메뉴 건너뛰기




Volumn , Issue , 2012, Pages 63-82

Mitochondria in cardiac disease

Author keywords

[No Author keywords available]

Indexed keywords

CARDIAC DISEASE;

EID: 84922276117     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-61779-891-7_3     Document Type: Chapter
Times cited : (1)

References (135)
  • 1
    • 51649107318 scopus 로고    scopus 로고
    • Crystal structure of bovine mitochondrial factor B at 0.96-A resolution
    • Lee JK, Belogrudov GI, Stroud RM. Crystal structure of bovine mitochondrial factor B at 0.96-A resolution. Proc Natl Acad Sci USA. 2008;105(36):13379-84.
    • (2008) Proc Natl Acad Sci USA. , vol.105 , Issue.36 , pp. 13379-13384
    • Lee, J.K.1    Belogrudov, G.I.2    Stroud, R.M.3
  • 3
    • 0032407654 scopus 로고    scopus 로고
    • Cardiolipins and mitochondrial proton-selective leakage
    • Hoch FL. Cardiolipins and mitochondrial proton-selective leakage. J Bioenerg Biomembr. 1998;30(6):511-32.
    • (1998) J Bioenerg Biomembr. , vol.30 , Issue.6 , pp. 511-532
    • Hoch, F.L.1
  • 4
    • 4644273159 scopus 로고    scopus 로고
    • The modulation in subunits e and g amounts of yeast ATP synthase modi fi es mitochondrial cristae morphology
    • Arselin G, Vaillier J, Salin B, et al. The modulation in subunits e and g amounts of yeast ATP synthase modi fi es mitochondrial cristae morphology. J Biol Chem. 2004;279(39):40392-9.
    • (2004) J Biol Chem. , vol.279 , Issue.39 , pp. 40392-40399
    • Arselin, G.1    Vaillier, J.2    Salin, B.3
  • 5
    • 24644520358 scopus 로고    scopus 로고
    • Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis
    • Minauro-Sanmiguel F, Wilkens S, Garcia JJ. Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc Natl Acad Sci USA. 2005;102(35):12356-8.
    • (2005) Proc Natl Acad Sci USA. , vol.102 , Issue.35 , pp. 12356-12358
    • Minauro-Sanmiguel, F.1    Wilkens, S.2    Garcia, J.J.3
  • 6
    • 50949108782 scopus 로고    scopus 로고
    • Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat
    • Lesnefsky EJ, Hoppel CL. Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Biochim Biophys Acta. 2008;1777(7-8):1020-7.
    • (2008) Biochim Biophys Acta. , vol.1777 , Issue.7-8 , pp. 1020-1027
    • Lesnefsky, E.J.1    Hoppel, C.L.2
  • 7
    • 67349137486 scopus 로고    scopus 로고
    • Enhanced modi fi cation of cardiolipin during ischemia in the aged heart
    • Lesnefsky EJ, Minkler P, Hoppel CL. Enhanced modi fi cation of cardiolipin during ischemia in the aged heart. J Mol Cell Cardiol. 2009;46(6):1008-15.
    • (2009) J Mol Cell Cardiol. , vol.46 , Issue.6 , pp. 1008-1015
    • Lesnefsky, E.J.1    Minkler, P.2    Hoppel, C.L.3
  • 9
    • 78650736695 scopus 로고    scopus 로고
    • Mitochondrial longevity pathways
    • Raffaello A, Rizzuto R. Mitochondrial longevity pathways. Biochim Biophys Acta. 2010;1813(1): 260-8.
    • (2010) Biochim Biophys Acta. , vol.1813 , Issue.1 , pp. 260-268
    • Raffaello, A.1    Rizzuto, R.2
  • 10
    • 0036903625 scopus 로고    scopus 로고
    • Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state
    • Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J. 2002;368(Pt 2):545-53.
    • (2002) Biochem J. , vol.368 , pp. 545-553
    • Kushnareva, Y.1    Murphy, A.N.2    Andreyev, A.3
  • 11
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: central role of complex III
    • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027-31.
    • (2003) J Biol Chem. , vol.278 , Issue.38 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 12
    • 58149381936 scopus 로고    scopus 로고
    • Mitochondrial production of reactive oxygen species: role of complex I and quinone analogues
    • Fato R, Bergamini C, Leoni S, Lenaz G. Mitochondrial production of reactive oxygen species: role of complex I and quinone analogues. Biofactors. 2008;32(1-4):31-9.
    • (2008) Biofactors. , vol.32 , Issue.1-4 , pp. 31-39
    • Fato, R.1    Bergamini, C.2    Leoni, S.3    Lenaz, G.4
  • 13
    • 0037424245 scopus 로고    scopus 로고
    • Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production
    • Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003;278(10):8516-25.
    • (2003) J Biol Chem. , vol.278 , Issue.10 , pp. 8516-8525
    • Li, N.1    Ragheb, K.2    Lawler, G.3
  • 14
    • 67349203932 scopus 로고    scopus 로고
    • Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species
    • Fato R, Bergamini C, Bortolus M, et al. Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta. 2009;1787(5):384-92.
    • (2009) Biochim Biophys Acta. , vol.1787 , Issue.5 , pp. 384-392
    • Fato, R.1    Bergamini, C.2    Bortolus, M.3
  • 16
    • 33750503465 scopus 로고    scopus 로고
    • The single subunit NADH dehydrogenase reduces generation of reactive oxygen species from complex I
    • Seo BB, Marella M, Yagi T, Matsuno-Yagi A. The single subunit NADH dehydrogenase reduces generation of reactive oxygen species from complex I. FEBS Lett. 2006;580(26):6105-8.
