메뉴 건너뛰기




Volumn 23, Issue 2, 2015, Pages 110-119

Nucleoside antibiotics: Biosynthesis, regulation, and biotechnology

Author keywords

Biosynthesis; Genetic engineering; Nucleoside antibiotics; Regulation

Indexed keywords

A 102395; A 500359; A 503083; A 90289; AMICETIN; ANTIBIOTIC AGENT; ARGINOMYCIN; BLASTICIDIN S; CAPRAZAMYCIN; CAPURAMYCIN; GOUGEROTIN; LIPOSIDOMYCIN; MILDIOMYCIN; MURAMINOMICIN; MURAYMYCIN; MUREIDOMYCIN; NIKKOMYCIN; NIKKOMYCIN I; NIKKOMYCIN X; NIKKOMYCIN Z; NINGNANMYCIN; NUCLEOSIDE ANTIBIOTIC AGENT; PACIDAMYCIN; POLYOXIN; POLYOXIN D; POLYOXIN H; POLYOXIN N; SANSANMYCIN; TUNICAMYCIN; UNCLASSIFIED DRUG; UNINDEXED DRUG; AMINOGLYCOSIDE; ANTIFUNGAL AGENT; ANTIINFECTIVE AGENT; ANTIVIRUS AGENT; CYTIDINE; CYTOSINE; NUCLEOSIDE; PYRIMIDINE NUCLEOSIDE;

EID: 84922016929     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2014.10.007     Document Type: Review
Times cited : (104)

References (65)
  • 1
    • 0024209272 scopus 로고
    • Nucleoside antibiotics: structure, biological activity, and biosynthesis
    • Isono K. Nucleoside antibiotics: structure, biological activity, and biosynthesis. J. Antibiot. (Tokyo) 1988, 41:1711-1739.
    • (1988) J. Antibiot. (Tokyo) , vol.41 , pp. 1711-1739
    • Isono, K.1
  • 2
    • 76249100888 scopus 로고    scopus 로고
    • Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis
    • Winn M., et al. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat. Prod. Rep. 2010, 27:279-304.
    • (2010) Nat. Prod. Rep. , vol.27 , pp. 279-304
    • Winn, M.1
  • 3
    • 0037394583 scopus 로고    scopus 로고
    • Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis
    • Kimura K., Bugg T.D. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat. Prod. Rep. 2003, 20:252-273.
    • (2003) Nat. Prod. Rep. , vol.20 , pp. 252-273
    • Kimura, K.1    Bugg, T.D.2
  • 4
    • 49649103142 scopus 로고    scopus 로고
    • Sansanmycins B and C, new components of sansanmycins
    • Xie Y., et al. Sansanmycins B and C, new components of sansanmycins. J. Antibiot. (Tokyo) 2008, 61:237-240.
    • (2008) J. Antibiot. (Tokyo) , vol.61 , pp. 237-240
    • Xie, Y.1
  • 5
    • 77955629608 scopus 로고    scopus 로고
    • Pacidamycin biosynthesis: identification and heterologous expression of the first uridyl peptide antibiotic gene cluster
    • Rackham E.J., et al. Pacidamycin biosynthesis: identification and heterologous expression of the first uridyl peptide antibiotic gene cluster. Chembiochem 2010, 11:1700-1709.
    • (2010) Chembiochem , vol.11 , pp. 1700-1709
    • Rackham, E.J.1
  • 6
    • 78049295122 scopus 로고    scopus 로고
    • Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics
    • Zhang W., et al. Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics. Proc. Natl Acad. Sci. U.S.A. 2010, 107:16828-16833.
    • (2010) Proc. Natl Acad. Sci. U.S.A. , vol.107 , pp. 16828-16833
    • Zhang, W.1
  • 7
    • 79551520607 scopus 로고    scopus 로고
    • Identification of a napsamycin biosynthesis gene cluster by genome mining
    • Kaysser L., et al. Identification of a napsamycin biosynthesis gene cluster by genome mining. Chembiochem 2011, 12:477-487.
