메뉴 건너뛰기




Volumn 36, Issue 3, 2015, Pages 150-160

Dynamic control of type I IFN signalling by an integrated network of negative regulators

Author keywords

Cytokine; Interferon; JAK; SOCS; STAT

Indexed keywords

BETA INTERFERON; CASEIN KINASE IALPHA; COLONY STIMULATING FACTOR 1; CRK LIKE PROTEIN; INDUCIBLE NITRIC OXIDE SYNTHASE; INTERFERON; INTERFERON REGULATORY FACTOR 3; INTERFERON REGULATORY FACTOR 7; JANUS KINASE 1; MITOGEN ACTIVATED PROTEIN KINASE P38; OSTEOCLAST DIFFERENTIATION FACTOR; PROTEIN KINASE R; PROTEIN P53; PROTEIN TYROSINE KINASE; STAT1 PROTEIN; TOLL LIKE RECEPTOR 7; TOLL LIKE RECEPTOR 8; TOLL LIKE RECEPTOR 9; TOLL LIKE RECEPTOR ADAPTOR MOLECULE 1; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 3; CYTOKINE RECEPTOR; INTERLEUKIN DERIVATIVE; MICRORNA; SIGNAL PEPTIDE; SMAD PROTEIN; UBIQUITIN PROTEIN LIGASE;

EID: 84924265294     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.02.002     Document Type: Review
Times cited : (172)

References (114)
  • 1
    • 4344627833 scopus 로고    scopus 로고
    • Type I interferon production enhances susceptibility to Listeria monocytogenes infection
    • O'Connell R.M., et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med. 2004, 200:437-445.
    • (2004) J. Exp. Med. , vol.200 , pp. 437-445
    • O'Connell, R.M.1
  • 2
    • 84887607415 scopus 로고    scopus 로고
    • Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study
    • Rice G.I., et al. Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013, 12:1159-1169.
    • (2013) Lancet Neurol. , vol.12 , pp. 1159-1169
    • Rice, G.I.1
  • 3
    • 80855131332 scopus 로고    scopus 로고
    • The type I interferon system in the etiopathogenesis of autoimmune diseases
    • Ronnblom L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Upsala J. Med. Sci. 2011, 116:227-237.
    • (2011) Upsala J. Med. Sci. , vol.116 , pp. 227-237
    • Ronnblom, L.1
  • 4
    • 38649127218 scopus 로고    scopus 로고
    • Clinical uses of interferons
    • Friedman R.M. Clinical uses of interferons. Br. J. Clin. Pharmacol. 2008, 65:158-162.
    • (2008) Br. J. Clin. Pharmacol. , vol.65 , pp. 158-162
    • Friedman, R.M.1
  • 5
    • 0030886005 scopus 로고    scopus 로고
    • Side effects of alpha interferon in chronic hepatitis C
    • Dusheiko G. Side effects of alpha interferon in chronic hepatitis C. Hepatology 1997, 26:112S-121S.
    • (1997) Hepatology , vol.26 , pp. 112S-121S
    • Dusheiko, G.1
  • 6
    • 17644372733 scopus 로고    scopus 로고
    • IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors
    • Liu Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 2005, 23:275-306.
    • (2005) Annu. Rev. Immunol. , vol.23 , pp. 275-306
    • Liu, Y.J.1
  • 7
    • 84874396777 scopus 로고    scopus 로고
    • Interferon-epsilon protects the female reproductive tract from viral and bacterial infection
    • Fung K.Y., et al. Interferon-epsilon protects the female reproductive tract from viral and bacterial infection. Science 2013, 339:1088-1092.
    • (2013) Science , vol.339 , pp. 1088-1092
    • Fung, K.Y.1
  • 8
    • 0030001830 scopus 로고    scopus 로고
    • Endogenous IFN-alpha beta suppresses colony-stimulating factor (CSF)-1-stimulated macrophage DNA synthesis and mediates inhibitory effects of lipopolysaccharide and TNF-alpha
    • Hamilton J.A., et al. Endogenous IFN-alpha beta suppresses colony-stimulating factor (CSF)-1-stimulated macrophage DNA synthesis and mediates inhibitory effects of lipopolysaccharide and TNF-alpha. J. Immunol. 1996, 156:2553-2557.
    • (1996) J. Immunol. , vol.156 , pp. 2553-2557
    • Hamilton, J.A.1
  • 9
    • 0037129205 scopus 로고    scopus 로고
    • RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta
    • Takayanagi H., et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002, 416:744-749.
