메뉴 건너뛰기




Volumn 10, Issue 1, 2015, Pages 69-82

Cell-free metabolic engineering: Biomanufacturing beyond the cell

Author keywords

Biocatalysis; Biotransformation; Cell free metabolic engineering; Metabolic pathway debugging; Synthetic biology

Indexed keywords

BIOCHEMICAL ENGINEERING; BIOCHEMISTRY; BIOCONVERSION; BIOSYNTHESIS; CELLS; COST ENGINEERING; CYTOLOGY; ENZYMES; INDUSTRIAL CHEMICALS; METABOLIC ENGINEERING; METABOLISM; PRODUCTIVITY; PROTEINS; PURIFICATION; TOXICITY;

EID: 84921496822     PISSN: 18606768     EISSN: 18607314     Source Type: Journal    
DOI: 10.1002/biot.201400330     Document Type: Review
Times cited : (255)

References (124)
  • 1
    • 84921492971 scopus 로고    scopus 로고
    • Chemical Process Technology, John Wiley & Sons
    • Moulijn, J. A., Makkee, M., Van Diepen, A. E., Chemical Process Technology, John Wiley & Sons 2013.
    • (2013)
    • Moulijn, J.A.1    Makkee, M.2    Van Diepen, A.E.3
  • 2
    • 84870721464 scopus 로고    scopus 로고
    • Depletion of fossil fuels and anthropogenic climate change - A review.
    • Höök, M., Tang, X., Depletion of fossil fuels and anthropogenic climate change - A review. Energy Policy 2013, 52, 797-809.
    • (2013) Energy Policy , vol.52 , pp. 797-809
    • Höök, M.1    Tang, X.2
  • 3
    • 84921444032 scopus 로고    scopus 로고
    • Global Climate Change Impacts in the United States, Cambridge University Press
    • Karl, T. R., Melillo, J. M., Peterson, T. C., Global Climate Change Impacts in the United States, Cambridge University Press 2009.
    • (2009)
    • Karl, T.R.1    Melillo, J.M.2    Peterson, T.C.3
  • 4
    • 77950551360 scopus 로고    scopus 로고
    • Technology development for the production of biobased products from biorefinery carbohydrates - The US Department of Energy's "top 10" revisited.
    • Bozell, J. J., Petersen, G. R., Technology development for the production of biobased products from biorefinery carbohydrates - The US Department of Energy's "top 10" revisited. Green Chem. 2010, 12, 539-554.
    • (2010) Green Chem. , vol.12 , pp. 539-554
    • Bozell, J.J.1    Petersen, G.R.2
  • 5
    • 84860741240 scopus 로고    scopus 로고
    • Engineering the third wave of biocatalysis.
    • Bornscheuer, U., Huisman, G., Kazlauskas, R., Lutz, S. et al., Engineering the third wave of biocatalysis. Nature 2012, 485, 185-194.
    • (2012) Nature , vol.485 , pp. 185-194
    • Bornscheuer, U.1    Huisman, G.2    Kazlauskas, R.3    Lutz, S.4
  • 6
    • 80052441681 scopus 로고    scopus 로고
    • Engineering of biocatalysts: From evolution to creation.
    • Quin, M. B., Schmidt-Dannert, C., Engineering of biocatalysts: From evolution to creation. ACS Catalysis 2011, 1, 1017-1021.
    • (2011) ACS Catalysis , vol.1 , pp. 1017-1021
    • Quin, M.B.1    Schmidt-Dannert, C.2
  • 7
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
    • Lee, J. W., Na, D., Park, J. M., Lee, J. et al., Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 2012, 8, 536-546.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 536-546
    • Lee, J.W.1    Na, D.2    Park, J.M.3    Lee, J.4
  • 8
    • 84862207929 scopus 로고    scopus 로고
    • Expanding the chemical palate of cells by combining systems biology and metabolic engineering.
    • Curran, K. A., Alper, H. S., Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab. Eng. 2012, 14, 289-297.
    • (2012) Metab. Eng. , vol.14 , pp. 289-297
    • Curran, K.A.1    Alper, H.S.2
  • 9
    • 84878641167 scopus 로고    scopus 로고
    • Metabolic engineering of yeast for production of fuels and chemicals.
    • Nielsen, J., Larsson, C., van Maris, A., Pronk, J., Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 2013, 24, 398-404.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 398-404
    • Nielsen, J.1    Larsson, C.2    van Maris, A.3    Pronk, J.4
  • 10
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering.
    • Keasling, J. D., Manufacturing molecules through metabolic engineering. Science 2010, 330, 1355-1358.
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 11
    • 77949653835 scopus 로고    scopus 로고
    • The biorefinery concept: Using biomass instead of oil for producing energy and chemicals.
    • Cherubini, F., The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conv. Manag. 2010, 51, 1412-1421.
    • (2010) Energy Conv. Manag. , vol.51 , pp. 1412-1421
    • Cherubini, F.1
  • 12
    • 0142027026 scopus 로고    scopus 로고
    • Metabolic engineering for the microbial production of 1, 3-propanediol.
    • Nakamura, C. E., Whited, G. M., Metabolic engineering for the microbial production of 1, 3-propanediol. Curr. Opin. Biotechnol. 2003, 14, 454-459.
    • (2003) Curr. Opin. Biotechnol. , vol.14 , pp. 454-459
    • Nakamura, C.E.1    Whited, G.M.2
  • 13
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin.
    • Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K. et al., High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496, 528-532.
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1    Westfall, P.J.2    Pitera, D.J.3    Benjamin, K.4
  • 15
    • 75149167486 scopus 로고    scopus 로고
    • Five hard truths for synthetic biology.
    • Kwok, R., Five hard truths for synthetic biology. Nature 2010, 463, 288-290.
    • (2010) Nature , vol.463 , pp. 288-290
    • Kwok, R.1
  • 16
    • 84859772410 scopus 로고    scopus 로고
    • Synthetic biology and the development of tools for metabolic engineering.