    • (2006) FEBS Lett. , vol.580 , Issue.26 , pp. 6105-6108
    • Seo, B.B.1    Marella, M.2    Yagi, T.3    Matsuno-Yagi, A.4
  • 17
    • 79951976630 scopus 로고    scopus 로고
    • Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury
    • Perry CN, Huang C, Liu W, Magee N, Carreira RS, Gottlieb RA. Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury. PLoS One. 2011;6(2):e16288.
    • (2011) PLoS One. , vol.6 , Issue.2
    • Perry, C.N.1    Huang, C.2    Liu, W.3    Magee, N.4    Carreira, R.S.5    Gottlieb, R.A.6
  • 18
    • 80054978144 scopus 로고    scopus 로고
    • Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury
    • Camara AK, Bienengraeber M, Stowe DF. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol. 2011;2:13.
    • (2011) Front Physiol. , vol.2 , pp. 13
    • Camara, A.K.1    Bienengraeber, M.2    Stowe, D.F.3
  • 19
    • 0021322138 scopus 로고
    • Thermogenic mechanisms in brown fat
    • Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev. 1984;64(1): 1-64.
    • (1984) Physiol Rev. , vol.64 , Issue.1 , pp. 1-64
    • Nicholls, D.G.1    Locke, R.M.2
  • 20
    • 0036932298 scopus 로고    scopus 로고
    • The mitochondrial uncoupling proteins
    • REVIEWS3015.
    • Ledesma A, de Lacoba MG, Rial E. The mitochondrial uncoupling proteins. Genome Biol. 2002;3(12):REVIEWS3015.
    • (2002) Genome Biol. , vol.3 , Issue.12
    • Ledesma, A.1    de Lacoba, M.G.2    Rial, E.3
  • 21
    • 33746640458 scopus 로고    scopus 로고
    • Mitochondrial uncoupling: a key contributor to reduced cardiac ef fi ciency in diabetes
    • Boudina S, Abel ED. Mitochondrial uncoupling: a key contributor to reduced cardiac ef fi ciency in diabetes. Physiology (Bethesda). 2006;21:250-8.
    • (2006) Physiology (Bethesda). , vol.21 , pp. 250-258
    • Boudina, S.1    Abel, E.D.2
  • 22
    • 38949135755 scopus 로고    scopus 로고
    • Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome
    • Bugger H, Abel ED. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond). 2008;114(3):195-210.
    • (2008) Clin Sci (Lond). , vol.114 , Issue.3 , pp. 195-210
    • Bugger, H.1    Abel, E.D.2
  • 23
    • 67349117275 scopus 로고    scopus 로고
    • What is the mitochondrial permeability transition pore?
    • Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 2009;46(6):821-31.
    • (2009) J Mol Cell Cardiol. , vol.46 , Issue.6 , pp. 821-831
    • Halestrap, A.P.1
  • 24
    • 0842307483 scopus 로고    scopus 로고
    • The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore
    • Kokoszka JE, Waymire KG, Levy SE, et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004;427(6973):461-5.
    • (2004) Nature. , vol.427 , Issue.6973 , pp. 461-465
    • Kokoszka, J.E.1    Waymire, K.G.2    Levy, S.E.3
  • 25
    • 34247895697 scopus 로고    scopus 로고
    • Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death
    • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol. 2007;9(5):550-5.
    • (2007) Nat Cell Biol. , vol.9 , Issue.5 , pp. 550-555
    • Baines, C.P.1    Kaiser, R.A.2    Sheiko, T.3    Craigen, W.J.4    Molkentin, J.D.5
  • 26
    • 15844375853 scopus 로고    scopus 로고
    • Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death
    • Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658-62.
    • (2005) Nature. , vol.434 , Issue.7033 , pp. 658-662
    • Baines, C.P.1    Kaiser, R.A.2    Purcell, N.H.3
  • 27
    • 33646255246 scopus 로고    scopus 로고
    • The mitochondrial permeability transition from in vitro artifact to disease target
    • Bernardi P, Krauskopf A, Basso E, et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273(10):2077-99.
    • (2006) FEBS J. , vol.273 , Issue.10 , pp. 2077-2099
    • Bernardi, P.1    Krauskopf, A.2    Basso, E.3
  • 28
    • 77955955395 scopus 로고    scopus 로고
    • A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection
    • Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010;38(4):841-60.
    • (2010) Biochem Soc Trans. , vol.38 , Issue.4 , pp. 841-860
    • Halestrap, A.P.1
  • 29
    • 79957964641 scopus 로고    scopus 로고
    • The mitochondrial permeability transition pore and cyclophilin D in cardioprotection
    • Di Lisa F, Carpi A, Giorgio V, Bernardi P. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochim Biophys Acta. 2011;1813(7):1316-22.
    • (2011) Biochim Biophys Acta. , vol.1813 , Issue.7 , pp. 1316-1322
    • Di Lisa, F.1    Carpi, A.2    Giorgio, V.3    Bernardi, P.4
  • 30
    • 67649297963 scopus 로고    scopus 로고
    • Cardioprotection: a radical view Free radicals in pre and postconditioning
    • Penna C, Mancardi D, Rastaldo R, Pagliaro P. Cardioprotection: a radical view Free radicals in pre and postconditioning. Biochim Biophys Acta. 2009;1787(7):781-93.
    • (2009) Biochim Biophys Acta. , vol.1787 , Issue.7 , pp. 781-793
    • Penna, C.1    Mancardi, D.2    Rastaldo, R.3    Pagliaro, P.4
  • 31
    • 77953704724 scopus 로고    scopus 로고
    • Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells
    • Carreira RS, Lee Y, Ghochani M, Gustafsson AB, Gottlieb RA. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy. 2010;6(4):462-72.
    • (2010) Autophagy. , vol.6 , Issue.4 , pp. 462-472
    • Carreira, R.S.1    Lee, Y.2    Ghochani, M.3    Gustafsson, A.B.4    Gottlieb, R.A.5
  • 32
    • 0034616945 scopus 로고    scopus 로고
    • Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition
    • Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1):33-42.