    • (2002) Nature , vol.416 , pp. 744-749
    • Takayanagi, H.1
  • 10
    • 84871999134 scopus 로고    scopus 로고
    • P53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs
    • Leonova K.I., et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E89-E98.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E89-E98
    • Leonova, K.I.1
  • 11
    • 27744526416 scopus 로고    scopus 로고
    • Regulation of the type I IFN induction: a current view
    • Honda K., et al. Regulation of the type I IFN induction: a current view. Int. Immunol. 2005, 17:1367-1378.
    • (2005) Int. Immunol. , vol.17 , pp. 1367-1378
    • Honda, K.1
  • 12
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140:805-820.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 13
    • 84893637182 scopus 로고    scopus 로고
    • STING-dependent cytosolic DNA sensing pathways
    • Barber G.N. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 2014, 35:88-93.
    • (2014) Trends Immunol. , vol.35 , pp. 88-93
    • Barber, G.N.1
  • 14
    • 79959344720 scopus 로고    scopus 로고
    • DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells
    • Zhang Z., et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 2011, 34:866-878.
    • (2011) Immunity , vol.34 , pp. 866-878
    • Zhang, Z.1
  • 15
    • 80555133355 scopus 로고    scopus 로고
    • DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells
    • Zhang Z., et al. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J. Immunol. 2011, 187:4501-4508.
    • (2011) J. Immunol. , vol.187 , pp. 4501-4508
    • Zhang, Z.1
  • 16
    • 79955542915 scopus 로고    scopus 로고
    • A diverse range of gene products are effectors of the type I interferon antiviral response
    • Schoggins J.W., et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472:481-485.
    • (2011) Nature , vol.472 , pp. 481-485
    • Schoggins, J.W.1
  • 17
    • 79955509835 scopus 로고    scopus 로고
    • Direct effects of type I interferons on cells of the immune system
    • Hervas-Stubbs S., et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 2011, 17:2619-2627.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 2619-2627
    • Hervas-Stubbs, S.1
  • 18
    • 84874089105 scopus 로고    scopus 로고
    • IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice
    • Conrady C.D., et al. IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal Immunol. 2013, 6:45-55.
    • (2013) Mucosal Immunol. , vol.6 , pp. 45-55
    • Conrady, C.D.1
  • 19
    • 84859417315 scopus 로고    scopus 로고
    • Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing
    • Simmons D.P., et al. Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J. Immunol. 2012, 188:3116-3126.
    • (2012) J. Immunol. , vol.188 , pp. 3116-3126
    • Simmons, D.P.1
  • 20
    • 0033009888 scopus 로고    scopus 로고
    • Natural killer cells in antiviral defense: function and regulation by innate cytokines
    • Biron C.A., et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 1999, 17:189-220.
    • (1999) Annu. Rev. Immunol. , vol.17 , pp. 189-220
    • Biron, C.A.1
  • 21
    • 0036206908 scopus 로고    scopus 로고
    • IFN-alpha/beta enhances BCR-dependent B cell responses
    • Braun D., et al. IFN-alpha/beta enhances BCR-dependent B cell responses. Int. Immunol. 2002, 14:411-419.
    • (2002) Int. Immunol. , vol.14 , pp. 411-419
    • Braun, D.1
  • 22
    • 84861665596 scopus 로고    scopus 로고
    • Role of type I interferons in the activation of autoreactive B cells
    • Kiefer K., et al. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 2012, 90:498-504.
    • (2012) Immunol. Cell Biol. , vol.90 , pp. 498-504
    • Kiefer, K.1
  • 23
    • 84861709318 scopus 로고    scopus 로고
    • Modulation of T-cell function by type I interferon
    • Tough D.F. Modulation of T-cell function by type I interferon. Immunol. Cell Biol. 2012, 90:492-497.
    • (2012) Immunol. Cell Biol. , vol.90 , pp. 492-497
    • Tough, D.F.1
  • 24
    • 0032831735 scopus 로고    scopus 로고
    • Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation
    • Grimley P.M., et al. Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev. 1999, 10:131-157.
    • (1999) Cytokine Growth Factor Rev. , vol.10 , pp. 131-157
    • Grimley, P.M.1
  • 25
    • 0034515268 scopus 로고    scopus 로고
    • Immune response in Stat2 knockout mice
    • Park C., et al. Immune response in Stat2 knockout mice. Immunity 2000, 13:795-804.