    • (2011) Chembiochem , vol.12 , pp. 477-487
    • Kaysser, L.1
  • 8
    • 84877939989 scopus 로고    scopus 로고
    • SsaA, a member of a novel class of transcriptional regulators, controls sansanmycin production in Streptomyces sp. strain SS through a feedback mechanism
    • Li Q., et al. SsaA, a member of a novel class of transcriptional regulators, controls sansanmycin production in Streptomyces sp. strain SS through a feedback mechanism. J. Bacteriol. 2013, 195:2232-2243.
    • (2013) J. Bacteriol. , vol.195 , pp. 2232-2243
    • Li, Q.1
  • 9
    • 79959251862 scopus 로고    scopus 로고
    • Identification of phenylalanine 3-hydroxylase for meta-tyrosine biosynthesis
    • Zhang W., et al. Identification of phenylalanine 3-hydroxylase for meta-tyrosine biosynthesis. Biochemistry 2011, 50:5401-5403.
    • (2011) Biochemistry , vol.50 , pp. 5401-5403
    • Zhang, W.1
  • 10
    • 79953727021 scopus 로고    scopus 로고
    • Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics
    • Zhang W., et al. Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 2011, 133:5240-5243.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 5240-5243
    • Zhang, W.1
  • 11
    • 80055021577 scopus 로고    scopus 로고
    • Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics
    • Walsh C.T., Zhang W. Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics. ACS Chem. Biol. 2011, 6:1000-1007.
    • (2011) ACS Chem. Biol. , vol.6 , pp. 1000-1007
    • Walsh, C.T.1    Zhang, W.2
  • 12
    • 79961045257 scopus 로고    scopus 로고
    • TRNA-dependent peptide bond formation by the transferase PacB in biosynthesis of the pacidamycin group of pentapeptidyl nucleoside antibiotics
    • Zhang W., et al. tRNA-dependent peptide bond formation by the transferase PacB in biosynthesis of the pacidamycin group of pentapeptidyl nucleoside antibiotics. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12249-12253.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 12249-12253
    • Zhang, W.1
  • 13
    • 80053302413 scopus 로고    scopus 로고
    • Biogenesis of the unique 4',5'-dehydronucleoside of the uridyl peptide antibiotic pacidamycin
    • Ragab A.E., et al. Biogenesis of the unique 4',5'-dehydronucleoside of the uridyl peptide antibiotic pacidamycin. J. Am. Chem. Soc. 2011, 133:15288-15291.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 15288-15291
    • Ragab, A.E.1
  • 14
    • 79953134630 scopus 로고    scopus 로고
    • Characterization of LipL as a non-heme, Fe(II)-dependent alpha-ketoglutarate:UMP dioxygenase that generates uridine-5'-aldehyde during A-90289 biosynthesis
    • Yang Z., et al. Characterization of LipL as a non-heme, Fe(II)-dependent alpha-ketoglutarate:UMP dioxygenase that generates uridine-5'-aldehyde during A-90289 biosynthesis. J. Biol. Chem. 2011, 286:7885-7892.
    • (2011) J. Biol. Chem. , vol.286 , pp. 7885-7892
    • Yang, Z.1
  • 15
    • 80052555950 scopus 로고    scopus 로고
    • Biosynthetic origin and mechanism of formation of the aminoribosyl moiety of peptidyl nucleoside antibiotics
    • Chi X., et al. Biosynthetic origin and mechanism of formation of the aminoribosyl moiety of peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 2011, 133:14452-14459.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 14452-14459
    • Chi, X.1
  • 16
    • 84869424326 scopus 로고    scopus 로고
    • Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5'-aldehyde transaldolase
    • Barnard-Britson S., et al. Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5'-aldehyde transaldolase. J. Am. Chem. Soc. 2012, 134:18514-18517.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 18514-18517
    • Barnard-Britson, S.1
  • 17
    • 81355135401 scopus 로고    scopus 로고
    • Dissecting tunicamycin biosynthesis by genome mining: cloning and heterologous expression of a minimal gene cluster
    • Wyszynski F.J., et al. Dissecting tunicamycin biosynthesis by genome mining: cloning and heterologous expression of a minimal gene cluster. Chem. Sci. 2010, 1:581-589.
    • (2010) Chem. Sci. , vol.1 , pp. 581-589
    • Wyszynski, F.J.1
  • 18
    • 79953147484 scopus 로고    scopus 로고
    • Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis
    • Chen W., et al. Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Protein Cell 2010, 1:1093-1105.