    • (2000) Cell. , vol.102 , Issue.1 , pp. 33-42
    • Du, C.1    Fang, M.2    Li, Y.3    Li, L.4    Wang, X.5
  • 33
    • 0030581151 scopus 로고    scopus 로고
    • Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c
    • Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147-57.
    • (1996) Cell. , vol.86 , Issue.1 , pp. 147-157
    • Liu, X.1    Kim, C.N.2    Yang, J.3    Jemmerson, R.4    Wang, X.5
  • 35
    • 77952671613 scopus 로고    scopus 로고
    • Signal transduction to the permeability transition pore
    • Rasola A, Sciacovelli M, Pantic B, Bernardi P. Signal transduction to the permeability transition pore. FEBS Lett. 2010;584(10):1989-96.
    • (2010) FEBS Lett. , vol.584 , Issue.10 , pp. 1989-1996
    • Rasola, A.1    Sciacovelli, M.2    Pantic, B.3    Bernardi, P.4
  • 36
    • 33745628317 scopus 로고    scopus 로고
    • Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors
    • Brady NR, Hamacher-Brady A, Gottlieb RA. Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta. 2006;1757(5-6):667-78.
    • (2006) Biochim Biophys Acta. , vol.1757 , Issue.5-6 , pp. 667-678
    • Brady, N.R.1    Hamacher-Brady, A.2    Gottlieb, R.A.3
  • 37
    • 33745684904 scopus 로고    scopus 로고
    • Mitochondrial ROS-induced ROS release: an update and review
    • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006;1757(5-6):509-17.
    • (2006) Biochim Biophys Acta. , vol.1757 , Issue.5-6 , pp. 509-517
    • Zorov, D.B.1    Juhaszova, M.2    Sollott, S.J.3
  • 38
    • 0034083227 scopus 로고    scopus 로고
    • Role of oxidative stress in cardiovascular diseases
    • Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6):655-73.
    • (2000) J Hypertens. , vol.18 , Issue.6 , pp. 655-673
    • Dhalla, N.S.1    Temsah, R.M.2    Netticadan, T.3
  • 39
    • 62249162170 scopus 로고    scopus 로고
    • The mitochondrial permeability transition pore and ischemia-reperfusion injury
    • Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol. 2009;104(2):181-8.
    • (2009) Basic Res Cardiol. , vol.104 , Issue.2 , pp. 181-188
    • Baines, C.P.1
  • 41
    • 77956605222 scopus 로고    scopus 로고
    • Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease
    • Cadenas S, Aragones J, Landazuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res. 2010;88(2):219-28.
    • (2010) Cardiovasc Res. , vol.88 , Issue.2 , pp. 219-228
    • Cadenas, S.1    Aragones, J.2    Landazuri, M.O.3
  • 42
    • 68649090703 scopus 로고    scopus 로고
    • The role of the mitochondrial permeability transition pore in heart disease
    • Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta. 2009;1787(11):1402-15.
    • (2009) Biochim Biophys Acta. , vol.1787 , Issue.11 , pp. 1402-1415
    • Halestrap, A.P.1    Pasdois, P.2
  • 43
    • 8844235617 scopus 로고    scopus 로고
    • The mitochondrial death pathway and cardiac myocyte apoptosis
    • Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 2004;95(10):957-70.
    • (2004) Circ Res. , vol.95 , Issue.10 , pp. 957-970
    • Crow, M.T.1    Mani, K.2    Nam, Y.J.3    Kitsis, R.N.4
  • 44
    • 0034767019 scopus 로고    scopus 로고
    • Caspase-dependent and serine protease-dependent DNA fragmentation of myocytes in the ischemia-reperfused rabbit heart: these inhibitors do not reduce infarct size
    • Minatoguchi S, Kariya T, Uno Y, et al. Caspase-dependent and serine protease-dependent DNA fragmentation of myocytes in the ischemia-reperfused rabbit heart: these inhibitors do not reduce infarct size. Jpn Circ J. 2001;65(10):907-11.
    • (2001) Jpn Circ J. , vol.65 , Issue.10 , pp. 907-911
    • Minatoguchi, S.1    Kariya, T.2    Uno, Y.3
  • 45
    • 67650673384 scopus 로고    scopus 로고
    • Mitochondria and reperfusion injury of the heart-a holey death but not beyond salvation
    • Halestrap AP. Mitochondria and reperfusion injury of the heart-a holey death but not beyond salvation. J Bioenerg Biomembr. 2009;41(2):113-21.
    • (2009) J Bioenerg Biomembr. , vol.41 , Issue.2 , pp. 113-121
    • Halestrap, A.P.1
  • 46
    • 77956864478 scopus 로고    scopus 로고
    • Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning
    • Hausenloy DJ, Lim SY, Ong SG, Davidson SM, Yellon DM. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Cardiovasc Res. 2010;88(1):67-74.
    • (2010) Cardiovasc Res. , vol.88 , Issue.1 , pp. 67-74
    • Hausenloy, D.J.1    Lim, S.Y.2    Ong, S.G.3    Davidson, S.M.4    Yellon, D.M.5
  • 47
    • 0037144409 scopus 로고    scopus 로고
    • Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A
    • Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem. 2002;277(38):34793-9.
    • (2002) J Biol Chem. , vol.277 , Issue.38 , pp. 34793-34799
    • Clarke, S.J.1    McStay, G.P.2    Halestrap, A.P.3
  • 48
    • 1142273368 scopus 로고    scopus 로고
    • Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection
    • Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res. 2004;61(3): 372-85.
    • (2004) Cardiovasc Res. , vol.61 , Issue.3 , pp. 372-385
    • Halestrap, A.P.1    Clarke, S.J.2    Javadov, S.A.3
  • 49
    • 13444282326 scopus 로고    scopus 로고
    • Speci fi c inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury
    • Argaud L, Gateau-Roesch O, Muntean D, et al. Speci fi c inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005;38(2):367-74.