    • (2000) Immunity , vol.13 , pp. 795-804
    • Park, C.1
  • 26
    • 33748450379 scopus 로고    scopus 로고
    • Complex modulation of cell type-specific signaling in response to type I interferons
    • van Boxel-Dezaire A.H., et al. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 2006, 25:361-372.
    • (2006) Immunity , vol.25 , pp. 361-372
    • van Boxel-Dezaire, A.H.1
  • 27
    • 0037144598 scopus 로고    scopus 로고
    • STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. Activation of multiple STATS proceeds through the redundant usage of two tyrosine residues
    • Velichko S., et al. STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. Activation of multiple STATS proceeds through the redundant usage of two tyrosine residues. J. Biol. Chem. 2002, 277:35635-35641.
    • (2002) J. Biol. Chem. , vol.277 , pp. 35635-35641
    • Velichko, S.1
  • 28
    • 18844457095 scopus 로고    scopus 로고
    • Mechanisms of type-I- and type-II-interferon-mediated signalling
    • Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5:375-386.
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 375-386
    • Platanias, L.C.1
  • 29
    • 84919341177 scopus 로고    scopus 로고
    • Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes
    • Fish E.N., Platanias L.C. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol. Cancer Res. 2014, 12:1691-1703.
    • (2014) Mol. Cancer Res. , vol.12 , pp. 1691-1703
    • Fish, E.N.1    Platanias, L.C.2
  • 30
    • 34250632829 scopus 로고    scopus 로고
    • Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125
    • Arimoto K., et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7500-7505.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 7500-7505
    • Arimoto, K.1
  • 31
    • 84894559172 scopus 로고    scopus 로고
    • Ubiquitin in the immune system
    • Zinngrebe J., et al. Ubiquitin in the immune system. EMBO Rep. 2014, 15:28-45.
    • (2014) EMBO Rep. , vol.15 , pp. 28-45
    • Zinngrebe, J.1
  • 32
    • 84894545130 scopus 로고    scopus 로고
    • Interferon-inducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication
    • Das A., et al. Interferon-inducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication. J. Virol. 2014, 88:3103-3113.
    • (2014) J. Virol. , vol.88 , pp. 3103-3113
    • Das, A.1
  • 33
    • 77951902675 scopus 로고    scopus 로고
    • NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways
    • Cui J., et al. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 2010, 141:483-496.
    • (2010) Cell , vol.141 , pp. 483-496
    • Cui, J.1
  • 34
    • 84862007380 scopus 로고    scopus 로고
    • Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 deficient mice
    • Tong Y., et al. Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res. 2012, 22:822-835.
    • (2012) Cell Res. , vol.22 , pp. 822-835
    • Tong, Y.1
  • 35
    • 66049088727 scopus 로고    scopus 로고
    • ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response
    • Li Y., et al. ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:7945-7950.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 7945-7950
    • Li, Y.1
  • 36
    • 34548035397 scopus 로고    scopus 로고
    • The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8
    • Tailor P., et al. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 2007, 27:228-239.
    • (2007) Immunity , vol.27 , pp. 228-239
    • Tailor, P.1
  • 37
    • 0033635304 scopus 로고    scopus 로고
    • CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling
    • Hida S., et al. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity 2000, 13:643-655.
    • (2000) Immunity , vol.13 , pp. 643-655
    • Hida, S.1
  • 38
    • 84894515095 scopus 로고    scopus 로고
    • TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity
    • Rajsbaum R., et al. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J. Mol. Biol. 2014, 426:1265-1284.
    • (2014) J. Mol. Biol. , vol.426 , pp. 1265-1284
    • Rajsbaum, R.1
  • 39
    • 0034730713 scopus 로고    scopus 로고
    • Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice
    • Lee E.G., et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000, 289:2350-2354.
    • (2000) Science , vol.289 , pp. 2350-2354
    • Lee, E.G.1
  • 40
    • 3943054838 scopus 로고    scopus 로고
    • De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling
    • Wertz I.E., et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004, 430:694-699.
    • (2004) Nature , vol.430 , pp. 694-699
    • Wertz, I.E.1
  • 41
    • 2442642691 scopus 로고    scopus 로고
    • RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation
    • Meylan E., et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 2004, 5:503-507.
