메뉴 건너뛰기




Volumn 38, Issue 3, 2015, Pages 358-371

Integrating autophagy and metabolism in cancer

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; ANTINEOPLASTIC AGENT; BECLIN 1; DNA BINDING PROTEIN; EPIDERMAL GROWTH FACTOR RECEPTOR; GLUTAMIC ACID; GLUTAMINE; INTERLEUKIN 6; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN KINASE B; PROTEIN P53; PROTEIN P62; TOLL LIKE RECEPTOR; TUMOR SUPPRESSOR PROTEIN;

EID: 84925493892     PISSN: 02536269     EISSN: 19763786     Source Type: Journal    
DOI: 10.1007/s12272-015-0562-2     Document Type: Review
Times cited : (35)

References (72)
  • 3
    • 84885582468 scopus 로고    scopus 로고
    • Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK
    • 1:CAS:528:DC%2BC38Xhs12hsrzM 23160380
    • Avivar-Valderas, A., E. Bobrovnikova-Marjon, J. Alan Diehl, N. Bardeesy, J. Debnath, and J.A. Aguirre-Ghiso. 2013. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32: 4932-4940.
    • (2013) Oncogene , vol.32 , pp. 4932-4940
    • Avivar-Valderas, A.1    Bobrovnikova-Marjon, E.2    Alan Diehl, J.3    Bardeesy, N.4    Debnath, J.5    Aguirre-Ghiso, J.A.6
  • 4
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • 1:CAS:528:DC%2BC38XhtlKku7jN 22980980
    • Bar-Peled, L., L.D. Schweitzer, R. Zoncu, and D.M. Sabatini. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150: 1196-1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 6
    • 84867723524 scopus 로고    scopus 로고
    • Autophagy as a target for cancer therapy: New developments
    • 3474143 23091399
    • Carew, J.S., K.R. Kelly, and S.T. Nawrocki. 2012. Autophagy as a target for cancer therapy: new developments. Cancer Management and Research 4: 357-365.
    • (2012) Cancer Management and Research , vol.4 , pp. 357-365
    • Carew, J.S.1    Kelly, K.R.2    Nawrocki, S.T.3
  • 7
    • 84878015338 scopus 로고    scopus 로고
    • Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture
    • 1:CAS:528:DC%2BC38XpvFGjtrg%3D 22777351
    • Chen, N., N. Eritja, R. Lock, and J. Debnath. 2013. Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture. Oncogene 32: 2543-2554.
    • (2013) Oncogene , vol.32 , pp. 2543-2554
    • Chen, N.1    Eritja, N.2    Lock, R.3    Debnath, J.4
  • 9
    • 84863661689 scopus 로고    scopus 로고
    • Therapeutic targets in cancer cell metabolism and autophagy
    • 1:CAS:528:DC%2BC38XpvFGgsr4%3D 22781696
    • Cheong, H., C. Lu, T. Lindsten, and C.B. Thompson. 2012. Therapeutic targets in cancer cell metabolism and autophagy. Nature Biotechnology 30: 671-678.
    • (2012) Nature Biotechnology , vol.30 , pp. 671-678
    • Cheong, H.1    Lu, C.2    Lindsten, T.3    Thompson, C.B.4
  • 10
    • 80655140436 scopus 로고    scopus 로고
    • Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype
    • 1:CAS:528:DC%2BC38XmsFaktQ%3D%3D 22127234
    • Cufi, S., A. Vazquez-Martin, C. Oliveras-Ferraros, B. Martin-Castillo, L. Vellon, and J.A. Menendez. 2011. Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype. Cell Cycle 10: 3871-3885.
    • (2011) Cell Cycle , vol.10 , pp. 3871-3885
    • Cufi, S.1    Vazquez-Martin, A.2    Oliveras-Ferraros, C.3    Martin-Castillo, B.4    Vellon, L.5    Menendez, J.A.6
  • 11
    • 84905105766 scopus 로고    scopus 로고
    • The nutritional phenome of EMT-induced cancer stem-like cells
    • 4147299 24994116
    • Cuyas, E., B. Corominas-Faja, and J.A. Menendez. 2014. The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget 5: 3970-3982.