    • Keasling, J. D., Synthetic biology and the development of tools for metabolic engineering. Metab. Eng. 2012, 14, 189-195.
    • (2012) Metab. Eng. , vol.14 , pp. 189-195
    • Keasling, J.D.1
  • 17
    • 83255164998 scopus 로고    scopus 로고
    • Cell-free synthetic biology: Thinking outside the cell.
    • Hodgman, C. E., Jewett, M. C., Cell-free synthetic biology: Thinking outside the cell. Metab. Eng. 2012, 14, 261-269.
    • (2012) Metab. Eng. , vol.14 , pp. 261-269
    • Hodgman, C.E.1    Jewett, M.C.2
  • 18
    • 79958010538 scopus 로고    scopus 로고
    • Fermentative production of butanol - The industrial perspective.
    • Green, E. M., Fermentative production of butanol - The industrial perspective. Curr. Opin. Biotechnol. 2011, 22, 337-343.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 337-343
    • Green, E.M.1
  • 19
    • 84862167117 scopus 로고    scopus 로고
    • Scale-up of microbial processes: Impacts, tools and open questions.
    • Takors, R., Scale-up of microbial processes: Impacts, tools and open questions. J. Biotechnol. 2012, 160, 3-9.
    • (2012) J. Biotechnol. , vol.160 , pp. 3-9
    • Takors, R.1
  • 20
    • 84859776222 scopus 로고    scopus 로고
    • The future of metabolic engineering and synthetic biology: Towards a systematic practice.
    • Yadav, V. G., De Mey, M., Giaw Lim, C., Kumaran Ajikumar, P., Stephanopoulos, G., The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metab. Eng. 2012, 14, 233-241.
    • (2012) Metab. Eng. , vol.14 , pp. 233-241
    • Yadav, V.G.1    De Mey, M.2    Giaw Lim, C.3    Kumaran Ajikumar, P.4    Stephanopoulos, G.5
  • 22
    • 77957568198 scopus 로고    scopus 로고
    • Engineering in complex systems.
    • Bujara, M., Panke, S., Engineering in complex systems. Curr. Opin. Biotechnol. 2010, 21, 586-591.
    • (2010) Curr. Opin. Biotechnol. , vol.21 , pp. 586-591
    • Bujara, M.1    Panke, S.2
  • 23
    • 83255176666 scopus 로고    scopus 로고
    • Transforming biochemical engineering with cell-free biology.
    • Swartz, J. R., Transforming biochemical engineering with cell-free biology. AIChE J. 2012, 58, 5-13.
    • (2012) AIChE J. , vol.58 , pp. 5-13
    • Swartz, J.R.1
  • 24
    • 80054004325 scopus 로고    scopus 로고
    • What is vital (and not vital) to advance economically-competitive biofuels production.
    • Zhang, Y.-H. P., What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem. 2011, 46, 2091-2110.
    • (2011) Process Biochem. , vol.46 , pp. 2091-2110
    • Zhang, Y.-H.P.1
  • 25
    • 84882379836 scopus 로고    scopus 로고
    • New biotechnology paradigm: Cell-free biosystems for biomanufacturing.
    • Rollin, J. A., Tam, T. K., Zhang, Y.-H. P., New biotechnology paradigm: Cell-free biosystems for biomanufacturing. Green Chem. 2013, 15, 1708-1719.
    • (2013) Green Chem. , vol.15 , pp. 1708-1719
    • Rollin, J.A.1    Tam, T.K.2    Zhang, Y.-H.P.3
  • 26
    • 84979792264 scopus 로고    scopus 로고
    • In Vitro Multienzymatic Reaction Systems for Biosynthesis, in: Fundamentals and Application of New Bioproduction Systems, Springer
    • Ardao, I., Hwang, E. T., Zeng, A.-P., In Vitro Multienzymatic Reaction Systems for Biosynthesis, in: Fundamentals and Application of New Bioproduction Systems, Springer 2013, pp. 153-184.
    • (2013) , pp. 153-184
    • Ardao, I.1    Hwang, E.T.2    Zeng, A.-P.3
  • 27
    • 84875113761 scopus 로고    scopus 로고
    • Direct conversion of glucose to malate by synthetic metabolic engineering.
    • Ye, X., Honda, K., Morimoto, Y., Okano, K., Ohtake, H., Direct conversion of glucose to malate by synthetic metabolic engineering. J. Biotechnol. 2013, 164, 34-40.
    • (2013) J. Biotechnol. , vol.164 , pp. 34-40
    • Ye, X.1    Honda, K.2    Morimoto, Y.3    Okano, K.4    Ohtake, H.5
  • 28
    • 84872404856 scopus 로고    scopus 로고
    • Biosynthesis "debugged": Novel bioproduction strategies.
    • Guterl, J. K., Sieber, V., Biosynthesis "debugged": Novel bioproduction strategies. Eng. Life Sci. 2013, 13, 4-18.
    • (2013) Eng. Life Sci. , vol.13 , pp. 4-18
    • Guterl, J.K.1    Sieber, V.2
  • 29
    • 84887621174 scopus 로고    scopus 로고
    • The good of two worlds: Increasing complexity in cell-free systems.
    • Billerbeck, S., Härle, J., Panke, S., The good of two worlds: Increasing complexity in cell-free systems. Curr. Opin. Biotechnol. 2013, 24, 1037-1043.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1037-1043
    • Billerbeck, S.1    Härle, J.2    Panke, S.3
  • 31
    • 73049150125 scopus 로고
    • The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides.
    • Nirenberg, M. W., Matthaei, J. H., The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588.
    • (1961) Proc. Natl. Acad. Sci. USA , vol.47 , pp. 1588
    • Nirenberg, M.W.1    Matthaei, J.H.2
  • 32
    • 79251494754 scopus 로고    scopus 로고
    • Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance.