    • (2010) Protein Cell , vol.1 , pp. 1093-1105
    • Chen, W.1
  • 19
    • 84862881045 scopus 로고    scopus 로고
    • Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates
    • Wyszynski F.J., et al. Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nat. Chem. 2012, 4:539-546.
    • (2012) Nat. Chem. , vol.4 , pp. 539-546
    • Wyszynski, F.J.1
  • 20
    • 77955919815 scopus 로고    scopus 로고
    • An ATP-independent strategy for amide bond formation in antibiotic biosynthesis
    • Funabashi M., et al. An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat. Chem. Biol. 2010, 6:581-586.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 581-586
    • Funabashi, M.1
  • 21
    • 68149156215 scopus 로고    scopus 로고
    • Identification of the biosynthetic gene cluster of A-500359s in Streptomyces griseus SANK60196
    • Funabashi M., et al. Identification of the biosynthetic gene cluster of A-500359s in Streptomyces griseus SANK60196. J. Antibiot. (Tokyo) 2009, 62:325-332.
    • (2009) J. Antibiot. (Tokyo) , vol.62 , pp. 325-332
    • Funabashi, M.1
  • 22
    • 77951240306 scopus 로고    scopus 로고
    • Functional and kinetic analysis of the phosphotransferase CapP conferring selective self-resistance to capuramycin antibiotics
    • Yang Z., et al. Functional and kinetic analysis of the phosphotransferase CapP conferring selective self-resistance to capuramycin antibiotics. J. Biol. Chem. 2010, 285:12899-12905.
    • (2010) J. Biol. Chem. , vol.285 , pp. 12899-12905
    • Yang, Z.1
  • 23
    • 70350475683 scopus 로고    scopus 로고
    • The ATP-dependent amide ligases DdaG and DdaF assemble the fumaramoyl-dipeptide scaffold of the dapdiamide antibiotics
    • Hollenhorst M.A., et al. The ATP-dependent amide ligases DdaG and DdaF assemble the fumaramoyl-dipeptide scaffold of the dapdiamide antibiotics. Biochemistry 2009, 48:10467-10472.
    • (2009) Biochemistry , vol.48 , pp. 10467-10472
    • Hollenhorst, M.A.1
  • 24
    • 67049107844 scopus 로고    scopus 로고
    • Pharmacokinetics of nikkomycin Z after single rising oral doses
    • Nix D.E., et al. Pharmacokinetics of nikkomycin Z after single rising oral doses. Antimicrob. Agents Chemother. 2009, 53:2517-2521.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 2517-2521
    • Nix, D.E.1
  • 25
    • 84892487434 scopus 로고    scopus 로고
    • Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines
    • Holden W.M., et al. Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Fungal Biol. 2014, 118:48-60.
    • (2014) Fungal Biol. , vol.118 , pp. 48-60
    • Holden, W.M.1
  • 26
    • 84884309428 scopus 로고    scopus 로고
    • Efficacy of nikkomycin Z for respiratory coccidioidomycosis in naturally infected dogs
    • Shubitz L.F., et al. Efficacy of nikkomycin Z for respiratory coccidioidomycosis in naturally infected dogs. Med. Mycol. 2013, 51:747-754.
    • (2013) Med. Mycol. , vol.51 , pp. 747-754
    • Shubitz, L.F.1
  • 27
    • 84866101261 scopus 로고    scopus 로고
    • Structural and functional characterization of NikO, an enolpyruvyl transferase essential in nikkomycin biosynthesis
    • Oberdorfer G., et al. Structural and functional characterization of NikO, an enolpyruvyl transferase essential in nikkomycin biosynthesis. J. Biol. Chem. 2012, 287:31427-31436.
    • (2012) J. Biol. Chem. , vol.287 , pp. 31427-31436
    • Oberdorfer, G.1
  • 28
    • 80255141922 scopus 로고    scopus 로고
    • Characterization of the PLP-dependent aminotransferase NikK from Streptomyces tendae and its putative role in nikkomycin biosynthesis
    • Binter A., et al. Characterization of the PLP-dependent aminotransferase NikK from Streptomyces tendae and its putative role in nikkomycin biosynthesis. FEBS J. 2011, 278:4122-4135.