    • (2014) Oncotarget , vol.5 , pp. 3970-3982
    • Cuyas, E.1    Corominas-Faja, B.2    Menendez, J.A.3
  • 12
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
    • 1:CAS:528:DC%2BD1cXnsFSnsg%3D%3D 18177721
    • Deberardinis, R.J., J.J. Lum, G. Hatzivassiliou, and C.B. Thompson. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism 7: 11-20.
    • (2008) Cell Metabolism , vol.7 , pp. 11-20
    • Deberardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 15
    • 77953861522 scopus 로고    scopus 로고
    • Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
    • Eng, C.H., K. Yu, J. Lucas, E. White, and R.T. Abraham. 2010. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Science Signal 3: ra31.
    • (2010) Science Signal , vol.3 , pp. 31
    • Eng, C.H.1    Yu, K.2    Lucas, J.3    White, E.4    Abraham, R.T.5
  • 16
    • 84891747382 scopus 로고    scopus 로고
    • The machinery of macroautophagy
    • 1:CAS:528:DC%2BC2cXps1Sk 24366339
    • Feng, Y., D. He, Z. Yao, and D.J. Klionsky. 2014. The machinery of macroautophagy. Cell Research 24: 24-41.
    • (2014) Cell Research , vol.24 , pp. 24-41
    • Feng, Y.1    He, D.2    Yao, Z.3    Klionsky, D.J.4
  • 17
    • 84923562561 scopus 로고    scopus 로고
    • Metabolic control of autophagy
    • 1:CAS:528:DC%2BC2cXitFOrt7bN 25480292
    • Galluzzi, L., F. Pietrocola, B. Levine, and G. Kroemer. 2014. Metabolic control of autophagy. Cell 159: 1263-1276.
    • (2014) Cell , vol.159 , pp. 1263-1276
    • Galluzzi, L.1    Pietrocola, F.2    Levine, B.3    Kroemer, G.4
  • 19
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • 1:CAS:528:DC%2BC38Xkt1Gnsbw%3D 22424946
    • Han, J.M., S.J. Jeong, M.C. Park, G. Kim, N.H. Kwon, H.K. Kim, S.H. Ha, S.H. Ryu, and S. Kim. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149: 410-424.
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3    Kim, G.4    Kwon, N.H.5    Kim, H.K.6    Ha, S.H.7    Ryu, S.H.8    Kim, S.9
  • 23
    • 84918827750 scopus 로고    scopus 로고
    • Cellular and metabolic functions for autophagy in cancer cells
    • Kenific, C.M., and J. Debnath. 2014. Cellular and metabolic functions for autophagy in cancer cells. Trends in Cell Biology 25: 37-45.
    • (2014) Trends in Cell Biology , vol.25 , pp. 37-45
    • Kenific, C.M.1    Debnath, J.2
  • 25
    • 45049083880 scopus 로고    scopus 로고
    • Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability
    • 1:CAS:528:DC%2BD1cXnsF2qu7w%3D 18495205
    • Kim, M.S., E.G. Jeong, C.H. Ahn, S.S. Kim, S.H. Lee, and N.J. Yoo. 2008. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Human Pathology 39: 1059-1063.
    • (2008) Human Pathology , vol.39 , pp. 1059-1063
    • Kim, M.S.1    Jeong, E.G.2    Ahn, C.H.3    Kim, S.S.4    Lee, S.H.5    Yoo, N.J.6
  • 26
    • 79952749190 scopus 로고    scopus 로고
    • NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha
    • 1:CAS:528:DC%2BC3MXjtFWgtLk%3D 21278237
    • Kim, T.H., E.G. Hur, S.J. Kang, J.A. Kim, D. Thapa, Y.M. Lee, S.K. Ku, Y. Jung, and M.K. Kwak. 2011b. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Research 71: 2260-2275.