    • (2005) J Mol Cell Cardiol. , vol.38 , Issue.2 , pp. 367-374
    • Argaud, L.1    Gateau-Roesch, O.2    Muntean, D.3
  • 50
    • 34447329550 scopus 로고    scopus 로고
    • Cardioprotective effects of cyclosporine A in an in vivo model of myocardial ischemia and reperfusion
    • Xie JR, Yu LN. Cardioprotective effects of cyclosporine A in an in vivo model of myocardial ischemia and reperfusion. Acta Anaesthesiol Scand. 2007;51(7):909-13.
    • (2007) Acta Anaesthesiol Scand. , vol.51 , Issue.7 , pp. 909-913
    • Xie, J.R.1    Yu, L.N.2
  • 51
    • 48249109117 scopus 로고    scopus 로고
    • Effect of cyclosporine on reperfusion injury in acute myocardial infarction
    • Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359(5):473-81.
    • (2008) N Engl J Med. , vol.359 , Issue.5 , pp. 473-481
    • Piot, C.1    Croisille, P.2    Staat, P.3
  • 52
    • 67349145405 scopus 로고    scopus 로고
    • Preconditioning and postconditioning: underlying mechanisms and clinical application
    • Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009;204(2):334-41.
    • (2009) Atherosclerosis. , vol.204 , Issue.2 , pp. 334-341
    • Hausenloy, D.J.1    Yellon, D.M.2
  • 53
    • 67650213954 scopus 로고    scopus 로고
    • Protective ischaemia in patients: preconditioning and postconditioning
    • Granfeldt A, Lefer DJ, Vinten-Johansen J. Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc Res. 2009;83(2):234-46.
    • (2009) Cardiovasc Res. , vol.83 , Issue.2 , pp. 234-246
    • Granfeldt, A.1    Lefer, D.J.2    Vinten-Johansen, J.3
  • 54
    • 66949145127 scopus 로고    scopus 로고
    • Clinical cardioprotection and the value of conditioning responses
    • Peart JN, Headrick JP. Clinical cardioprotection and the value of conditioning responses. Am J Physiol Heart Circ Physiol. 2009;296(6):H1705-20.
    • (2009) Am J Physiol Heart Circ Physiol. , vol.296 , Issue.6 , pp. H1705-H1720
    • Peart, J.N.1    Headrick, J.P.2
  • 55
    • 34447507839 scopus 로고    scopus 로고
    • Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore
    • Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007;75(3): 530-5.
    • (2007) Cardiovasc Res. , vol.75 , Issue.3 , pp. 530-535
    • Lim, S.Y.1    Davidson, S.M.2    Hausenloy, D.J.3    Yellon, D.M.4
  • 56
    • 77649243261 scopus 로고    scopus 로고
    • Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fi ssion yeast
    • Takeda K, Yoshida T, Kikuchi S, et al. Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fi ssion yeast. Proc Natl Acad Sci USA. 2010;107(8):3540-5.
    • (2010) Proc Natl Acad Sci USA. , vol.107 , Issue.8 , pp. 3540-3545
    • Takeda, K.1    Yoshida, T.2    Kikuchi, S.3
  • 57
    • 47049100413 scopus 로고    scopus 로고
    • Essential role for Nix in autophagic maturation of erythroid cells
    • Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008;454(7201):232-5.
    • (2008) Nature. , vol.454 , Issue.7201 , pp. 232-235
    • Sandoval, H.1    Thiagarajan, P.2    Dasgupta, S.K.3
  • 58
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892-903.
    • (2008) J Biol Chem. , vol.283 , Issue.16 , pp. 10892-10903
    • Zhang, H.1    Bosch-Marce, M.2    Shimoda, L.A.3
  • 59
    • 33845511362 scopus 로고    scopus 로고
    • Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy
    • Hamacher-Brady A, Brady NR, Logue SE, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14(1):146-57.
    • (2007) Cell Death Differ. , vol.14 , Issue.1 , pp. 146-157
    • Hamacher-Brady, A.1    Brady, N.R.2    Logue, S.E.3
  • 60
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010;11(1):45-51.
    • (2010) EMBO Rep. , vol.11 , Issue.1 , pp. 45-51
    • Novak, I.1    Kirkin, V.2    McEwan, D.G.3
  • 61
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler S, Holmstrom KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119-31.
    • (2010) Nat Cell Biol. , vol.12 , Issue.2 , pp. 119-131
    • Geisler, S.1    Holmstrom, K.M.2    Skujat, D.3
  • 62
    • 67649399288 scopus 로고    scopus 로고
    • Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fi ssion
    • Dagda RK, Cherra III SJ, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fi ssion. J Biol Chem. 2009;284(20):13843-55.
    • (2009) J Biol Chem. , vol.284 , Issue.20 , pp. 13843-13855
    • Dagda, R.K.1    Cherra I.I.I, S.J.2    Kulich, S.M.3    Tandon, A.4    Park, D.5    Chu, C.T.6
  • 63
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605-8.
    • (1998) Nature. , vol.392 , Issue.6676 , pp. 605-608
    • Kitada, T.1    Asakawa, S.2    Hattori, N.3
  • 64
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson's disease caused by mutations in PINK1
    • Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004;304(5674):1158-60.
    • (2004) Science. , vol.304 , Issue.5674 , pp. 1158-1160
    • Valente, E.M.1    Abou-Sleiman, P.M.2    Caputo, V.3
  • 65
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    • Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA. 2010;107(1):378-83.
    • (2010) Proc Natl Acad Sci USA. , vol.107 , Issue.1 , pp. 378-383
    • Vives-Bauza, C.1    Zhou, C.2    Huang, Y.3
  • 66
    • 34548259958 scopus 로고    scopus 로고
    • p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33): 24131-45.