    • Sanchez, S., Demain, A. L., Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Organ. Process Res. Dev. 2010, 15, 224-230.
    • (2010) Organ. Process Res. Dev. , vol.15 , pp. 224-230
    • Sanchez, S.1    Demain, A.L.2
  • 33
    • 53949093950 scopus 로고    scopus 로고
    • An integrated cell-free metabolic platform for protein production and synthetic biology.
    • Jewett, M. C., Calhoun, K. A., Voloshin, A., Wuu, J. J., Swartz, J. R., An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol. 2008, 4, 1-10.
    • (2008) Mol. Syst. Biol. , vol.4 , pp. 1-10
    • Jewett, M.C.1    Calhoun, K.A.2    Voloshin, A.3    Wuu, J.J.4    Swartz, J.R.5
  • 34
    • 0035921172 scopus 로고    scopus 로고
    • Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis.
    • Kim, D. M., Swartz, J. R., Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnol. Bioeng. 2001, 74, 309-316.
    • (2001) Biotechnol. Bioeng. , vol.74 , pp. 309-316
    • Kim, D.M.1    Swartz, J.R.2
  • 35
    • 1542720448 scopus 로고    scopus 로고
    • Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis.
    • Jewett, M. C., Swartz, J. R., Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 2004, 86, 19-26.
    • (2004) Biotechnol. Bioeng. , vol.86 , pp. 19-26
    • Jewett, M.C.1    Swartz, J.R.2
  • 36
    • 67849119369 scopus 로고    scopus 로고
    • Cell-free protein synthesis energized by slowly-metabolized maltodextrin.
    • Wang, Y., Zhang, Y. P., Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol. 2009, 9, 58.
    • (2009) BMC Biotechnol. , vol.9 , pp. 58
    • Wang, Y.1    Zhang, Y.P.2
  • 37
    • 84894033400 scopus 로고    scopus 로고
    • Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system.
    • Caschera, F., Noireaux, V., Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 2014, 99, 162-168.
    • (2014) Biochimie , vol.99 , pp. 162-168
    • Caschera, F.1    Noireaux, V.2
  • 38
    • 79955591560 scopus 로고    scopus 로고
    • Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source.
    • Kim, H.-C., Kim, T.-W., Kim, D.-M., Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source. Process Biochem. 2011, 46, 1366-1369.
    • (2011) Process Biochem. , vol.46 , pp. 1366-1369
    • Kim, H.-C.1    Kim, T.-W.2    Kim, D.-M.3
  • 39
    • 0034904102 scopus 로고    scopus 로고
    • Cell-free translation reconstituted with purified components.
    • Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T. et al., Cell-free translation reconstituted with purified components. Nat. Biotechnol. 2001, 19, 751-755.
    • (2001) Nat. Biotechnol. , vol.19 , pp. 751-755
    • Shimizu, Y.1    Inoue, A.2    Tomari, Y.3    Suzuki, T.4
  • 40
    • 79956158054 scopus 로고    scopus 로고
    • Microscale to manufacturing scale-up of cell-free cytokine production - A new approach for shortening protein production development timelines.
    • Zawada, J. F., Yin, G., Steiner, A. R., Yang, J. et al., Microscale to manufacturing scale-up of cell-free cytokine production - A new approach for shortening protein production development timelines. Biotechnol. Bioeng. 2011, 108, 1570-1578.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 1570-1578
    • Zawada, J.F.1    Yin, G.2    Steiner, A.R.3    Yang, J.4
  • 42
    • 84864953230 scopus 로고    scopus 로고
    • Cell-free protein synthesis: Applications come of age.
    • Carlson, E. D., Gan, R., Hodgman, C. E., Jewett, M. C., Cell-free protein synthesis: Applications come of age. Biotechnol. Adv. 2012, 30, 1185-1194.
    • (2012) Biotechnol. Adv. , vol.30 , pp. 1185-1194
    • Carlson, E.D.1    Gan, R.2    Hodgman, C.E.3    Jewett, M.C.4
  • 43
    • 84872807174 scopus 로고    scopus 로고
    • Cell-free protein synthesis: The state of the art.
    • Whittaker, J. W., Cell-free protein synthesis: The state of the art. Biotechnol. Lett. 2013, 35, 143-152.
    • (2013) Biotechnol. Lett. , vol.35 , pp. 143-152
    • Whittaker, J.W.1
  • 44
    • 84878892481 scopus 로고    scopus 로고
    • Cell-free translation of peptides and proteins: From high throughput screening to clinical production.
    • Murray, C. J., Baliga, R., Cell-free translation of peptides and proteins: From high throughput screening to clinical production. Curr. Opin. Chem. Biol. 2013, 17, 420-426.
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 420-426
    • Murray, C.J.1    Baliga, R.2
  • 45
    • 84904381565 scopus 로고    scopus 로고
    • Cell-free synthesis of 1,3-propanediol from glycerol with a high yield.
    • Rieckenberg, F., Ardao, I., Rujananon, R., Zeng, A. P., Cell-free synthesis of 1, 3-propanediol from glycerol with a high yield. Eng. Life Sci. 2014, 14, 380-386.
    • (2014) Eng. Life Sci. , vol.14 , pp. 380-386
    • Rieckenberg, F.1    Ardao, I.2    Rujananon, R.3    Zeng, A.P.4
  • 46
    • 84903211692 scopus 로고    scopus 로고
    • Gene circuit performance characterization and resource usage in a cell-free "Breadboard".
    • Siegal-Gaskins, D., Tuza, Z. A., Kim, J., Noireaux, V., Murray, R. M., Gene circuit performance characterization and resource usage in a cell-free "Breadboard". ACS Synth. Biol. 2014, 3, 416-425.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 416-425
    • Siegal-Gaskins, D.1    Tuza, Z.A.2    Kim, J.3    Noireaux, V.4    Murray, R.M.5
  • 47
    • 0021856395 scopus 로고
    • Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes.