    • (2011) Cancer Research , vol.71 , pp. 2260-2275
    • Kim, T.H.1    Hur, E.G.2    Kang, S.J.3    Kim, J.A.4    Thapa, D.5    Lee, Y.M.6    Ku, S.K.7    Jung, Y.8    Kwak, M.K.9
  • 28
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • 1:CAS:528:DC%2BC3cXhtlCjtr%2FM 20965422
    • Kroemer, G., G. Marino, and B. Levine. 2010. Autophagy and the integrated stress response. Molecular Cell 40: 280-293.
    • (2010) Molecular Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 30
    • 84882582836 scopus 로고    scopus 로고
    • Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell
    • 1:CAS:528:DC%2BC3sXhtlKmu7zM 23977005
    • Li, S., C. Mo, Q. Peng, X. Kang, C. Sun, K. Jiang, L. Huang, Y. Lu, J. Sui, X. Qin, and Y. Liu. 2013. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS ONE 8: e71273.
    • (2013) PLoS ONE , vol.8 , pp. 71273
    • Li, S.1    Mo, C.2    Peng, Q.3    Kang, X.4    Sun, C.5    Jiang, K.6    Huang, L.7    Lu, Y.8    Sui, J.9    Qin, X.10    Liu, Y.11
  • 31
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • 1:CAS:528:DC%2BD3cXjslek 10604474
    • Liang, X.H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, and B. Levine. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-676.
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1    Jackson, S.2    Seaman, M.3    Brown, K.4    Kempkes, B.5    Hibshoosh, H.6    Levine, B.7
  • 32
    • 84864805916 scopus 로고    scopus 로고
    • Autophagy and cancer-issues we need to digest
    • Liu, E.Y., and K.M. Ryan. 2012. Autophagy and cancer-issues we need to digest. Journal of Cell Science 125: 2349-2358.
    • (2012) Journal of Cell Science , vol.125 , pp. 2349-2358
    • Liu, E.Y.1    Ryan, K.M.2
  • 33
    • 79956028916 scopus 로고    scopus 로고
    • Ras, autophagy and glycolysis
    • 1:CAS:528:DC%2BC3MXhs1ChtbnK 21467842
    • Lock, R., and J. Debnath. 2011. Ras, autophagy and glycolysis. Cell Cycle 10: 1516-1517.
    • (2011) Cell Cycle , vol.10 , pp. 1516-1517
    • Lock, R.1    Debnath, J.2
  • 34
    • 84897946801 scopus 로고    scopus 로고
    • Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion
    • 1:CAS:528:DC%2BC2cXlvFSmu7o%3D 24513958
    • Lock, R., C.M. Kenific, A.M. Leidal, E. Salas, and J. Debnath. 2014. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discovery 4: 466-479.
    • (2014) Cancer Discovery , vol.4 , pp. 466-479
    • Lock, R.1    Kenific, C.M.2    Leidal, A.M.3    Salas, E.4    Debnath, J.5
  • 36
    • 84880906805 scopus 로고    scopus 로고
    • Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy
    • 1:CAS:528:DC%2BC3sXhvVOnsr7F 23575388
    • Lorin, S., M.J. Tol, C. Bauvy, A. Strijland, C. Pous, A.J. Verhoeven, P. Codogno, and A.J. Meijer. 2013. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9: 850-860.
    • (2013) Autophagy , vol.9 , pp. 850-860
    • Lorin, S.1    Tol, M.J.2    Bauvy, C.3    Strijland, A.4    Pous, C.5    Verhoeven, A.J.6    Codogno, P.7    Meijer, A.J.8
  • 38
    • 12944303650 scopus 로고    scopus 로고
    • Growth factor regulation of autophagy and cell survival in the absence of apoptosis
    • 1:CAS:528:DC%2BD2MXht1emuro%3D 15680329
    • Lum, J.J., D.E. Bauer, M. Kong, M.H. Harris, C. Li, T. Lindsten, and C.B. Thompson. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237-248.