    • (2004) Nat. Immunol. , vol.5 , pp. 503-507
    • Meylan, E.1
  • 42
    • 4944251748 scopus 로고    scopus 로고
    • A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter
    • Wang Y.Y., et al. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett. 2004, 576:86-90.
    • (2004) FEBS Lett. , vol.576 , pp. 86-90
    • Wang, Y.Y.1
  • 43
    • 33644850482 scopus 로고    scopus 로고
    • Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20
    • Lin R., et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J. Biol. Chem. 2006, 281:2095-2103.
    • (2006) J. Biol. Chem. , vol.281 , pp. 2095-2103
    • Lin, R.1
  • 44
    • 84868554937 scopus 로고    scopus 로고
    • TRAF-interacting protein (TRIP) negatively regulates IFN-beta production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1
    • Zhang M., et al. TRAF-interacting protein (TRIP) negatively regulates IFN-beta production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1. J. Exp. Med. 2012, 209:1703-1711.
    • (2012) J. Exp. Med. , vol.209 , pp. 1703-1711
    • Zhang, M.1
  • 45
    • 55549146091 scopus 로고    scopus 로고
    • Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3
    • Zhang M., et al. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res. 2008, 18:1096-1104.
    • (2008) Cell Res. , vol.18 , pp. 1096-1104
    • Zhang, M.1
  • 46
    • 73549097331 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation
    • Nakhaei P., et al. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog. 2009, 5:e1000650.
    • (2009) PLoS Pathog. , vol.5 , pp. e1000650
    • Nakhaei, P.1
  • 47
    • 84894087907 scopus 로고    scopus 로고
    • Ubiquitin-specific proteases 25 negatively regulates virus-induced type I interferon signaling
    • Zhong H., et al. Ubiquitin-specific proteases 25 negatively regulates virus-induced type I interferon signaling. PLoS ONE 2013, 8:e80976.
    • (2013) PLoS ONE , vol.8 , pp. e80976
    • Zhong, H.1
  • 48
    • 83755173110 scopus 로고    scopus 로고
    • Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7
    • Hu Y., et al. Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7. J. Immunol. 2011, 187:6456-6462.
    • (2011) J. Immunol. , vol.187 , pp. 6456-6462
    • Hu, Y.1
  • 49
    • 84884275991 scopus 로고    scopus 로고
    • Negative regulation of Nmi on virus-triggered type I IFN production by targeting IRF7
    • Wang J., et al. Negative regulation of Nmi on virus-triggered type I IFN production by targeting IRF7. J. Immunol. 2013, 191:3393-3399.
    • (2013) J. Immunol. , vol.191 , pp. 3393-3399
    • Wang, J.1
  • 50
    • 70449726455 scopus 로고    scopus 로고
    • PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4
    • You F., et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat. Immunol. 2009, 10:1300-1308.
    • (2009) Nat. Immunol. , vol.10 , pp. 1300-1308
    • You, F.1
  • 51
    • 84875416974 scopus 로고    scopus 로고
    • OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7
    • Lee M.S., et al. OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat. Immunol. 2013, 14:346-355.
    • (2013) Nat. Immunol. , vol.14 , pp. 346-355
    • Lee, M.S.1
  • 52
    • 84887280855 scopus 로고    scopus 로고
    • DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling
    • Ma Z., et al. DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling. PLoS Pathog. 2013, 9:e1003721.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003721
    • Ma, Z.1
  • 53
    • 84879581597 scopus 로고    scopus 로고
    • A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response
    • e00385-e00313
    • Li J., et al. A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. MBio 2013, 4. e00385-e00313.
    • (2013) MBio , vol.4
    • Li, J.1
  • 54
    • 84859207428 scopus 로고    scopus 로고
    • Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways
    • Sugiyama Y., et al. Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways. Int. Immunol. 2012, 24:253-265.
    • (2012) Int. Immunol. , vol.24 , pp. 253-265
    • Sugiyama, Y.1
  • 55
    • 34547116656 scopus 로고    scopus 로고
    • Type I interferon receptors: biochemistry and biological functions
    • de Weerd N.A., et al. Type I interferon receptors: biochemistry and biological functions. J. Biol. Chem. 2007, 282:20053-20057.