    • Welch, P., Scopes, R. K., Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J. Biotechnol. 1985, 2, 257-273.
    • (1985) J. Biotechnol. , vol.2 , pp. 257-273
    • Welch, P.1    Scopes, R.K.2
  • 48
    • 33847657398 scopus 로고    scopus 로고
    • Cell-free ethanol production: The future of fuel ethanol?
    • Allain, E. J., Cell-free ethanol production: The future of fuel ethanol? J. Chem. Technol. Biotechnol. 2007, 82, 117-120.
    • (2007) J. Chem. Technol. Biotechnol. , vol.82 , pp. 117-120
    • Allain, E.J.1
  • 49
    • 84869409254 scopus 로고    scopus 로고
    • Cell-free metabolic engineering: Production of chemicals by minimized reaction cascades.
    • Guterl, J. K., Garbe, D., Carsten, J., Steffler, F. et al., Cell-free metabolic engineering: Production of chemicals by minimized reaction cascades. ChemSusChem 2012, 5, 2165-2172.
    • (2012) ChemSusChem , vol.5 , pp. 2165-2172
    • Guterl, J.K.1    Garbe, D.2    Carsten, J.3    Steffler, F.4
  • 50
    • 1942520229 scopus 로고    scopus 로고
    • A functional protein chip for pathway optimization and in vitro metabolic engineering.
    • Jung, G. Y., Stephanopoulos, G., A functional protein chip for pathway optimization and in vitro metabolic engineering. Science 2004, 304, 428-431.
    • (2004) Science , vol.304 , pp. 428-431
    • Jung, G.Y.1    Stephanopoulos, G.2
  • 51
    • 84863610029 scopus 로고    scopus 로고
    • An E. coli cell-free expression toolbox: Application to synthetic gene circuits and artificial cells.
    • Shin, J., Noireaux, V., An E. coli cell-free expression toolbox: Application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 2012, 1, 29-41.
    • (2012) ACS Synth. Biol. , vol.1 , pp. 29-41
    • Shin, J.1    Noireaux, V.2
  • 52
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation.
    • Bogorad, I. W., Lin, T.-S., Liao, J. C., Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 2013, 502, 693-697.
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.-S.2    Liao, J.C.3
  • 53
    • 84901617508 scopus 로고    scopus 로고
    • In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli.
    • Zhu, F., Zhong, X., Hu, M., Lu, L. et al., In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol. Bioeng. 2014, 111, 1398-1405.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 1398-1405
    • Zhu, F.1    Zhong, X.2    Hu, M.3    Lu, L.4
  • 54
    • 81755185882 scopus 로고    scopus 로고
    • In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli.
    • Yu, X., Liu, T., Zhu, F., Khosla, C., In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc. Natl. Acad. Sci. USA 2011, 108, 18643-18648.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 18643-18648
    • Yu, X.1    Liu, T.2    Zhu, F.3    Khosla, C.4
  • 55
    • 84894295608 scopus 로고    scopus 로고
    • Statistical experimental design guided optimization of a one-pot biphasic multienzyme total synthesis of amorpha-4, 11-diene.
    • Chen, X., Zhang, C., Zou, R., Zhou, K. et al., Statistical experimental design guided optimization of a one-pot biphasic multienzyme total synthesis of amorpha-4, 11-diene. PloS ONE 2013, 8, e79650.
    • (2013) PloS ONE , vol.8 , pp. e79650
    • Chen, X.1    Zhang, C.2    Zou, R.3    Zhou, K.4
  • 56
    • 84900988341 scopus 로고    scopus 로고
    • A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates.
    • Korman, T. P., Sahachartsiri, B., Li, D., Vinokur, J. M. et al., A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Protein Sci. 2014, 23, 576-585.
    • (2014) Protein Sci. , vol.23 , pp. 576-585
    • Korman, T.P.1    Sahachartsiri, B.2    Li, D.3    Vinokur, J.M.4
  • 59
    • 80053487298 scopus 로고    scopus 로고
    • Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction.
    • Babich, L., van Hemert, L. J., Bury, A., Hartog, A. F. et al., Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction. Green Chem. 2011, 13, 2895-2900.
    • (2011) Green Chem. , vol.13 , pp. 2895-2900
    • Babich, L.1    van Hemert, L.J.2    Bury, A.3    Hartog, A.F.4
  • 60
    • 84857540559 scopus 로고    scopus 로고
    • Biotechnological development of a practical synthesis of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl) propanoate (EEHP): Over 100-fold productivity increase from yeast whole cells to recombinant isolated enzymes.
    • Bechtold, M., Brenna, E., Femmer, C., Gatti, F. G. et al., Biotechnological development of a practical synthesis of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl) propanoate (EEHP): Over 100-fold productivity increase from yeast whole cells to recombinant isolated enzymes. Org. Process Res. Dev. 2011, 16, 269-276.
    • (2011) Org. Process Res. Dev. , vol.16 , pp. 269-276
    • Bechtold, M.1    Brenna, E.2    Femmer, C.3    Gatti, F.G.4
  • 61
    • 55849139751 scopus 로고    scopus 로고
    • High-yield hydrogen production from starch and water by a synthetic enzymatic pathway.
    • Zhang, Y.-H. P., Evans, B. R., Mielenz, J. R., Hopkins, R. C., Adams, M. W., High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 2007, 2, e456.
    • (2007) PLoS ONE , vol.2 , pp. e456
    • Zhang, Y.-H.P.1    Evans, B.R.2    Mielenz, J.R.3    Hopkins, R.C.4    Adams, M.W.5
  • 62
    • 61349097193 scopus 로고    scopus 로고
    • Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails.
    • Ye, X., Wang, Y., Hopkins, R. C., Adams, M. W. et al., Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2009, 2, 149-152.
    • (2009) ChemSusChem , vol.2 , pp. 149-152
    • Ye, X.1    Wang, Y.2    Hopkins, R.C.3    Adams, M.W.4
  • 63
    • 84876470702 scopus 로고    scopus 로고
    • High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System.