    • (2007) J Biol Chem. , vol.282 , Issue.33 , pp. 24131-24145
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3
  • 67
    • 77952326081 scopus 로고    scopus 로고
    • Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
    • Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010;189(4):671-9.
    • (2010) J Cell Biol. , vol.189 , Issue.4 , pp. 671-679
    • Lee, J.Y.1    Nagano, Y.2    Taylor, J.P.3    Lim, K.L.4    Yao, T.P.5
  • 68
    • 77955518491 scopus 로고    scopus 로고
    • Autophagy induced by ischemic preconditioning is essential for cardioprotection
    • Huang C, Yitzhaki S, Perry CN, et al. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J Cardiovasc Transl Res. 2010;3(4):365-73.
    • (2010) J Cardiovasc Transl Res. , vol.3 , Issue.4 , pp. 365-373
    • Huang, C.1    Yitzhaki, S.2    Perry, C.N.3
  • 70
    • 79952369437 scopus 로고    scopus 로고
    • Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fi broblasts
    • Rakovic A, Grunewald A, Kottwitz J, et al. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fi broblasts. PLoS One. 2011;6(3):e16746.
    • (2011) PLoS One. , vol.6 , Issue.3
    • Rakovic, A.1    Grunewald, A.2    Kottwitz, J.3
  • 71
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286(22): 19630-40.
    • (2011) J Biol Chem. , vol.286 , Issue.22 , pp. 19630-19640
    • Yoshii, S.R.1    Kishi, C.2    Ishihara, N.3    Mizushima, N.4
  • 72
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet. 2011;20(9):1726-37.
    • (2011) Hum Mol Genet. , vol.20 , Issue.9 , pp. 1726-1737
    • Chan, N.C.1    Salazar, A.M.2    Pham, A.H.3
  • 73
    • 0029752810 scopus 로고    scopus 로고
    • Cardiac pump function of the isolated rat heart at two modes of energy deprivation and effect of adrenergic stimulation
    • Kapelko VI, Lakomkin VL, Korchazhkina OV, Pisarenko OI. Cardiac pump function of the isolated rat heart at two modes of energy deprivation and effect of adrenergic stimulation. Mol Cell Biochem. 1996;163-164:131-6.
    • (1996) Mol Cell Biochem. , vol.163-164 , pp. 131-136
    • Kapelko, V.I.1    Lakomkin, V.L.2    Korchazhkina, O.V.3    Pisarenko, O.I.4
  • 74
    • 57649148823 scopus 로고    scopus 로고
    • Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator
    • Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci. 2008;1147:321-34.
    • (2008) Ann N Y Acad Sci. , vol.1147 , pp. 321-334
    • Scarpulla, R.C.1
  • 75
    • 77958021516 scopus 로고    scopus 로고
    • PGC-1 coactivators in cardiac development and disease
    • Rowe GC, Jiang A, Arany Z. PGC-1 coactivators in cardiac development and disease. Circ Res. 2010;107(7):825-38.
    • (2010) Circ Res. , vol.107 , Issue.7 , pp. 825-838
    • Rowe, G.C.1    Jiang, A.2    Arany, Z.3
  • 76
    • 42049114034 scopus 로고    scopus 로고
    • Transcriptional paradigms in mammalian mitochondrial biogenesis and function
    • Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611-38.
    • (2008) Physiol Rev. , vol.88 , Issue.2 , pp. 611-638
    • Scarpulla, R.C.1
  • 77
    • 37549025047 scopus 로고    scopus 로고
    • A role for the transcriptional coactivator PGC- 1alpha in muscle refueling
    • Wende AR, Schaeffer PJ, Parker GJ, et al. A role for the transcriptional coactivator PGC- 1alpha in muscle refueling. J Biol Chem. 2007;282(50):36642-51.
    • (2007) J Biol Chem. , vol.282 , Issue.50 , pp. 36642-36651
    • Wende, A.R.1    Schaeffer, P.J.2    Parker, G.J.3
  • 78
    • 77955918482 scopus 로고    scopus 로고
    • Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic fl exibility
    • Jeninga EH, Schoonjans K, Auwerx J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic fl exibility. Oncogene. 2010;29(33):4617-24.
    • (2010) Oncogene. , vol.29 , Issue.33 , pp. 4617-4624
    • Jeninga, E.H.1    Schoonjans, K.2    Auwerx, J.3
  • 79
    • 77951872309 scopus 로고    scopus 로고
    • Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1
    • Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464(7293):1313-9.
    • (2010) Nature. , vol.464 , Issue.7293 , pp. 1313-1319
    • Iwabu, M.1    Yamauchi, T.2    Okada-Iwabu, M.3
  • 80
    • 70350500068 scopus 로고    scopus 로고
    • FoxO transcription factors promote autophagy in cardiomyocytes
    • Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009;284(41):28319-31.
    • (2009) J Biol Chem. , vol.284 , Issue.41 , pp. 28319-28331
    • Sengupta, A.1    Molkentin, J.D.2    Yutzey, K.E.3
  • 81
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
    • Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell. 2011;144(5):689-702.
    • (2011) Cell. , vol.144 , Issue.5 , pp. 689-702
    • Shin, J.H.1    Ko, H.S.2    Kang, H.3
  • 82
    • 33749334061 scopus 로고    scopus 로고
    • Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction
    • Crescenzo R, Lionetti L, Mollica MP, et al. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction. Diabetes. 2006;55(8):2286-93.
    • (2006) Diabetes. , vol.55 , Issue.8 , pp. 2286-2293
    • Crescenzo, R.1    Lionetti, L.2    Mollica, M.P.3
  • 84
    • 77955342581 scopus 로고    scopus 로고
    • Inhibition of autophagy in the heart induces agerelated cardiomyopathy
    • Taneike M, Yamaguchi O, Nakai A, et al. Inhibition of autophagy in the heart induces agerelated cardiomyopathy. Autophagy. 2010;6(5):600-06.
