et al. Disruption of phosphoinositide-specific phospholipases Cgamma1 contributes to extracellular matrix synthesis of human osteoarthritis chondrocytes. Int J Mol Sci. 2014;15(8):13236–46.
-
(2014)
Int J Mol Sci
, vol.15
, Issue.8
, pp. 13236-13246
-
-
Zeng, G.1
-
77
-
-
84879874726
-
Glucosamine activates autophagy in vitro and in vivo
-
COI: 1:CAS:528:DC%2BC3sXhtVKht77P, PID: 23606170
-
Carames B, et al. Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum. 2013;65(7):1843–52.
-
(2013)
Arthritis Rheum
, vol.65
, Issue.7
, pp. 1843-1852
-
-
Carames, B.1
-
78
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
COI: 1:CAS:528:DC%2BD1MXotVyqsL4%3D, PID: 19211835
-
Hosokawa N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981–91.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.7
, pp. 1981-1991
-
-
Hosokawa, N.1
-
79
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
PID: 21072212
-
Lee JW, et al. The association of AMPK with ULK1 regulates autophagy. PLoS One. 2010;5(11):e15394.
-
(2010)
PLoS One
, vol.5
, Issue.11
-
-
Lee, J.W.1
-
80
-
-
79960014848
-
ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding
-
COI: 1:CAS:528:DC%2BC38XhtFCisLg%3D, PID: 21460630
-
Dunlop EA, et al. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy. 2011;7(7):737–47.
-
(2011)
Autophagy
, vol.7
, Issue.7
, pp. 737-747
-
-
Dunlop, E.A.1
-
81
-
-
84873685781
-
Hypoxia, MTOR and autophagy: converging on senescence or quiescence
-
COI: 1:CAS:528:DC%2BC3sXjvFWlsrs%3D, PID: 23192222
-
Blagosklonny MV. Hypoxia, MTOR and autophagy: converging on senescence or quiescence. Autophagy. 2013;9(2):260–2.
-
(2013)
Autophagy
, vol.9
, Issue.2
, pp. 260-262
-
-
Blagosklonny, M.V.1
-
82
-
-
67649316033
-
Rapamycin decelerates cellular senescence
-
COI: 1:CAS:528:DC%2BD1MXhsVOhs7zL, PID: 19471117
-
Demidenko ZN, Zubova SG, Bukreeva EI, et al. Rapamycin decelerates cellular senescence. Cell Cycle. 2009;8(12):1888–95.
-
(2009)
Cell Cycle
, vol.8
, Issue.12
, pp. 1888-1895
-
-
Demidenko, Z.N.1
Zubova, S.G.2
Bukreeva, E.I.3
-
83
-
-
79956325949
-
Spatial coupling of mTOR and autophagy augments secretory phenotypes
-
COI: 1:CAS:528:DC%2BC3MXmtFSgurw%3D, PID: 21512002
-
Narita M, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 2011;332(6032):966–70.
-
(2011)
Science
, vol.332
, Issue.6032
, pp. 966-970
-
-
Narita, M.1
-
84
-
-
80655148079
-
Spatio-temporal association between mTOR and autophagy during cellular senescence
-
COI: 1:CAS:528:DC%2BC38Xjs1Smtrg%3D, PID: 21799306
-
Young AR, Narita M, Narita M. Spatio-temporal association between mTOR and autophagy during cellular senescence. Autophagy. 2011;7(11):1387–8.
-
(2011)
Autophagy
, vol.7
, Issue.11
, pp. 1387-1388
-
-
Young, A.R.1
Narita, M.2
Narita, M.3
-
85
-
-
79956316698
-
Cell biology. The TASCC of secretion
-
COI: 1:CAS:528:DC%2BC3MXntFyiur0%3D, PID: 21596981
-
Zoncu R, Sabatini DM. Cell biology. The TASCC of secretion. Science. 2011;332(6032):923–5.
-
(2011)
Science
, vol.332
, Issue.6032
, pp. 923-925
-
-
Zoncu, R.1
Sabatini, D.M.2
-
86
-
-
30944458446
-
Extension of chronological life span in yeast by decreased TOR pathway signaling
-
COI: 1:CAS:528:DC%2BD28XptlKjtA%3D%3D, PID: 16418483
-
Powers RW 3rd, et al. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006;20(2):174–84.
-
(2006)
Genes Dev
, vol.20
, Issue.2
, pp. 174-184
-
-
Powers, R.W.1
-
87
-
-
0642367846
-
Genetics: influence of TOR kinase on lifespan in C. elegans
-
COI: 1:CAS:528:DC%2BD3sXps1Clur4%3D, PID: 14668850
-
Vellai T, et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.
-
(2003)
Nature
, vol.426
, Issue.6967
, pp. 620
-
-
Vellai, T.1
-
88
-
-
3042648746
-
Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway
-
COI: 1:CAS:528:DC%2BD2cXkvV2gtb4%3D, PID: 15186745
-
Kapahi P, et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14(10):885–90.