    • Martín del Campo, J. S., Rollin, J., Myung, S., Chun, Y. et al., High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System. Angew. Chem. Int. Ed. 2013, 52, 4587-4590.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 4587-4590
    • Martín del Campo, J.S.1    Rollin, J.2    Myung, S.3    Chun, Y.4
  • 66
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria.
    • Thauer, R. K., Jungermann, K., Decker, K., Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100.
    • (1977) Bacteriol. Rev. , vol.41 , pp. 100
    • Thauer, R.K.1    Jungermann, K.2    Decker, K.3
  • 67
    • 79951647068 scopus 로고    scopus 로고
    • Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways.
    • Wang, Y., Huang, W., Sathitsuksanoh, N., Zhu, Z., Zhang, Y.-H. P., Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem. Biol. 2011, 18, 372-380.
    • (2011) Chem. Biol. , vol.18 , pp. 372-380
    • Wang, Y.1    Huang, W.2    Sathitsuksanoh, N.3    Zhu, Z.4    Zhang, Y.-H.P.5
  • 69
    • 84892973839 scopus 로고    scopus 로고
    • A high-energy-density sugar biobattery based on a synthetic enzymatic pathway.
    • Zhu, Z., Tam, T. K., Sun, F., You, C., Zhang, Y.-H. P., A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat. Commun. 2014, 5, 1-8.
    • (2014) Nat. Commun. , vol.5 , pp. 1-8
    • Zhu, Z.1    Tam, T.K.2    Sun, F.3    You, C.4    Zhang, Y.-H.P.5
  • 71
    • 77953580280 scopus 로고    scopus 로고
    • Exploiting cell-free systems: Implementation and debugging of a system of biotransformations.
    • Bujara, M., Schümperli, M., Billerbeck, S., Heinemann, M., Panke, S., Exploiting cell-free systems: Implementation and debugging of a system of biotransformations. Biotechnol. Bioeng. 2010, 106, 376-389.
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 376-389
    • Bujara, M.1    Schümperli, M.2    Billerbeck, S.3    Heinemann, M.4    Panke, S.5
  • 72
    • 79955065138 scopus 로고    scopus 로고
    • Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis.
    • Bujara, M., Schümperli, M., Pellaux, R., Heinemann, M., Panke, S., Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat. Chem. Biol. 2011, 7, 271-277.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 271-277
    • Bujara, M.1    Schümperli, M.2    Pellaux, R.3    Heinemann, M.4    Panke, S.5
  • 73
    • 84900589295 scopus 로고    scopus 로고
    • east cell-free enzyme system for bio-ethanol production at elevated temperatures.
    • Khattak, W. A., Ul-Islam, M., Ullah, M. W., Yu, B. et al., east cell-free enzyme system for bio-ethanol production at elevated temperatures. Process Biochem. 2014, 49, 357-364.
    • (2014) Process Biochem. , vol.49 , pp. 357-364
    • Khattak, W.A.1    Ul-Islam, M.2    Ullah, M.W.3    Yu, B.4
  • 74
    • 84876029446 scopus 로고    scopus 로고
    • Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide.
    • Keller, M. W., Schut, G. J., Lipscomb, G. L., Menon, A. L. et al., Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl. Acad. Sci. 2013, 110, 5840-5845.
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , pp. 5840-5845
    • Keller, M.W.1    Schut, G.J.2    Lipscomb, G.L.3    Menon, A.L.4
  • 75
    • 84867206986 scopus 로고    scopus 로고
    • Preparative, in vitro biocatalysis of triketide lactone chiral building blocks.
    • Harper, A. D., Bailey, C. B., Edwards, A. D., Detelich, J. F., Keatinge-Clay, A. T., Preparative, in vitro biocatalysis of triketide lactone chiral building blocks. ChemBioChem 2012, 13, 2200-2203.
    • (2012) ChemBioChem , vol.13 , pp. 2200-2203
    • Harper, A.D.1    Bailey, C.B.2    Edwards, A.D.3    Detelich, J.F.4    Keatinge-Clay, A.T.5
  • 76
    • 0242661634 scopus 로고    scopus 로고
    • Biosynthesis of ε{lunate}-poly-l-lysine in a cell-free system of Streptomyces albulus.
    • Kawai, T., Kubota, T., Hiraki, J., Izumi, Y., Biosynthesis of ε{lunate}-poly-l-lysine in a cell-free system of Streptomyces albulus. Biochem. Biophys. Res. Commun. 2003, 311, 635-640.
    • (2003) Biochem. Biophys. Res. Commun. , vol.311 , pp. 635-640
    • Kawai, T.1    Kubota, T.2    Hiraki, J.3    Izumi, Y.4
  • 77
    • 0033988184 scopus 로고    scopus 로고
    • Synthesis of cefminox by cell-free extracts of Streptomyces clavuligerus.
    • Kim, J. K., Kang, H. i., Chae, J. S., Park, Y. H., Choi, Y. J., Synthesis of cefminox by cell-free extracts of Streptomyces clavuligerus. FEMS Microbiol. Lett. 2000, 182, 313-317.
    • (2000) FEMS Microbiol. Lett. , vol.182 , pp. 313-317
    • Kim, J.K.1    Kang, H.i.2    Chae, J.S.3    Park, Y.H.4    Choi, Y.J.5
  • 78
    • 33646444437 scopus 로고    scopus 로고
    • In vitro biosynthesis of the antitumor agent azinomycin B.
    • Liu, C., Kelly, G. T., Watanabe, C. M., In vitro biosynthesis of the antitumor agent azinomycin B. Org. Lett. 2006, 8, 1065-1068.
    • (2006) Org. Lett. , vol.8 , pp. 1065-1068
    • Liu, C.1    Kelly, G.T.2    Watanabe, C.M.3
  • 79
    • 77955055053 scopus 로고    scopus 로고
    • Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes.