    • (2011) FEBS J. , vol.278 , pp. 4122-4135
    • Binter, A.1
  • 29
    • 79955150982 scopus 로고    scopus 로고
    • Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties
    • Li J., et al. Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab. Eng. 2011, 13:336-344.
    • (2011) Metab. Eng. , vol.13 , pp. 336-344
    • Li, J.1
  • 30
    • 67449094184 scopus 로고    scopus 로고
    • Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H
    • Chen W., et al. Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J. Biol. Chem. 2009, 284:10627-10638.
    • (2009) J. Biol. Chem. , vol.284 , pp. 10627-10638
    • Chen, W.1
  • 31
    • 33745304189 scopus 로고    scopus 로고
    • Characterization of BlsM, a nucleotide hydrolase involved in cytosine production for the biosynthesis of blasticidin S
    • Grochowski L.L., Zabriskie T.M. Characterization of BlsM, a nucleotide hydrolase involved in cytosine production for the biosynthesis of blasticidin S. Chembiochem 2006, 7:957-964.
    • (2006) Chembiochem , vol.7 , pp. 957-964
    • Grochowski, L.L.1    Zabriskie, T.M.2
  • 32
    • 84904893667 scopus 로고    scopus 로고
    • Biosynthesis of β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941
    • Feng J., et al. Biosynthesis of β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941. Appl. Environ. Microbiol. 2014, 80:5021-5027.
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 5021-5027
    • Feng, J.1
  • 33
    • 49249106618 scopus 로고    scopus 로고
    • The mildiomycin biosynthesis: initial steps for sequential generation of 5-hydroxymethylcytidine 5'-monophosphate and 5-hydroxymethylcytosine in Streptoverticillium rimofaciens ZJU5119
    • Li L., et al. The mildiomycin biosynthesis: initial steps for sequential generation of 5-hydroxymethylcytidine 5'-monophosphate and 5-hydroxymethylcytosine in Streptoverticillium rimofaciens ZJU5119. Chembiochem 2008, 9:1286-1294.
    • (2008) Chembiochem , vol.9 , pp. 1286-1294
    • Li, L.1
  • 34
    • 84903954666 scopus 로고    scopus 로고
    • Structure of the N-glycosidase MilB in complex with hydroxymethyl CMP reveals its Arg23 specifically recognizes the substrate and controls its entry
    • Zhao G., et al. Structure of the N-glycosidase MilB in complex with hydroxymethyl CMP reveals its Arg23 specifically recognizes the substrate and controls its entry. Nucleic Acids Res. 2014, 42:8115-8124.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 8115-8124
    • Zhao, G.1
  • 35
    • 84864020794 scopus 로고    scopus 로고
    • Analysis of the mildiomycin biosynthesis gene cluster in Streptoverticillum remofaciens ZJU5119 and characterization of MilC, a hydroxymethyl cytosyl-glucuronic acid synthase
    • Wu J., et al. Analysis of the mildiomycin biosynthesis gene cluster in Streptoverticillum remofaciens ZJU5119 and characterization of MilC, a hydroxymethyl cytosyl-glucuronic acid synthase. Chembiochem 2012, 13:1613-1621.
    • (2012) Chembiochem , vol.13 , pp. 1613-1621
    • Wu, J.1
  • 36
    • 77949354150 scopus 로고    scopus 로고
    • Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives
    • Wang K., et al. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. J. Agric. Food Chem. 2010, 58:2703-2709.
    • (2010) J. Agric. Food Chem. , vol.58 , pp. 2703-2709
    • Wang, K.1
  • 37
    • 84872903672 scopus 로고    scopus 로고
    • Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis
    • Niu G., et al. Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis. Chem. Biol. 2013, 20:34-44.