    • (2007) J. Biol. Chem. , vol.282 , pp. 20053-20057
    • de Weerd, N.A.1
  • 56
    • 0035863894 scopus 로고    scopus 로고
    • The soluble murine type I interferon receptor Ifnar-2 is present in serum, is independently regulated, and has both agonistic and antagonistic properties
    • Hardy M.P., et al. The soluble murine type I interferon receptor Ifnar-2 is present in serum, is independently regulated, and has both agonistic and antagonistic properties. Blood 2001, 97:473-482.
    • (2001) Blood , vol.97 , pp. 473-482
    • Hardy, M.P.1
  • 57
    • 84899538452 scopus 로고    scopus 로고
    • Soluble IFN receptor potentiates in vivo type I IFN signaling and exacerbates TLR4-mediated septic shock
    • Samarajiwa S.A., et al. Soluble IFN receptor potentiates in vivo type I IFN signaling and exacerbates TLR4-mediated septic shock. J. Immunol. 2014, 192:4425-4435.
    • (2014) J. Immunol. , vol.192 , pp. 4425-4435
    • Samarajiwa, S.A.1
  • 58
    • 33745523440 scopus 로고    scopus 로고
    • TYK2 activity promotes ligand-induced IFNAR1 proteolysis
    • Marijanovic Z., et al. TYK2 activity promotes ligand-induced IFNAR1 proteolysis. Biochem. J. 2006, 397:31-38.
    • (2006) Biochem. J. , vol.397 , pp. 31-38
    • Marijanovic, Z.1
  • 59
    • 79251574143 scopus 로고    scopus 로고
    • Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2
    • Zheng H., et al. Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2. Mol. Cell. Biol. 2011, 31:710-720.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 710-720
    • Zheng, H.1
  • 60
    • 77449148723 scopus 로고    scopus 로고
    • Inducible priming phosphorylation promotes ligand-independent degradation of the IFNAR1 chain of type I interferon receptor
    • Bhattacharya S., et al. Inducible priming phosphorylation promotes ligand-independent degradation of the IFNAR1 chain of type I interferon receptor. J. Biol. Chem. 2010, 285:2318-2325.
    • (2010) J. Biol. Chem. , vol.285 , pp. 2318-2325
    • Bhattacharya, S.1
  • 61
    • 58249084172 scopus 로고    scopus 로고
    • Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor
    • Liu J., et al. Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor. Cell Host Microbe 2009, 5:72-83.
    • (2009) Cell Host Microbe , vol.5 , pp. 72-83
    • Liu, J.1
  • 62
    • 33745761009 scopus 로고    scopus 로고
    • UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity
    • Malakhova O.A., et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 2006, 25:2358-2367.
    • (2006) EMBO J. , vol.25 , pp. 2358-2367
    • Malakhova, O.A.1
  • 63
    • 84865585154 scopus 로고    scopus 로고
    • USP18 establishes the transcriptional and anti-proliferative interferon alpha/beta differential
    • Francois-Newton V., et al. USP18 establishes the transcriptional and anti-proliferative interferon alpha/beta differential. Biochem. J. 2012, 446:509-516.
    • (2012) Biochem. J. , vol.446 , pp. 509-516
    • Francois-Newton, V.1
  • 64
    • 79960313095 scopus 로고    scopus 로고
    • USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response
    • Francois-Newton V., et al. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response. PLoS ONE 2011, 6:e22200.
    • (2011) PLoS ONE , vol.6 , pp. e22200
    • Francois-Newton, V.1
  • 65
    • 84897519046 scopus 로고    scopus 로고
    • Molecular characterization of ubiquitin-specific protease 18 reveals substrate specificity for interferon-stimulated gene 15
    • Basters A., et al. Molecular characterization of ubiquitin-specific protease 18 reveals substrate specificity for interferon-stimulated gene 15. FEBS J. 2014, 281:1918-1928.
    • (2014) FEBS J. , vol.281 , pp. 1918-1928
    • Basters, A.1
  • 66
    • 33846603312 scopus 로고    scopus 로고
    • IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses
    • Lenschow D.J., et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1371-1376.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 1371-1376
    • Lenschow, D.J.1
  • 67
    • 44349109098 scopus 로고    scopus 로고
    • Interferon signaling and treatment outcome in chronic hepatitis C
    • Sarasin-Filipowicz M., et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7034-7039.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7034-7039
    • Sarasin-Filipowicz, M.1
  • 68
    • 84922880395 scopus 로고    scopus 로고
    • Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation
    • Zhang X., et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 2015, 517:89-93.