    • Honda, K., Maya, S., Omasa, T., Hirota, R. et al., Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes. J. Biotechnol. 2010, 148, 204-207.
    • (2010) J. Biotechnol. , vol.148 , pp. 204-207
    • Honda, K.1    Maya, S.2    Omasa, T.3    Hirota, R.4
  • 80
    • 84865800305 scopus 로고    scopus 로고
    • Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway.
    • Ye, X., Honda, K., Sakai, T., Okano, K. et al., Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb. Cell Factories 2012, 11, 120.
    • (2012) Microb. Cell Factories , vol.11 , pp. 120
    • Ye, X.1    Honda, K.2    Sakai, T.3    Okano, K.4
  • 81
    • 84884943682 scopus 로고    scopus 로고
    • In vitro production of n-butanol from glucose.
    • Krutsakorn, B., Honda, K., Ye, X., Imagawa, T. et al., In vitro production of n-butanol from glucose. Metab. Eng. 2013, 20, 84-91.
    • (2013) Metab. Eng. , vol.20 , pp. 84-91
    • Krutsakorn, B.1    Honda, K.2    Ye, X.3    Imagawa, T.4
  • 82
    • 84884992345 scopus 로고    scopus 로고
    • Construction of an in vitro bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to N-acetylglutamate production.
    • Krutsakorn, B., Imagawa, T., Honda, K., Okano, K., Ohtake, H., Construction of an in vitro bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to N-acetylglutamate production. Microb. Cell Factories 2013, 12, 91.
    • (2013) Microb. Cell Factories , vol.12 , pp. 91
    • Krutsakorn, B.1    Imagawa, T.2    Honda, K.3    Okano, K.4    Ohtake, H.5
  • 83
    • 84892370944 scopus 로고    scopus 로고
    • Directed evolution of thermotolerant malic enzyme for improved malate production.
    • Morimoto, Y., Honda, K., Ye, X., Okano, K., Ohtake, H., Directed evolution of thermotolerant malic enzyme for improved malate production. J. Biosci. Bioeng. 2013, 127, 147-152.
    • (2013) J. Biosci. Bioeng. , vol.127 , pp. 147-152
    • Morimoto, Y.1    Honda, K.2    Ye, X.3    Okano, K.4    Ohtake, H.5
  • 84
    • 84880837893 scopus 로고    scopus 로고
    • Refolding of a Thermostable glyceraldehyde dehydrogenase for application in synthetic cascade biomanufacturing.
    • Steffler, F., Sieber, V., Refolding of a Thermostable glyceraldehyde dehydrogenase for application in synthetic cascade biomanufacturing. PloS ONE 2013, 8, e70592.
    • (2013) PloS ONE , vol.8 , pp. e70592
    • Steffler, F.1    Sieber, V.2
  • 85
    • 84883770256 scopus 로고    scopus 로고
    • Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing.
    • Steffler, F., Guterl, J.-K., Sieber, V., Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing. Enzyme Microb. Technol. 2013, 53, 307-314.
    • (2013) Enzyme Microb. Technol. , vol.53 , pp. 307-314
    • Steffler, F.1    Guterl, J.-K.2    Sieber, V.3
  • 86
    • 84876019828 scopus 로고    scopus 로고
    • Non-complexed four cascade enzyme mixture: Simple purification and synergetic co-stabilization.
    • Myung, S., Zhang, Y. P., Non-complexed four cascade enzyme mixture: Simple purification and synergetic co-stabilization. PloS ONE 2013, 8, e61500.
    • (2013) PloS ONE , vol.8 , pp. e61500
    • Myung, S.1    Zhang, Y.P.2
  • 87
    • 84874821000 scopus 로고    scopus 로고
    • Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst.
    • Ninh, P. H., Honda, K., Yokohigashi, Y., Okano, K. et al., Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst. Appl. Environ. Microbiol. 2013, 79, 1996-2001.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 1996-2001
    • Ninh, P.H.1    Honda, K.2    Yokohigashi, Y.3    Okano, K.4
  • 88
    • 84979797970 scopus 로고    scopus 로고
    • Directed Multistep Biocatalysis Using Tailored Permeabilized Cells, Fundamentals and Application of New Bioproduction Systems, Springer
    • Krauser, S., Weyler, C., Blaß, L. K., Heinzle, E., Directed Multistep Biocatalysis Using Tailored Permeabilized Cells, Fundamentals and Application of New Bioproduction Systems, Springer 2013, pp. 185-234.
    • (2013) , pp. 185-234
    • Krauser, S.1    Weyler, C.2    Blaß, L.K.3    Heinzle, E.4
  • 89
    • 84861553872 scopus 로고    scopus 로고
    • Multienzyme whole-cell in situ biocatalysis for the production of flaviolin in permeabilized cells of Escherichia coli.
    • Krauser, S., Kiefer, P., Heinzle, E., Multienzyme whole-cell in situ biocatalysis for the production of flaviolin in permeabilized cells of Escherichia coli. ChemCatChem 2012, 4, 786-788.
    • (2012) ChemCatChem , vol.4 , pp. 786-788
    • Krauser, S.1    Kiefer, P.2    Heinzle, E.3
  • 90
    • 84882429776 scopus 로고    scopus 로고
    • Recyclable cellulose-containing magnetic nanoparticles: Immobilization of cellulose-binding module-tagged proteins and a synthetic metabolon featuring substrate channeling.
    • Myung, S., You, C., Zhang, Y.-H. P., Recyclable cellulose-containing magnetic nanoparticles: Immobilization of cellulose-binding module-tagged proteins and a synthetic metabolon featuring substrate channeling. J. Mater. Chem. B 2013, 1, 4419-4427.
    • (2013) J. Mater. Chem. B , vol.1 , pp. 4419-4427
    • Myung, S.1    You, C.2    Zhang, Y.-H.P.3
  • 91
    • 84874095104 scopus 로고    scopus 로고
    • Self-assembly of synthetic metabolons through synthetic protein scaffolds: One-step purification, co-immobilization, and substrate channeling.