    • (2013) Chem. Biol. , vol.20 , pp. 34-44
    • Niu, G.1
  • 38
    • 84883122189 scopus 로고    scopus 로고
    • Characterizing amosamine biosynthesis in amicetin reveals AmiG as a reversible retaining glycosyltransferase
    • Chen R., et al. Characterizing amosamine biosynthesis in amicetin reveals AmiG as a reversible retaining glycosyltransferase. J. Am. Chem. Soc. 2013, 135:12152-12155.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 12152-12155
    • Chen, R.1
  • 39
    • 84861146139 scopus 로고    scopus 로고
    • Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation
    • Zhang G., et al. Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation. Appl. Environ. Microbiol. 2012, 78:2393-2401.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 2393-2401
    • Zhang, G.1
  • 40
    • 28244432190 scopus 로고    scopus 로고
    • Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor
    • Huang J., et al. Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol. Microbiol. 2005, 58:1276-1287.
    • (2005) Mol. Microbiol. , vol.58 , pp. 1276-1287
    • Huang, J.1
  • 41
    • 84874850153 scopus 로고    scopus 로고
    • Molecular regulation of antibiotic biosynthesis in Streptomyces
    • Liu G., et al. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 2013, 77:112-143.
    • (2013) Microbiol. Mol. Biol. Rev. , vol.77 , pp. 112-143
    • Liu, G.1
  • 42
    • 77749243490 scopus 로고    scopus 로고
    • SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN-sanO intergenic region in Streptomyces ansochromogenes
    • He X., et al. SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN-sanO intergenic region in Streptomyces ansochromogenes. Microbiology 2010, 156:828-837.
    • (2010) Microbiology , vol.156 , pp. 828-837
    • He, X.1
  • 43
    • 15944401749 scopus 로고    scopus 로고
    • A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development
    • Liu G., et al. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol. Microbiol. 2005, 55:1855-1866.
    • (2005) Mol. Microbiol. , vol.55 , pp. 1855-1866
    • Liu, G.1
  • 44
    • 65349122992 scopus 로고    scopus 로고
    • The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes
    • Pan Y., et al. The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol. Microbiol. 2009, 72:710-723.
    • (2009) Mol. Microbiol. , vol.72 , pp. 710-723
    • Pan, Y.1
  • 45
    • 79960560202 scopus 로고    scopus 로고
    • SabR enhances nikkomycin production via regulating the transcriptional level of sanG, a pathway-specific regulatory gene in Streptomyces ansochromogenes
    • Pan Y., et al. SabR enhances nikkomycin production via regulating the transcriptional level of sanG, a pathway-specific regulatory gene in Streptomyces ansochromogenes. BMC Microbiol. 2011, 11:164.
    • (2011) BMC Microbiol. , vol.11 , pp. 164
    • Pan, Y.1
  • 46
    • 67650759674 scopus 로고    scopus 로고
    • PolR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis
    • Li R., et al. polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis. Microbiology 2009, 155:1819-1831.
    • (2009) Microbiology , vol.155 , pp. 1819-1831
    • Li, R.1
  • 47
    • 74349130880 scopus 로고    scopus 로고
    • PolY, a transcriptional regulator with ATPase activity, directly activates transcription of polR in polyoxin biosynthesis in Streptomyces cacaoi
    • Li R., et al. PolY, a transcriptional regulator with ATPase activity, directly activates transcription of polR in polyoxin biosynthesis in Streptomyces cacaoi. Mol. Microbiol. 2010, 75:349-364.
    • (2010) Mol. Microbiol. , vol.75 , pp. 349-364
    • Li, R.1
  • 49
    • 84892451203 scopus 로고    scopus 로고
    • GouR, a TetR family transcriptional regulator, coordinates the biosynthesis and export of gougerotin in Streptomyces graminearus
    • Wei J., et al. GouR, a TetR family transcriptional regulator, coordinates the biosynthesis and export of gougerotin in Streptomyces graminearus. Appl. Environ. Microbiol. 2014, 80:714-722.
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 714-722
    • Wei, J.1
  • 50
    • 84868368528 scopus 로고    scopus 로고
    • A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor
    • Xu Y., et al. A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. MBio 2012, 3:e00191-e212.
    • (2012) MBio , vol.3 , pp. e00191-e212
    • Xu, Y.1
  • 51
    • 84887410024 scopus 로고    scopus 로고
    • JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis
    • Zhang Y., et al. JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol. Microbiol. 2013, 90:884-897.