    • (2010) Autophagy. , vol.6 , Issue.5 , pp. 600-606
    • Taneike, M.1    Yamaguchi, O.2    Nakai, A.3
  • 85
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619-24.
    • (2007) Nat Med. , vol.13 , Issue.5 , pp. 619-624
    • Nakai, A.1    Yamaguchi, O.2    Takeda, T.3
  • 86
    • 0035166814 scopus 로고    scopus 로고
    • Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
    • Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245-56.
    • (2001) Mol Biol Cell. , vol.12 , Issue.8 , pp. 2245-2256
    • Smirnova, E.1    Griparic, L.2    Shurland, D.L.3    van der Bliek, A.M.4
  • 87
    • 0043092647 scopus 로고    scopus 로고
    • The mitochondrial protein hFis1 regulates mitochondrial fi ssion in mammalian cells through an interaction with the dynamin-like protein DLP1
    • Yoon Y, Krueger EW, Oswald BJ, McNiven MA. The mitochondrial protein hFis1 regulates mitochondrial fi ssion in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol. 2003;23(15):5409-20.
    • (2003) Mol Cell Biol. , vol.23 , Issue.15 , pp. 5409-5420
    • Yoon, Y.1    Krueger, E.W.2    Oswald, B.J.3    McNiven, M.A.4
  • 88
    • 25444471534 scopus 로고    scopus 로고
    • Dnm1 forms spirals that are structurally tailored to fi t mitochondria
    • Ingerman E, Perkins EM, Marino M, et al. Dnm1 forms spirals that are structurally tailored to fi t mitochondria. J Cell Biol. 2005;170(7):1021-7.
    • (2005) J Cell Biol. , vol.170 , Issue.7 , pp. 1021-1027
    • Ingerman, E.1    Perkins, E.M.2    Marino, M.3
  • 91
    • 27544466847 scopus 로고    scopus 로고
    • Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
    • Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503-36.
    • (2005) Annu Rev Genet. , vol.39 , pp. 503-536
    • Okamoto, K.1    Shaw, J.M.2
  • 92
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433-46.
    • (2008) EMBO J. , vol.27 , Issue.2 , pp. 433-446
    • Twig, G.1    Elorza, A.2    Molina, A.J.3
  • 94
    • 49349105966 scopus 로고    scopus 로고
    • Bax- or Bak-induced mitochondrial fi ssion can be uncoupled from cytochrome C release
    • Sheridan C, Delivani P, Cullen SP, Martin SJ. Bax- or Bak-induced mitochondrial fi ssion can be uncoupled from cytochrome C release. Mol Cell. 2008;31(4):570-85.
    • (2008) Mol Cell. , vol.31 , Issue.4 , pp. 570-585
    • Sheridan, C.1    Delivani, P.2    Cullen, S.P.3    Martin, S.J.4
  • 95
    • 64749114270 scopus 로고    scopus 로고
    • Bcl-x L increases mitochondrial fi ssion, fusion, and biomass in neurons
    • Berman SB, Chen YB, Qi B, et al. Bcl-x L increases mitochondrial fi ssion, fusion, and biomass in neurons. J Cell Biol. 2009;184(5):707-19.
    • (2009) J Cell Biol. , vol.184 , Issue.5 , pp. 707-719
    • Berman, S.B.1    Chen, Y.B.2    Qi, B.3
  • 96
    • 78649463381 scopus 로고    scopus 로고
    • Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
    • Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 2010;19(24):4861-70.
    • (2010) Hum Mol Genet. , vol.19 , Issue.24 , pp. 4861-4870
    • Gegg, M.E.1    Cooper, J.M.2    Chau, K.Y.3    Rojo, M.4    Schapira, A.H.5    Taanman, J.W.6
  • 97
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka A, Cleland MM, Xu S, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol. 2011;191(7):1367-80.
    • (2011) J Cell Biol. , vol.191 , Issue.7 , pp. 1367-1380
    • Tanaka, A.1    Cleland, M.M.2    Xu, S.3
  • 98
    • 0035355341 scopus 로고    scopus 로고
    • 2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: signi fi cance for the molecular mechanism of Bcl-2 action
    • 2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: signi fi cance for the molecular mechanism of Bcl-2 action. EMBO J. 2001;20(11):2690-701.
    • (2001) EMBO J. , vol.20 , Issue.11 , pp. 2690-2701
    • Pinton, P.1    Ferrari, D.2    Rapizzi, E.3    Di Virgilio, F.4    Pozzan, T.5    Rizzuto, R.6
  • 99
    • 13944278072 scopus 로고    scopus 로고
    • DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans
    • Jagasia R, Grote P, Westermann B, Conradt B. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature. 2005;433(7027):754-60.
    • (2005) Nature. , vol.433 , Issue.7027 , pp. 754-760
    • Jagasia, R.1    Grote, P.2    Westermann, B.3    Conradt, B.4
  • 100
    • 78649983205 scopus 로고    scopus 로고
    • Redox regulation of mitochondrial fi ssion, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer's and Parkinson's diseases
    • Nakamura T, Lipton SA. Redox regulation of mitochondrial fi ssion, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer's and Parkinson's diseases. Apoptosis. 2010;15(11):1354-63.
    • (2010) Apoptosis. , vol.15 , Issue.11 , pp. 1354-1363
    • Nakamura, T.1    Lipton, S.A.2
  • 101
  • 102
    • 77952236126 scopus 로고    scopus 로고
    • Inhibiting mitochondrial fi ssion protects the heart against ischemia/reperfusion injury
    • Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fi ssion protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012-22.