    • You, C., Zhang, Y.-H. P., Self-assembly of synthetic metabolons through synthetic protein scaffolds: One-step purification, co-immobilization, and substrate channeling. ACS Synth. Biol. 2012, 2, 102-110.
    • (2012) ACS Synth. Biol. , vol.2 , pp. 102-110
    • You, C.1    Zhang, Y.-H.P.2
  • 93
    • 79960216783 scopus 로고    scopus 로고
    • Substrate channeling and enzyme complexes for biotechnological applications.
    • Zhang, Y.-H. P., Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 2011, 29, 715-725.
    • (2011) Biotechnol. Adv. , vol.29 , pp. 715-725
    • Zhang, Y.-H.P.1
  • 94
    • 84855714089 scopus 로고    scopus 로고
    • From polymeric nanoreactors to artificial organelles.
    • Peters, R. J., Louzao, I., van Hest, J. C., From polymeric nanoreactors to artificial organelles. Chem. Sci. 2012, 3, 335-342.
    • (2012) Chem. Sci. , vol.3 , pp. 335-342
    • Peters, R.J.1    Louzao, I.2    van Hest, J.C.3
  • 95
    • 84861443800 scopus 로고    scopus 로고
    • Natural strategies for the spatial optimization of metabolism in synthetic biology.
    • Agapakis, C. M., Boyle, P. M., Silver, P. A., Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol. 2012, 8, 527-535.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 527-535
    • Agapakis, C.M.1    Boyle, P.M.2    Silver, P.A.3
  • 96
    • 68449088806 scopus 로고    scopus 로고
    • Synthetic protein scaffolds provide modular control over metabolic flux.
    • Dueber, J. E., Wu, G. C., Malmirchegini, G. R., Moon, T. S. et al., Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 2009, 27, 753-759.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 753-759
    • Dueber, J.E.1    Wu, G.C.2    Malmirchegini, G.R.3    Moon, T.S.4
  • 97
    • 84863229940 scopus 로고    scopus 로고
    • DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency.
    • Conrado, R. J., Wu, G. C., Boock, J. T., Xu, H. et al., DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 2012, 40, 1879-1889.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 1879-1889
    • Conrado, R.J.1    Wu, G.C.2    Boock, J.T.3    Xu, H.4
  • 98
    • 11144220854 scopus 로고    scopus 로고
    • A vesicle bioreactor as a step toward an artificial cell assembly.
    • Noireaux, V., Libchaber, A., A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA 2004, 101, 17669-17674.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 17669-17674
    • Noireaux, V.1    Libchaber, A.2
  • 99
    • 84898541544 scopus 로고    scopus 로고
    • Toward cell-free biofuel production: Stable immobilization of oligomeric enzymes.
    • Grimaldi, J., Collins, C., Belfort, G., Toward cell-free biofuel production: Stable immobilization of oligomeric enzymes. Biotechnol. Progr. 2014, 30, 324-331.
    • (2014) Biotechnol. Progr. , vol.30 , pp. 324-331
    • Grimaldi, J.1    Collins, C.2    Belfort, G.3
  • 100
    • 38449091849 scopus 로고    scopus 로고
    • Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.
    • Lewandowski, A. T., Yi, H., Luo, X., Payne, G. F. et al., Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag. Biotechnol. Bioeng. 2008, 99, 499-507.
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 499-507
    • Lewandowski, A.T.1    Yi, H.2    Luo, X.3    Payne, G.F.4
  • 101
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli.
    • Bastian, S., Liu, X., Meyerowitz, J. T., Snow, C. D. et al., Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng. 2011, 13, 345-352.
    • (2011) Metab. Eng. , vol.13 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3    Snow, C.D.4
  • 102
    • 77958556843 scopus 로고    scopus 로고
    • Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior.
    • Campbell, E., Wheeldon, I. R., Banta, S., Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol. Bioeng. 2010, 107, 763-774.
    • (2010) Biotechnol. Bioeng. , vol.107 , pp. 763-774
    • Campbell, E.1    Wheeldon, I.R.2    Banta, S.3
  • 103
    • 77951894908 scopus 로고    scopus 로고
    • Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.
    • Katzberg, M., Skorupa-Parachin, N., Gorwa-Grauslund, M.-F., Bertau, M., Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int. J. Mol. Sci. 2010, 11, 1735-1758.
    • (2010) Int. J. Mol. Sci. , vol.11 , pp. 1735-1758
    • Katzberg, M.1    Skorupa-Parachin, N.2    Gorwa-Grauslund, M.-F.3    Bertau, M.4
  • 104
    • 84902786631 scopus 로고    scopus 로고
    • A synthetic biochemistry molecular purge valve module that maintains redox balance.
    • Opgenorth, P. H., Korman, T. P., Bowie, J. U., Kerr, J. B. et al., A synthetic biochemistry molecular purge valve module that maintains redox balance. Nature Comm. 2014, 5, 1-8.
    • (2014) Nature Comm. , vol.5 , pp. 1-8
    • Opgenorth, P.H.1    Korman, T.P.2    Bowie, J.U.3    Kerr, J.B.4
  • 105
    • 0035904986 scopus 로고    scopus 로고
    • +: Structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    • +: Structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1, 4-NADH derivatives. Inorg. Chem. 2001, 40, 6705-6716.
    • (2001) Inorg. Chem. , vol.40 , pp. 6705-6716
    • Lo, H.C.1    Leiva, C.2    Buriez, O.3    Kerr, J.B.4
  • 106
    • 84901483425 scopus 로고    scopus 로고
    • Recent advances in engineering proteins for biocatalysis.
    • Li, Y., Cirino, P. C., Recent advances in engineering proteins for biocatalysis. Biotechnol. Bioeng. 2014, 111, 1273-1287.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 1273-1287
    • Li, Y.1    Cirino, P.C.2
  • 107
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis - Revisiting the electrical route for microbial production.