    • (2015) Nature , vol.517 , pp. 89-93
    • Zhang, X.1
  • 69
    • 84905049001 scopus 로고    scopus 로고
    • Contribution of increased ISG15, ISGylation and deregulated type I IFN signaling in Usp18 mutant mice during the course of bacterial infections
    • Dauphinee S.M., et al. Contribution of increased ISG15, ISGylation and deregulated type I IFN signaling in Usp18 mutant mice during the course of bacterial infections. Genes Immun. 2014, 15:282-292.
    • (2014) Genes Immun. , vol.15 , pp. 282-292
    • Dauphinee, S.M.1
  • 70
    • 0032980574 scopus 로고    scopus 로고
    • Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway
    • You M., et al. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell. Biol. 1999, 19:2416-2424.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2416-2424
    • You, M.1
  • 71
    • 0028972719 scopus 로고
    • Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1
    • David M., et al. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol. 1995, 15:7050-7058.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 7050-7058
    • David, M.1
  • 72
    • 15044343929 scopus 로고    scopus 로고
    • Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP
    • Bourdeau A., et al. Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr. Opin. Cell Biol. 2005, 17:203-209.
    • (2005) Curr. Opin. Cell Biol. , vol.17 , pp. 203-209
    • Bourdeau, A.1
  • 73
    • 0035930501 scopus 로고    scopus 로고
    • TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B
    • Myers M.P., et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem. 2001, 276:47771-47774.
    • (2001) J. Biol. Chem. , vol.276 , pp. 47771-47774
    • Myers, M.P.1
  • 74
    • 0036006288 scopus 로고    scopus 로고
    • The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3
    • Simoncic P.D., et al. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr. Biol. 2002, 12:446-453.
    • (2002) Curr. Biol. , vol.12 , pp. 446-453
    • Simoncic, P.D.1
  • 75
    • 0036318564 scopus 로고    scopus 로고
    • Identification of a nuclear Stat1 protein tyrosine phosphatase
    • ten Hoeve J., et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 2002, 22:5662-5668.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 5662-5668
    • ten Hoeve, J.1
  • 76
    • 46749119743 scopus 로고    scopus 로고
    • Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages
    • Xu H., et al. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol. Immunol. 2008, 45:3545-3552.
    • (2008) Mol. Immunol. , vol.45 , pp. 3545-3552
    • Xu, H.1
  • 77
    • 0032567353 scopus 로고    scopus 로고
    • The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities
    • Song M.M., Shuai K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 1998, 273:35056-35062.
    • (1998) J. Biol. Chem. , vol.273 , pp. 35056-35062
    • Song, M.M.1    Shuai, K.2
  • 78
    • 0032170490 scopus 로고    scopus 로고
    • A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons
    • Sakamoto H., et al. A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons. Blood 1998, 92:1668-1676.
    • (1998) Blood , vol.92 , pp. 1668-1676
    • Sakamoto, H.1
  • 79
    • 84895551972 scopus 로고    scopus 로고
    • SOCS3, a Major Regulator of Infection and Inflammation
    • Carow B., Rottenberg M.E. SOCS3, a Major Regulator of Infection and Inflammation. Front. Immunol. 2014, 5:58.
    • (2014) Front. Immunol. , vol.5 , pp. 58
    • Carow, B.1    Rottenberg, M.E.2
  • 80
    • 0032564463 scopus 로고    scopus 로고
    • Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1
    • Starr R., et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:14395-14399.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 14395-14399
    • Starr, R.1
  • 81
    • 0033520326 scopus 로고    scopus 로고
    • SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine
    • Alexander W.S., et al. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 1999, 98:597-608.
    • (1999) Cell , vol.98 , pp. 597-608
    • Alexander, W.S.1
  • 82
    • 29244442569 scopus 로고    scopus 로고
    • Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity
    • Fenner J.E., et al. Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity. Nat. Immunol. 2006, 7:33-39.
    • (2006) Nat. Immunol. , vol.7 , pp. 33-39
    • Fenner, J.E.1
  • 83
    • 84883146392 scopus 로고    scopus 로고
    • Structural basis of a unique interferon-beta signaling axis mediated via the receptor IFNAR1
    • de Weerd N.A., et al. Structural basis of a unique interferon-beta signaling axis mediated via the receptor IFNAR1. Nat. Immunol. 2013, 14:901-907.