    • (2005) Cell , vol.120 , pp. 237-248
    • Lum, J.J.1    Bauer, D.E.2    Kong, M.3    Harris, M.H.4    Li, C.5    Lindsten, T.6    Thompson, C.B.7
  • 39
    • 79959371914 scopus 로고    scopus 로고
    • Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth
    • 1:CAS:528:DC%2BC3MXotVChtrk%3D 21700219
    • Lv, L., D. Li, D. Zhao, R. Lin, Y. Chu, H. Zhang, Z. Zha, Y. Liu, Z. Li, Y. Xu, G. Wang, Y. Huang, Y. Xiong, K.L. Guan, and Q.Y. Lei. 2011. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell 42: 719-730.
    • (2011) Molecular Cell , vol.42 , pp. 719-730
    • Lv, L.1    Li, D.2    Zhao, D.3    Lin, R.4    Chu, Y.5    Zhang, H.6    Zha, Z.7    Liu, Y.8    Li, Z.9    Xu, Y.10    Wang, G.11    Huang, Y.12    Xiong, Y.13    Guan, K.L.14    Lei, Q.Y.15
  • 40
    • 84869462184 scopus 로고    scopus 로고
    • DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy
    • 1:CAS:528:DC%2BC3sXivFOjsbk%3D 22874565
    • Lv, Q., F. Hua, and Z.W. Hu. 2012. DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 8: 1675-1676.
    • (2012) Autophagy , vol.8 , pp. 1675-1676
    • Lv, Q.1    Hua, F.2    Hu, Z.W.3
  • 41
    • 79959342440 scopus 로고    scopus 로고
    • PKM2 and the tricky balance of growth and energy in cancer
    • 1:CAS:528:DC%2BC3MXotVChtro%3D 21700216
    • Macintyre, A.N., and J.C. Rathmell. 2011. PKM2 and the tricky balance of growth and energy in cancer. Molecular Cell 42: 713-714.
    • (2011) Molecular Cell , vol.42 , pp. 713-714
    • Macintyre, A.N.1    Rathmell, J.C.2
  • 43
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • 1:CAS:528:DC%2BC3MXhtFWlsrfO 21892142
    • Mihaylova, M.M., and R.J. Shaw. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology 13: 1016-1023.
    • (2011) Nature Cell Biology , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 44
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: Lessons from yeast
    • 1:CAS:528:DC%2BD1MXms12msL0%3D 19491929
    • Nakatogawa, H., K. Suzuki, Y. Kamada, and Y. Ohsumi. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology 10: 458-467.
    • (2009) Nature Reviews Molecular Cell Biology , vol.10 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 47
    • 84890850438 scopus 로고    scopus 로고
    • Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells
    • 1:CAS:528:DC%2BC2cXhtFyrur7O 24157892
    • Peng, Y.F., Y.H. Shi, Z.B. Ding, A.W. Ke, C.Y. Gu, B. Hui, J. Zhou, S.J. Qiu, Z. Dai, and J. Fan. 2013. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9: 2056-2068.
    • (2013) Autophagy , vol.9 , pp. 2056-2068
    • Peng, Y.F.1    Shi, Y.H.2    Ding, Z.B.3    Ke, A.W.4    Gu, C.Y.5    Hui, B.6    Zhou, J.7    Qiu, S.J.8    Dai, Z.9    Fan, J.10
  • 48
    • 84905814994 scopus 로고    scopus 로고
    • Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer
    • Poklepovic, A., and D.A. Gewirtz. 2014. Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10: 1478-1480.
    • (2014) Autophagy , vol.10 , pp. 1478-1480
    • Poklepovic, A.1    Gewirtz, D.A.2
  • 53
    • 84894105147 scopus 로고    scopus 로고
    • Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition
    • 1:CAS:528:DC%2BC2cXht1Gnt7g%3D 24462113
    • Roberts, D.J., V.P. Tan-Sah, E.Y. Ding, J.M. Smith, and S. Miyamoto. 2014. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Molecular Cell 53: 521-533.