    • (2010) Circulation. , vol.121 , Issue.18 , pp. 2012-2022
    • Ong, S.B.1    Subrayan, S.2    Lim, S.Y.3    Yellon, D.M.4    Davidson, S.M.5    Hausenloy, D.J.6
  • 103
    • 79451472120 scopus 로고    scopus 로고
    • MARF and Opa1 control mitochondrial and cardiac function in Drosophila
    • Dorn 2nd GW, Clark CF, Eschenbacher WH, et al. MARF and Opa1 control mitochondrial and cardiac function in Drosophila. Circ Res. 2011;108(1):12-7.
    • (2011) Circ Res. , vol.108 , Issue.1 , pp. 12-17
    • Dorn I.I, G.W.1    Clark, C.F.2    Eschenbacher, W.H.3
  • 104
    • 21244476364 scopus 로고    scopus 로고
    • The aging myocardium: roles of mitochondrial damage and lysosomal degradation
    • Terman A, Brunk UT. The aging myocardium: roles of mitochondrial damage and lysosomal degradation. Heart Lung Circ. 2005;14(2):107-14.
    • (2005) Heart Lung Circ. , vol.14 , Issue.2 , pp. 107-114
    • Terman, A.1    Brunk, U.T.2
  • 105
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13(5):589-98.
    • (2011) Nat Cell Biol. , vol.13 , Issue.5 , pp. 589-598
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 106
    • 40149105890 scopus 로고    scopus 로고
    • A role for autophagy in the extension of lifespan by dietary restriction in C. elegans
    • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 2008;4(2):e24.
    • (2008) PLoS Genet. , vol.4 , Issue.2
    • Hansen, M.1    Chandra, A.2    Mitic, L.L.3    Onken, B.4    Driscoll, M.5    Kenyon, C.6
  • 107
    • 79954628932 scopus 로고    scopus 로고
    • Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network
    • Partridge L, Alic N, Bjedov I, Piper MD. Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network. Exp Gerontol. 2011;46(5):376-81.
    • (2011) Exp Gerontol. , vol.46 , Issue.5 , pp. 376-381
    • Partridge, L.1    Alic, N.2    Bjedov, I.3    Piper, M.D.4
  • 108
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010;11(6):467-78.
    • (2010) Cell Metab. , vol.11 , Issue.6 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 109
    • 79551672046 scopus 로고    scopus 로고
    • Cardioprotection with postconditioning: loss of ef fi cacy in murine models of type-2 and type-1 diabetes
    • Przyklenk K, Maynard M, Greiner DL, Whittaker P. Cardioprotection with postconditioning: loss of ef fi cacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2010;14(5):781-90.
    • (2010) Antioxid Redox Signal. , vol.14 , Issue.5 , pp. 781-790
    • Przyklenk, K.1    Maynard, M.2    Greiner, D.L.3    Whittaker, P.4
  • 110
    • 70350450977 scopus 로고    scopus 로고
    • Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite
    • Kupai K, Csonka C, Fekete V, et al. Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol. 2009;297(5):H1729-35.
    • (2009) Am J Physiol Heart Circ Physiol. , vol.297 , Issue.5 , pp. H1729-H1735
    • Kupai, K.1    Csonka, C.2    Fekete, V.3
  • 111
    • 36149001329 scopus 로고    scopus 로고
    • CRYAB and HSPB2 Deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice
    • Benjamin IJ, Guo Y, Srinivasan S, et al. CRYAB and HSPB2 Deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice. Am J Physiol Heart Circ Physiol. 2007;293(5):H3201-9.
    • (2007) Am J Physiol Heart Circ Physiol. , vol.293 , Issue.5 , pp. H3201-H3209
    • Benjamin, I.J.1    Guo, Y.2    Srinivasan, S.3
  • 112
    • 34347352169 scopus 로고    scopus 로고
    • Diabetic cardiomyopathy revisited
    • Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213-23.
    • (2007) Circulation. , vol.115 , Issue.25 , pp. 3213-3223
    • Boudina, S.1    Abel, E.D.2
  • 113
    • 70450211783 scopus 로고    scopus 로고
    • Rodent models of diabetic cardiomyopathy
    • Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech. 2009; 2(9-10):454-66.
    • (2009) Dis Model Mech. , vol.2 , Issue.9-10 , pp. 454-466
    • Bugger, H.1    Abel, E.D.2
  • 114
  • 115
    • 77956572071 scopus 로고    scopus 로고
    • Mitochondria in the diabetic heart
    • Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res. 2010;88(2):229-40.
    • (2010) Cardiovasc Res. , vol.88 , Issue.2 , pp. 229-240
    • Bugger, H.1    Abel, E.D.2
  • 116
    • 34548848059 scopus 로고    scopus 로고
    • Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins
    • Boudina S, Sena S, Theobald H, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes. 2007;56(10):2457-66.
    • (2007) Diabetes. , vol.56 , Issue.10 , pp. 2457-2466
    • Boudina, S.1    Sena, S.2    Theobald, H.3
  • 117
    • 70349134016 scopus 로고    scopus 로고
    • Tissue-speci fi c remodeling of the mitochondrial proteome in type 1 diabetic akita mice
    • Bugger H, Chen D, Riehle C, et al. Tissue-speci fi c remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes. 2009;58(9):1986-97.
    • (2009) Diabetes. , vol.58 , Issue.9 , pp. 1986-1997
    • Bugger, H.1    Chen, D.2    Riehle, C.3
  • 118
    • 27444441492 scopus 로고    scopus 로고
    • Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity
    • Boudina S, Sena S, O'Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112(17):2686-95.
    • (2005) Circulation. , vol.112 , Issue.17 , pp. 2686-2695
    • Boudina, S.1    Sena, S.2    O'Neill, B.T.3    Tathireddy, P.4    Young, M.E.5    Abel, E.D.6
  • 119
  • 120
    • 33847110733 scopus 로고    scopus 로고
    • Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptoralpha/ PGC-1alpha gene regulatory pathway
    • Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptoralpha/ PGC-1alpha gene regulatory pathway. Circulation. 2007;115(7):909-17.