    • (2013) Nat. Immunol. , vol.14 , pp. 901-907
    • de Weerd, N.A.1
  • 84
    • 80053210241 scopus 로고    scopus 로고
    • Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon alpha receptor (IFNAR1)-associated tyrosine kinase Tyk2
    • Piganis R.A., et al. Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon alpha receptor (IFNAR1)-associated tyrosine kinase Tyk2. J. Biol. Chem. 2011, 286:33811-33818.
    • (2011) J. Biol. Chem. , vol.286 , pp. 33811-33818
    • Piganis, R.A.1
  • 85
    • 84885869823 scopus 로고    scopus 로고
    • IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage
    • Cheon H., et al. IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013, 32:2751-2763.
    • (2013) EMBO J. , vol.32 , pp. 2751-2763
    • Cheon, H.1
  • 86
    • 23444461182 scopus 로고    scopus 로고
    • Regulation of gene-activation pathways by PIAS proteins in the immune system
    • Shuai K., Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat. Rev. Immunol. 2005, 5:593-605.
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 593-605
    • Shuai, K.1    Liu, B.2
  • 87
    • 4644367257 scopus 로고    scopus 로고
    • PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity
    • Liu B., et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat. Immunol. 2004, 5:891-898.
    • (2004) Nat. Immunol. , vol.5 , pp. 891-898
    • Liu, B.1
  • 88
    • 34547423214 scopus 로고    scopus 로고
    • Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation
    • Tahk S., et al. Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:11643-11648.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 11643-11648
    • Tahk, S.1
  • 89
    • 79953149320 scopus 로고    scopus 로고
    • PIASy inhibits virus-induced and interferon-stimulated transcription through distinct mechanisms
    • Kubota T., et al. PIASy inhibits virus-induced and interferon-stimulated transcription through distinct mechanisms. J. Biol. Chem. 2011, 286:8165-8175.
    • (2011) J. Biol. Chem. , vol.286 , pp. 8165-8175
    • Kubota, T.1
  • 90
    • 0027361463 scopus 로고
    • Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development
    • Matsuyama T., et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 1993, 75:83-97.
    • (1993) Cell , vol.75 , pp. 83-97
    • Matsuyama, T.1
  • 91
    • 0036694610 scopus 로고    scopus 로고
    • Type I interferons and autoimmunity: lessons from the clinic and from IRF-2-deficient mice
    • Taki S. Type I interferons and autoimmunity: lessons from the clinic and from IRF-2-deficient mice. Cytokine Growth Factor Rev. 2002, 13:379-391.
    • (2002) Cytokine Growth Factor Rev. , vol.13 , pp. 379-391
    • Taki, S.1
  • 92
    • 0035061538 scopus 로고    scopus 로고
    • IRF family of transcription factors as regulators of host defense
    • Taniguchi T., et al. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 2001, 19:623-655.
    • (2001) Annu. Rev. Immunol. , vol.19 , pp. 623-655
    • Taniguchi, T.1
  • 93
    • 84871295536 scopus 로고    scopus 로고
    • Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses
    • Sharma B., et al. Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses. J. Biol. Chem. 2012, 287:42352-42360.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42352-42360
    • Sharma, B.1
  • 94
    • 0031014063 scopus 로고    scopus 로고
    • Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR
    • Benkirane M., et al. Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J. 1997, 16:611-624.
    • (1997) EMBO J. , vol.16 , pp. 611-624
    • Benkirane, M.1
  • 95
    • 0028815704 scopus 로고
    • Regulation of the interferon-induced PKR: can viruses cope?
    • Katze M.G. Regulation of the interferon-induced PKR: can viruses cope?. Trends Microbiol. 1995, 3:75-78.
    • (1995) Trends Microbiol. , vol.3 , pp. 75-78
    • Katze, M.G.1
  • 96
    • 0032930054 scopus 로고    scopus 로고
    • Double-stranded RNA-activated protein kinase (PKR) is negatively regulated by 60S ribosomal subunit protein L18
    • Kumar K.U., et al. Double-stranded RNA-activated protein kinase (PKR) is negatively regulated by 60S ribosomal subunit protein L18. Mol. Cell. Biol. 1999, 19:1116-1125.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 1116-1125
    • Kumar, K.U.1
  • 97
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek A.K., et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 2013, 498:236-240.
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1
  • 98
    • 84856480470 scopus 로고    scopus 로고
    • Stochastic expression of the interferon-beta gene
    • Zhao M., et al. Stochastic expression of the interferon-beta gene. PLoS Biol. 2012, 10:e1001249.