    • (2014) Molecular Cell , vol.53 , pp. 521-533
    • Roberts, D.J.1    Tan-Sah, V.P.2    Ding, E.Y.3    Smith, J.M.4    Miyamoto, S.5
  • 56
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • 1:CAS:528:DC%2BC3cXmtVWnsLk%3D 20381137
    • Sancak, Y., L. Bar-Peled, R. Zoncu, A.L. Markhard, S. Nada, and D.M. Sabatini. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 64
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
    • 1:CAS:528:DC%2BC38Xhs1GntL7F 23112296
    • Wang, R.C., Y. Wei, Z. An, Z. Zou, G. Xiao, G. Bhagat, M. White, J. Reichelt, and B. Levine. 2012. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: 956-959.
    • (2012) Science , vol.338 , pp. 956-959
    • Wang, R.C.1    Wei, Y.2    An, Z.3    Zou, Z.4    Xiao, G.5    Bhagat, G.6    White, M.7    Reichelt, J.8    Levine, B.9
  • 65
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
    • 1:CAS:528:DC%2BC38Xkt1ylsbc%3D 22439925
    • Ward, P.S., and C.B. Thompson. 2012. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21: 297-308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 66
    • 80052589800 scopus 로고    scopus 로고
    • Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells
    • 1:CAS:528:DC%2BC3MXht12ktbvM 21673231
    • Wittwer, J.A., D. Robbins, F. Wang, S. Codarin, X. Shen, C.G. Kevil, T.T. Huang, H. Van Remmen, A. Richardson, and Y. Zhao. 2011. Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells. Cancer Prevention Research 4: 1476-1484.
    • (2011) Cancer Prevention Research , vol.4 , pp. 1476-1484
    • Wittwer, J.A.1    Robbins, D.2    Wang, F.3    Codarin, S.4    Shen, X.5    Kevil, C.G.6    Huang, T.T.7    Van Remmen, H.8    Richardson, A.9    Zhao, Y.10
  • 68
    • 84894477280 scopus 로고    scopus 로고
    • The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy
    • 1:CAS:528:DC%2BC2cXht1OrtL3K 24351650
    • Yang, Z., J.J. Goronzy, and C.M. Weyand. 2014. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10: 382-383.
    • (2014) Autophagy , vol.10 , pp. 382-383
    • Yang, Z.1    Goronzy, J.J.2    Weyand, C.M.3
  • 69
    • 33845407202 scopus 로고    scopus 로고
    • Atg22 recycles amino acids to link the degradative and recycling functions of autophagy
    • 1:CAS:528:DC%2BD28XhtlWqsLbL 17021250
    • Yang, Z., J. Huang, J. Geng, U. Nair, and D.J. Klionsky. 2006. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Molecular Biology of the Cell 17: 5094-5104.
    • (2006) Molecular Biology of the Cell , vol.17 , pp. 5094-5104
    • Yang, Z.1    Huang, J.2    Geng, J.3    Nair, U.4    Klionsky, D.J.5
  • 71
    • 84894482142 scopus 로고    scopus 로고
    • Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination
    • 1:CAS:528:DC%2BC2cXht1OrtLzP 24321786
    • Zhan, Z., X. Xie, H. Cao, X. Zhou, X.D. Zhang, H. Fan, and Z. Liu. 2014. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10: 257-268.
    • (2014) Autophagy , vol.10 , pp. 257-268
    • Zhan, Z.1    Xie, X.2    Cao, H.3    Zhou, X.4    Zhang, X.D.5    Fan, H.6    Liu, Z.7
  • 72
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • 1:CAS:528:DC%2BC3MXhtlyqu7jE 22053050
    • Zoncu, R., L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D.M. Sabatini. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334: 678-683.
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.