    • (2013) Mol. Microbiol. , vol.90 , pp. 884-897
    • Zhang, Y.1
  • 52
    • 66649105444 scopus 로고    scopus 로고
    • Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator
    • Wang L., et al. Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8617-8622.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8617-8622
    • Wang, L.1
  • 53
    • 84891602619 scopus 로고    scopus 로고
    • Identification of Mur34 as the novel negative regulator responsible for the biosynthesis of muraymycin in Streptomyces sp. NRRL30471
    • Xu D., et al. Identification of Mur34 as the novel negative regulator responsible for the biosynthesis of muraymycin in Streptomyces sp. NRRL30471. PLoS ONE 2013, 8:e76068.
    • (2013) PLoS ONE , vol.8 , pp. e76068
    • Xu, D.1
  • 54
    • 84879843040 scopus 로고    scopus 로고
    • Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters
    • Du D., et al. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl. Microbiol. Biotechnol. 2013, 97:6383-6396.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 6383-6396
    • Du, D.1
  • 55
    • 76849092076 scopus 로고    scopus 로고
    • Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production
    • Liao G., et al. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microb. Cell Fact. 2010, 9:6.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 6
    • Liao, G.1
  • 56
    • 84892180474 scopus 로고    scopus 로고
    • Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus
    • Jiang L., et al. Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus. Appl. Microbiol. Biotechnol. 2013, 97:10469-10477.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 10469-10477
    • Jiang, L.1
  • 57
    • 80053168888 scopus 로고    scopus 로고
    • A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor
    • Murakami T., et al. A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16020-16025.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16020-16025
    • Murakami, T.1
  • 58
    • 84867036786 scopus 로고    scopus 로고
    • Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes
    • Li J., et al. Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Microb. Cell Fact. 2012, 11:135.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 135
    • Li, J.1
  • 59
    • 84862199777 scopus 로고    scopus 로고
    • Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics
    • Zhai L., et al. Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics. Metab. Eng. 2012, 14:388-393.
    • (2012) Metab. Eng. , vol.14 , pp. 388-393
    • Zhai, L.1
  • 60
    • 60349121247 scopus 로고    scopus 로고
    • New pacidamycin antibiotics through precursor-directed biosynthesis
    • Gruschow S., et al. New pacidamycin antibiotics through precursor-directed biosynthesis. Chembiochem 2009, 10:355-360.
    • (2009) Chembiochem , vol.10 , pp. 355-360
    • Gruschow, S.1
  • 61
    • 84905018416 scopus 로고    scopus 로고
    • NRPS substrate promiscuity leads to more potent antitubercular sansanmycin analogues
    • Xie Y., et al. NRPS substrate promiscuity leads to more potent antitubercular sansanmycin analogues. J. Nat. Prod. 2014, 77:1744-1748.
    • (2014) J. Nat. Prod. , vol.77 , pp. 1744-1748
    • Xie, Y.1
  • 62
    • 84899653514 scopus 로고    scopus 로고
    • Novel nikkomycin analogues generated by mutasynthesis in Streptomyces ansochromogenes
    • Feng C., et al. Novel nikkomycin analogues generated by mutasynthesis in Streptomyces ansochromogenes. Microb. Cell Fact. 2014, 13:59.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 59
    • Feng, C.1
  • 63
    • 67649379025 scopus 로고    scopus 로고
    • Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway
    • Kaysser L., et al. Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J. Biol. Chem. 2009, 284:14987-14996.
    • (2009) J. Biol. Chem. , vol.284 , pp. 14987-14996
    • Kaysser, L.1
  • 64
    • 84875543704 scopus 로고    scopus 로고
    • Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S-producing strain for ease of genetic manipulation
    • Li L., et al. Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S-producing strain for ease of genetic manipulation. Appl. Environ. Microbiol. 2013, 79:2349-2357.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 2349-2357
    • Li, L.1
  • 65
    • 84886070500 scopus 로고    scopus 로고
    • Structure-based gene targeting discovery of sphaerimicin, a bacterial translocase I inhibitor
    • Funabashi M., et al. Structure-based gene targeting discovery of sphaerimicin, a bacterial translocase I inhibitor. Angew. Chem. Int. Ed. Engl. 2013, 52:11607-11611.
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 11607-11611
    • Funabashi, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.