    • (2012) PLoS Biol. , vol.10 , pp. e1001249
    • Zhao, M.1
  • 99
    • 0031310825 scopus 로고    scopus 로고
    • The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome
    • Kim T.K., Maniatis T. The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome. Mol. Cell 1997, 1:119-129.
    • (1997) Mol. Cell , vol.1 , pp. 119-129
    • Kim, T.K.1    Maniatis, T.2
  • 100
    • 0028864798 scopus 로고
    • A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses
    • Hwang S.Y., et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:11284-11288.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 11284-11288
    • Hwang, S.Y.1
  • 101
    • 84879582579 scopus 로고    scopus 로고
    • Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway
    • Weiss G., et al. Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway. MBio 2013, 4:e00609-e00612.
    • (2013) MBio , vol.4 , pp. e00609-e00612
    • Weiss, G.1
  • 102
    • 84872395405 scopus 로고    scopus 로고
    • Hormonal contraceptive use and risk of HIV-1 disease progression
    • Heffron R., et al. Hormonal contraceptive use and risk of HIV-1 disease progression. AIDS 2013, 27:261-267.
    • (2013) AIDS , vol.27 , pp. 261-267
    • Heffron, R.1
  • 103
    • 84919377990 scopus 로고    scopus 로고
    • Negative regulation of the interferon response by an interferon-induced long non-coding RNA
    • Kambara H., et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014, 42:10668-10680.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 10668-10680
    • Kambara, H.1
  • 104
    • 35349009932 scopus 로고    scopus 로고
    • Interferon modulation of cellular microRNAs as an antiviral mechanism
    • Pedersen I.M., et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449:919-922.
    • (2007) Nature , vol.449 , pp. 919-922
    • Pedersen, I.M.1
  • 106
    • 77951932396 scopus 로고    scopus 로고
    • MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response
    • Witwer K.W., et al. MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J. Immunol. 2010, 184:2369-2376.
    • (2010) J. Immunol. , vol.184 , pp. 2369-2376
    • Witwer, K.W.1
  • 107
    • 84868524688 scopus 로고    scopus 로고
    • MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha
    • Li Y., et al. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha. Cell. Mol. Immunol. 2012, 9:497-502.
    • (2012) Cell. Mol. Immunol. , vol.9 , pp. 497-502
    • Li, Y.1
  • 108
    • 78049285751 scopus 로고    scopus 로고
    • IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis
    • Yang C.H., et al. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res. 2010, 70:8108-8116.
    • (2010) Cancer Res. , vol.70 , pp. 8108-8116
    • Yang, C.H.1
  • 109
    • 68149165370 scopus 로고    scopus 로고
    • MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2
    • Hou J., et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol. 2009, 183:2150-2158.
    • (2009) J. Immunol. , vol.183 , pp. 2150-2158
    • Hou, J.1
  • 110
    • 84880688712 scopus 로고    scopus 로고
    • MiR-19a: an effective regulator of SOCS3 and enhancer of JAK-STAT signalling
    • Collins A.S., et al. miR-19a: an effective regulator of SOCS3 and enhancer of JAK-STAT signalling. PLoS ONE 2013, 8:e69090.
    • (2013) PLoS ONE , vol.8 , pp. e69090
    • Collins, A.S.1
  • 111
    • 84873699642 scopus 로고    scopus 로고
    • MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1
    • Li A., et al. MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1. Int. J. Biochem. Cell Biol. 2013, 45:858-865.
    • (2013) Int. J. Biochem. Cell Biol. , vol.45 , pp. 858-865
    • Li, A.1
  • 112
    • 79960561028 scopus 로고    scopus 로고
    • Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells
    • Su C., et al. Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virol. J. 2011, 8:354.
    • (2011) Virol. J. , vol.8 , pp. 354
    • Su, C.1
  • 113
    • 84867584246 scopus 로고    scopus 로고
    • MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1
    • Yao R., et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS ONE 2012, 7:e46082.
    • (2012) PLoS ONE , vol.7 , pp. e46082
    • Yao, R.1
  • 114
    • 84922532533 scopus 로고    scopus 로고
    • Long non-coding RNAs in the regulation of the immune response
    • Heward J.A., Lindsay M.A. Long non-coding RNAs in the regulation of the immune response. Trends Immunol. 2014, 35:408-419.
    • (2014) Trends Immunol. , vol.35 , pp. 408-419
    • Heward, J.A.1    Lindsay, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.