    • Rabaey, K., Rozendal, R. A., Microbial electrosynthesis - Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8, 706-716.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 108
    • 84904335020 scopus 로고    scopus 로고
    • Enzymatic electrosynthesis: An overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals.
    • Dominguez-Benetton, X., Srikanth, S., Satyawali, Y., Vanbroekhoven, K., Pant, D., Enzymatic electrosynthesis: An overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J. Microb. Biochem. Technol. S 2013, 6, 2.
    • (2013) J. Microb. Biochem. Technol. S , vol.6 , pp. 2
    • Dominguez-Benetton, X.1    Srikanth, S.2    Satyawali, Y.3    Vanbroekhoven, K.4    Pant, D.5
  • 109
    • 84868496357 scopus 로고    scopus 로고
    • In silico evaluation of a complex multi-enzymatic system using one-pot and modular approaches: Application to the high-yield production of hydrogen from a synthetic metabolic pathway.
    • Ardao, I., Zeng, A.-P., In silico evaluation of a complex multi-enzymatic system using one-pot and modular approaches: Application to the high-yield production of hydrogen from a synthetic metabolic pathway. Chem. Eng. Sci. 2012, 87, 183-193.
    • (2012) Chem. Eng. Sci. , vol.87 , pp. 183-193
    • Ardao, I.1    Zeng, A.-P.2
  • 110
    • 84882640384 scopus 로고    scopus 로고
    • Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.
    • Toya, Y., Shimizu, H., Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol. Adv. 2013, 31, 818-826.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 818-826
    • Toya, Y.1    Shimizu, H.2
  • 112
    • 84865397149 scopus 로고    scopus 로고
    • In silico assessment of cell-free systems.
    • Bujara, M., Panke, S., In silico assessment of cell-free systems. Biotechnol. Bioeng. 2012, 109, 2620-2629.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2620-2629
    • Bujara, M.1    Panke, S.2
  • 113
    • 22144436255 scopus 로고    scopus 로고
    • Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways.
    • González-Lergier, J., Broadbelt, L. J., Hatzimanikatis, V., Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. J. Am. Chem. Soc. 2005, 127, 9930-9938.
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 9930-9938
    • González-Lergier, J.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 114
    • 77953578214 scopus 로고    scopus 로고
    • Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-Hydroxypropanoate.
    • Henry, C. S., Broadbelt, L. J., Hatzimanikatis, V., Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-Hydroxypropanoate. Biotechnol. Bioeng. 2010, 106, 462-473.
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 462-473
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 115
    • 77954268488 scopus 로고    scopus 로고
    • PathPred: An enzyme-catalyzed metabolic pathway prediction server.
    • Moriya, Y., Shigemizu, D., Hattori, M., Tokimatsu, T. et al., PathPred: An enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res. 2010, 38, W138-W143.
    • (2010) Nucleic Acids Res. , vol.38 , pp. W138-W143
    • Moriya, Y.1    Shigemizu, D.2    Hattori, M.3    Tokimatsu, T.4
  • 116
    • 79959955242 scopus 로고    scopus 로고
    • The University of Minnesota Pathway Prediction System: Multi-level prediction and visualization.
    • Gao, J., Ellis, L. B., Wackett, L. P., The University of Minnesota Pathway Prediction System: Multi-level prediction and visualization. Nucleic Acids Res. 2011, 39, W406-W411.
    • (2011) Nucleic Acids Res. , vol.39 , pp. W406-W411
    • Gao, J.1    Ellis, L.B.2    Wackett, L.P.3
  • 118
    • 84878862372 scopus 로고    scopus 로고
    • Metabolic tinker: An online tool for guiding the design of synthetic metabolic pathways.
    • McClymont, K., Soyer, O. S., Metabolic tinker: An online tool for guiding the design of synthetic metabolic pathways. Nucleic Acids Res. 2013, 41, e113-e113.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e113-e113
    • McClymont, K.1    Soyer, O.S.2
  • 119
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering.
    • Du, J., Yuan, Y., Si, T., Lian, J., Zhao, H., Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012, 40, 142-e142.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 142-e142
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 120
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
    • Ajikumar, P. K., Xiao, W.-H., Tyo, K. E., Wang, Y. et al., Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 2010, 330, 70-74.
    • (2010) Science , vol.330 , pp. 70-74
    • Ajikumar, P.K.1    Xiao, W.-H.2    Tyo, K.E.3    Wang, Y.4
  • 121
    • 83055177124 scopus 로고    scopus 로고
    • Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach.
    • Blazeck, J., Liu, L., Redden, H., Alper, H., Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl. Environ. Microbiol. 2011, 77, 7905-7914.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 7905-7914
    • Blazeck, J.1    Liu, L.2    Redden, H.3    Alper, H.4
  • 122
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution.
    • Wang, H. H., Isaacs, F. J., Carr, P. A., Sun, Z. Z. et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009, 460, 894-898.
    • (2009) Nature , vol.460 , pp. 894-898
    • Wang, H.H.1    Isaacs, F.J.2    Carr, P.A.3    Sun, Z.Z.4
  • 123
    • 84863328748 scopus 로고    scopus 로고
    • Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis.
    • Wang, H. H., Huang, P.-Y., Xu, G., Haas, W. et al., Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth. Biol. 2012, 1, 43-52.
    • (2012) ACS Synth. Biol. , vol.1 , pp. 43-52
    • Wang, H.H.1    Huang, P.-Y.2    Xu, G.3    Haas, W.4
  • 124
    • 78650647970 scopus 로고    scopus 로고
    • Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli.
    • Atsumi, S., Wu, T. Y., Machado, I. M., Huang, W. C. et al., Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol. 2010, 6, 1-10.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 1-10
    • Atsumi, S.1    Wu, T.Y.2    Machado, I.M.3    Huang, W.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.