    • (2007) Circulation. , vol.115 , Issue.7 , pp. 909-917
    • Duncan, J.G.1    Fong, J.L.2    Medeiros, D.M.3    Finck, B.N.4    Kelly, D.P.5
  • 121
    • 2342563763 scopus 로고    scopus 로고
    • Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes
    • Ye G, Metreveli NS, Donthi RV, et al. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes. 2004;53(5):1336-43.
    • (2004) Diabetes. , vol.53 , Issue.5 , pp. 1336-1343
    • Ye, G.1    Metreveli, N.S.2    Donthi, R.V.3
  • 122
    • 33644766038 scopus 로고    scopus 로고
    • Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy
    • Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798-805.
    • (2006) Diabetes. , vol.55 , Issue.3 , pp. 798-805
    • Shen, X.1    Zheng, S.2    Metreveli, N.S.3    Epstein, P.N.4
  • 123
    • 34548850040 scopus 로고    scopus 로고
    • A conserved role for phosphatidylinositol 3-kinase but not Akt signaling in mitochondrial adaptations that accompany physiological cardiac hypertrophy
    • O'Neill BT, Kim J, Wende AR, et al. A conserved role for phosphatidylinositol 3-kinase but not Akt signaling in mitochondrial adaptations that accompany physiological cardiac hypertrophy. Cell Metab. 2007;6(4):294-306.
    • (2007) Cell Metab. , vol.6 , Issue.4 , pp. 294-306
    • O'Neill, B.T.1    Kim, J.2    Wende, A.R.3
  • 124
    • 55049090844 scopus 로고    scopus 로고
    • Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy
    • Kim J, Wende AR, Sena S, et al. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol. 2008;22(11):2531-43.
    • (2008) Mol Endocrinol. , vol.22 , Issue.11 , pp. 2531-2543
    • Kim, J.1    Wende, A.R.2    Sena, S.3
  • 125
    • 63649106676 scopus 로고    scopus 로고
    • Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart
    • Boudina S, Bugger H, Sena S, et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation. 2009;119(9): 1272-83.
    • (2009) Circulation. , vol.119 , Issue.9 , pp. 1272-1283
    • Boudina, S.1    Bugger, H.2    Sena, S.3
  • 126
    • 33847216159 scopus 로고    scopus 로고
    • Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function
    • Laustsen PG, Russell SJ, Cui L, et al. Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol. 2007;27(5):1649-64.
    • (2007) Mol Cell Biol. , vol.27 , Issue.5 , pp. 1649-1664
    • Laustsen, P.G.1    Russell, S.J.2    Cui, L.3
  • 127
    • 79955391768 scopus 로고    scopus 로고
    • Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy
    • Abel ED, Doenst T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc Res. 2011;90(2):234-42.
    • (2011) Cardiovasc Res. , vol.90 , Issue.2 , pp. 234-242
    • Abel, E.D.1    Doenst, T.2
  • 128
    • 77952364346 scopus 로고    scopus 로고
    • Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload
    • Doenst T, Pytel G, Schrepper A, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86(3):461-70.
    • (2010) Cardiovasc Res. , vol.86 , Issue.3 , pp. 461-470
    • Doenst, T.1    Pytel, G.2    Schrepper, A.3
  • 129
    • 80052970004 scopus 로고    scopus 로고
    • PGC-1(beta) Deficiency Accelerates the Transition to Heart Failure in Pressure Overload Hypertrophy
    • Riehle C, Wende AR, Zaha VG, et al. PGC-1(beta) Deficiency Accelerates the Transition to Heart Failure in Pressure Overload Hypertrophy. Circ Res. 2011;109(7):783-93.
    • (2011) Circ Res. , vol.109 , Issue.7 , pp. 783-793
    • Riehle, C.1    Wende, A.R.2    Zaha, V.G.3
  • 130
    • 33745627066 scopus 로고    scopus 로고
    • Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha
    • Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA. 2006;103(26):10086-91.
    • (2006) Proc Natl Acad Sci USA. , vol.103 , Issue.26 , pp. 10086-10091
    • Arany, Z.1    Novikov, M.2    Chin, S.3    Ma, Y.4    Rosenzweig, A.5    Spiegelman, B.M.6
  • 131
    • 69449084720 scopus 로고    scopus 로고
    • Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure
    • Saini-Chohan HK, Holmes MG, Chicco AJ, et al. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J Lipid Res. 2009;50(8):1600-8.
    • (2009) J Lipid Res. , vol.50 , Issue.8 , pp. 1600-1608
    • Saini-Chohan, H.K.1    Holmes, M.G.2    Chicco, A.J.3
  • 132
    • 50249148905 scopus 로고    scopus 로고
    • Cardiolipin, the heart of mitochondrial metabolism
    • Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008;65(16):2493-506.
    • (2008) Cell Mol Life Sci. , vol.65 , Issue.16 , pp. 2493-2506
    • Houtkooper, R.H.1    Vaz, F.M.2
  • 133
    • 77955871829 scopus 로고    scopus 로고
    • PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload
    • Lu Z, Xu X, Hu X, et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal. 2010;13(7):1011-22.
    • (2010) Antioxid Redox Signal. , vol.13 , Issue.7 , pp. 1011-1022
    • Lu, Z.1    Xu, X.2    Hu, X.3
  • 134
  • 135
    • 23644439061 scopus 로고    scopus 로고
    • Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure
    • Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115(8): 2108-18.
    • (2005) J Clin Invest. , vol.115 , Issue.8 , pp. 2108-2118
    • Shiojima, I.1    Sato, K.2    Izumiya, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.