-
(2004)
Curr Biol
, vol.14
, Issue.10
, pp. 885-890
-
-
Kapahi, P.1
-
89
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
COI: 1:CAS:528:DC%2BD1MXotlSgtLg%3D, PID: 19587680
-
Harrison DE, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.
-
(2009)
Nature
, vol.460
, Issue.7253
, pp. 392-395
-
-
Harrison, D.E.1
-
90
-
-
84901651824
-
Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer
-
PID: 23369283
-
Seto B. Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer. Clin Transl Med. 2012;1(1):29.
-
(2012)
Clin Transl Med
, vol.1
, Issue.1
, pp. 29
-
-
Seto, B.1
-
91
-
-
84908073165
-
Inhibition of the mTORC pathway in the antiphospholipid syndrome
-
PID: 25054716
-
Canaud G, et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 2014;371(4):303–12.
-
(2014)
N Engl J Med
, vol.371
, Issue.4
, pp. 303-312
-
-
Canaud, G.1
-
92
-
-
33749345289
-
Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus
-
COI: 1:CAS:528:DC%2BD28XhtFWksLbM, PID: 16947529
-
Fernandez D, et al. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(9):2983–8.
-
(2006)
Arthritis Rheum
, vol.54
, Issue.9
, pp. 2983-2988
-
-
Fernandez, D.1
-
93
-
-
58149096523
-
Efficacy of rapamycin in scleroderma: a case study
-
COI: 1:CAS:528:DC%2BD1cXhsFajsbvE, PID: 18950288
-
Fried L, et al. Efficacy of rapamycin in scleroderma: a case study. Lymphat Res Biol. 2008;6(3–4):217–9.
-
(2008)
Lymphat Res Biol
, vol.6
, Issue.3-4
, pp. 217-219
-
-
Fried, L.1
-
94
-
-
12844270561
-
Rapamycin (sirolimus) as a steroid-sparing agent in dermatomyositis
-
Nadiminti U, Arbiser JL. Rapamycin (sirolimus) as a steroid-sparing agent in dermatomyositis. J Am Acad Dermatol. 2005;52(2, Supplement):S17–9.
-
(2005)
J Am Acad Dermatol
, vol.52
, Issue.2
, pp. 17-19
-
-
Nadiminti, U.1
Arbiser, J.L.2
-
95
-
-
77955349716
-
Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis
-
COI: 1:CAS:528:DC%2BC3cXhtFOhsr7L, PID: 20506342
-
Yoshizaki A, et al. Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis. Arthritis Rheum. 2010;62(8):2476–87.
-
(2010)
Arthritis Rheum
, vol.62
, Issue.8
, pp. 2476-2487
-
-
Yoshizaki, A.1
-
96
-
-
84872710561
-
Vertical inhibition of the PI3K/Akt/mTOR pathway for the treatment of osteoarthritis
-
COI: 1:CAS:528:DC%2BC38XhvVCltb%2FI, PID: 22930581
-
Chen J, Crawford R, Xiao Y. Vertical inhibition of the PI3K/Akt/mTOR pathway for the treatment of osteoarthritis. J Cell Biochem. 2013;114(2):245–9.
-
(2013)
J Cell Biochem
, vol.114
, Issue.2
, pp. 245-249
-
-
Chen, J.1
Crawford, R.2
Xiao, Y.3
-
106
-
-
34249779568
-
Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma
-
COI: 1:CAS:528:DC%2BD2sXmtVKkurs%3D, PID: 17538086
-
Hudes G, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81.
-
(2007)
N Engl J Med
, vol.356
, Issue.22
, pp. 2271-2281
-
-
Hudes, G.1
-
107
-
-
84905826525
-
Combined MTOR and Autophagy Inhibition: PHASE I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma
-
Rangwala R, et al. Combined MTOR and Autophagy Inhibition: PHASE I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):9–20.
-
(2014)
Autophagy
, vol.10
, Issue.8
, pp. 9-20
-
-
Rangwala, R.1
-
108
-
-
84904063376
-
Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide
-
COI: 1:CAS:528:DC%2BC2cXhtFCksL7P, PID: 24761838
-
Yee AJ, et al. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol. 2014;166(3):401–9.
-
(2014)
Br J Haematol
, vol.166
, Issue.3
, pp. 401-409
-
-
Yee, A.J.1
-
109
-
-
84895743330
-
Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: a Children’s Oncology Group Study
-
COI: 1:CAS:528:DC%2BC2cXhslWgsr7N, PID: 24249672
-
Bagatell R, et al. Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: a Children’s Oncology Group Study. Pediatr Blood Cancer. 2014;61(5):833–9.
-
(2014)
Pediatr Blood Cancer
, vol.61
, Issue.5
, pp. 833-839
-
-
Bagatell, R.1
|